Lecture 5

Maps

MAT 250
Lecture 5

Definition.

MAT 250
Lecture 5

Definition. Let X and Y be sets.

Definition. Let X and Y be sets.

A map

Definition. Let X and Y be sets.

A map (or mapping,

Definition. Let X and Y be sets.

A map (or mapping, or function)

Definition. Let X and Y be sets.

A map (or mapping, or function) f from X to Y

Definition. Let X and Y be sets.

A map (or mapping, or function) f from X to Y is a rule assigning to each element in X a unique element in Y :

Definition. Let X and Y be sets.
A map (or mapping, or function) f from X to Y is a rule assigning to each element in X a unique element in Y :
$\forall x \in X \quad \exists!y \in Y \quad y=f(x)$.

Definition. Let X and Y be sets.
A map (or mapping, or function) f from X to Y is a rule assigning to each element in X a unique element in Y :
$\forall x \in X \quad \exists!y \in Y \quad y=f(x)$.
X is called the domain of f,

Definition. Let X and Y be sets.
A map (or mapping, or function) f from X to Y is a rule assigning to each element in X a unique element in Y :
$\forall x \in X \quad \exists!y \in Y \quad y=f(x)$.
X is called the domain of $f, \quad Y$ is called the codomain of f.

Definition. Let X and Y be sets.
A map (or mapping, or function) f from X to Y is a rule assigning to each element in X a unique element in Y :
$\forall x \in X \quad \exists!y \in Y \quad y=f(x)$.
X is called the domain of $f, \quad Y$ is called the codomain of f.
$y=f(x)$ is called the image of x under f

Definition. Let X and Y be sets.
A map (or mapping, or function) f from X to Y is a rule assigning to each element in X a unique element in Y :
$\forall x \in X \quad \exists!y \in Y \quad y=f(x)$.
X is called the domain of $f, \quad Y$ is called the codomain of f. $y=f(x)$ is called the image of x under f (or the value of f at x).

Definition. Let X and Y be sets.
A map (or mapping, or function) f from X to Y is a rule assigning to each element in X a unique element in Y :
$\forall x \in X \quad \exists!y \in Y \quad y=f(x)$.
X is called the domain of $f, \quad Y$ is called the codomain of f. $y=f(x)$ is called the image of x under f (or the value of f at x). Notation.

Definition. Let X and Y be sets.
A map (or mapping, or function) f from X to Y is a rule assigning to each element in X a unique element in Y :
$\forall x \in X \quad \exists!y \in Y \quad y=f(x)$.
X is called the domain of $f, \quad Y$ is called the codomain of f. $y=f(x)$ is called the image of x under f (or the value of f at x).
Notation. $f: X \rightarrow Y$

Definition. Let X and Y be sets.
A map (or mapping, or function) f from X to Y is a rule assigning to each element in X a unique element in Y :
$\forall x \in X \quad \exists!y \in Y \quad y=f(x)$.
X is called the domain of $f, \quad Y$ is called the codomain of f. $y=f(x)$ is called the image of x under f (or the value of f at x).
Notation. $f: X \rightarrow Y$

$$
x \mapsto y
$$

Definition. Let X and Y be sets.
A map (or mapping, or function) f from X to Y is a rule assigning to each element in X a unique element in Y :
$\forall x \in X \quad \exists!y \in Y \quad y=f(x)$.
X is called the domain of $f, \quad Y$ is called the codomain of f. $y=f(x)$ is called the image of x under f (or the value of f at x).
Notation. $f: X \rightarrow Y$

$$
x \mapsto y
$$

The range (or image) of f

Definition. Let X and Y be sets.
A map (or mapping, or function) f from X to Y is a rule assigning to each element in X a unique element in Y :
$\forall x \in X \quad \exists!y \in Y \quad y=f(x)$.
X is called the domain of $f, \quad Y$ is called the codomain of f. $y=f(x)$ is called the image of x under f (or the value of f at x).
Notation. $f: X \rightarrow Y$

$$
x \mapsto y
$$

The range (or image) of f is the set $\{f(x) \mid x \in X\}$.

Definition. Let X and Y be sets.
A map (or mapping, or function) f from X to Y is a rule assigning to each element in X a unique element in Y :
$\forall x \in X \quad \exists!y \in Y \quad y=f(x)$.
X is called the domain of $f, \quad Y$ is called the codomain of f. $y=f(x)$ is called the image of x under f (or the value of f at x).
Notation. $f: X \rightarrow Y$

$$
x \mapsto y
$$

The range (or image) of f is the set $\{f(x) \mid x \in X\}$. It is denoted by $\operatorname{Im} f$ or $f(X)$:

Definition. Let X and Y be sets.
A map (or mapping, or function) f from X to Y is a rule assigning to each element in X a unique element in Y :
$\forall x \in X \quad \exists!y \in Y \quad y=f(x)$.
X is called the domain of $f, \quad Y$ is called the codomain of f. $y=f(x)$ is called the image of x under f (or the value of f at x).
Notation. $f: X \rightarrow Y$

$$
x \mapsto y
$$

The range (or image) of f is the set $\{f(x) \mid x \in X\}$.
It is denoted by $\operatorname{Im} f$ or $f(X): \quad \operatorname{Im} f=f(X)=\{f(x) \mid x \in X\}$.

Definition. Let X and Y be sets.
A map (or mapping, or function) f from X to Y is a rule assigning to each element in X a unique element in Y :
$\forall x \in X \quad \exists!y \in Y \quad y=f(x)$.
X is called the domain of $f, \quad Y$ is called the codomain of f. $y=f(x)$ is called the image of x under f (or the value of f at x).
Notation. $f: X \rightarrow Y$

$$
x \mapsto y
$$

The range (or image) of f is the set $\{f(x) \mid x \in X\}$.
It is denoted by $\operatorname{Im} f$ or $f(X): \quad \operatorname{Im} f=f(X)=\{f(x) \mid x \in X\}$.

Maps: image and preimage

Let $f: X \rightarrow Y$ be a map

Let $f: X \rightarrow Y$ be a map and $A \subset X, B \subset Y$ be subsets.

Let $f: X \rightarrow Y$ be a map and $A \subset X, B \subset Y$ be subsets.
The image of A is the set

Let $f: X \rightarrow Y$ be a map and $A \subset X, B \subset Y$ be subsets.
The image of A is the set $f(A)=\{f(x) \mid x \in A\}$

Let $f: X \rightarrow Y$ be a map and $A \subset X, B \subset Y$ be subsets.
The image of A is the set $f(A)=\{f(x) \mid x \in A\} \subset Y$.

Let $f: X \rightarrow Y$ be a map and $A \subset X, B \subset Y$ be subsets.
The image of A is the set $f(A)=\{f(x) \mid x \in A\} \subset Y$.

Let $f: X \rightarrow Y$ be a map and $A \subset X, B \subset Y$ be subsets.
The image of A is the set $f(A)=\{f(x) \mid x \in A\} \subset Y$.

The preimage of B is the set

Let $f: X \rightarrow Y$ be a map and $A \subset X, B \subset Y$ be subsets.
The image of A is the set $f(A)=\{f(x) \mid x \in A\} \subset Y$.

The preimage of B is the set $f^{-1}(B)=\{x \mid f(x) \in B\}$

Let $f: X \rightarrow Y$ be a map and $A \subset X, B \subset Y$ be subsets.
The image of A is the set $f(A)=\{f(x) \mid x \in A\} \subset Y$.

The preimage of B is the set $f^{-1}(B)=\{x \mid f(x) \in B\} \subset X$.

Let $f: X \rightarrow Y$ be a map and $A \subset X, B \subset Y$ be subsets.
The image of A is the set $f(A)=\{f(x) \mid x \in A\} \subset Y$.

The preimage of B is the set $f^{-1}(B)=\{x \mid f(x) \in B\} \subset X$.

Let $f: X \rightarrow Y$ be a map and $A \subset X, B \subset Y$ be subsets.
The image of A is the set $f(A)=\{f(x) \mid x \in A\} \subset Y$.

The preimage of B is the set $f^{-1}(B)=\{x \mid f(x) \in B\} \subset X$.

Warning:

Let $f: X \rightarrow Y$ be a map and $A \subset X, B \subset Y$ be subsets.
The image of A is the set $f(A)=\{f(x) \mid x \in A\} \subset Y$.

The preimage of B is the set $f^{-1}(B)=\{x \mid f(x) \in B\} \subset X$.

Warning: f^{-1} is not the inverse map!

Equal maps

Lecture 5

Definition.

Equal maps

Definition. Two maps $f, g: X \rightarrow Y$ are equal

Equal maps

Definition. Two maps $f, g: X \rightarrow Y$ are equal
if they have the same domain,

Definition. Two maps $f, g: X \rightarrow Y$ are equal
if they have the same domain, codomain,

Definition. Two maps $f, g: X \rightarrow Y$ are equal
if they have the same domain, codomain, and $f(x)=g(x)$ for all $x \in X$.

Definition. Two maps $f, g: X \rightarrow Y$ are equal
if they have the same domain, codomain, and $f(x)=g(x)$ for all $x \in X$.

Example.

Definition. Two maps $f, g: X \rightarrow Y$ are equal
if they have the same domain, codomain, and $f(x)=g(x)$ for all $x \in X$.
Example. Let $f(x)=\frac{x^{2}-1}{x+1}$

Definition. Two maps $f, g: X \rightarrow Y$ are equal
if they have the same domain, codomain, and $f(x)=g(x)$ for all $x \in X$.
Example. Let $f(x)=\frac{x^{2}-1}{x+1}$ and $g(x)=x-1$.

Definition. Two maps $f, g: X \rightarrow Y$ are equal
if they have the same domain, codomain, and $f(x)=g(x)$ for all $x \in X$.
Example. Let $f(x)=\frac{x^{2}-1}{x+1}$ and $g(x)=x-1$.
If a function is given by a formula,

Definition. Two maps $f, g: X \rightarrow Y$ are equal
if they have the same domain, codomain, and $f(x)=g(x)$ for all $x \in X$.
Example. Let $f(x)=\frac{x^{2}-1}{x+1}$ and $g(x)=x-1$.
If a function is given by a formula, then the domain is,

Definition. Two maps $f, g: X \rightarrow Y$ are equal
if they have the same domain, codomain, and $f(x)=g(x)$ for all $x \in X$.
Example. Let $f(x)=\frac{x^{2}-1}{x+1}$ and $g(x)=x-1$.
If a function is given by a formula, then the domain is, by default,

Definition. Two maps $f, g: X \rightarrow Y$ are equal
if they have the same domain, codomain, and $f(x)=g(x)$ for all $x \in X$.
Example. Let $f(x)=\frac{x^{2}-1}{x+1}$ and $g(x)=x-1$.
If a function is given by a formula, then the domain is, by default, the set of values of the variable

Definition. Two maps $f, g: X \rightarrow Y$ are equal
if they have the same domain, codomain, and $f(x)=g(x)$ for all $x \in X$.
Example. Let $f(x)=\frac{x^{2}-1}{x+1}$ and $g(x)=x-1$.
If a function is given by a formula, then the domain is, by default, the set of values of the variable for which the formula makes sense.

Definition. Two maps $f, g: X \rightarrow Y$ are equal
if they have the same domain, codomain, and $f(x)=g(x)$ for all $x \in X$.
Example. Let $f(x)=\frac{x^{2}-1}{x+1}$ and $g(x)=x-1$.
If a function is given by a formula, then the domain is, by default, the set of values of the variable for which the formula makes sense.
By this, the domain of f is $\mathbb{R} \backslash\{-1\}$,

Definition. Two maps $f, g: X \rightarrow Y$ are equal
if they have the same domain, codomain, and $f(x)=g(x)$ for all $x \in X$.
Example. Let $f(x)=\frac{x^{2}-1}{x+1}$ and $g(x)=x-1$.
If a function is given by a formula, then the domain is, by default, the set of values of the variable for which the formula makes sense.
By this, the domain of f is $\mathbb{R} \backslash\{-1\}$, and the domain of g is \mathbb{R}.

Definition. Two maps $f, g: X \rightarrow Y$ are equal
if they have the same domain, codomain, and $f(x)=g(x)$ for all $x \in X$.
Example. Let $f(x)=\frac{x^{2}-1}{x+1}$ and $g(x)=x-1$.
If a function is given by a formula, then the domain is, by default, the set of values of the variable for which the formula makes sense.
By this, the domain of f is $\mathbb{R} \backslash\{-1\}$, and the domain of g is \mathbb{R}.
Although $f(x)=\frac{x^{2}-1}{x+1}=$

Definition. Two maps $f, g: X \rightarrow Y$ are equal
if they have the same domain, codomain, and $f(x)=g(x)$ for all $x \in X$.
Example. Let $f(x)=\frac{x^{2}-1}{x+1}$ and $g(x)=x-1$.
If a function is given by a formula, then the domain is, by default, the set of values of the variable for which the formula makes sense.
By this, the domain of f is $\mathbb{R} \backslash\{-1\}$, and the domain of g is \mathbb{R}.
Although $f(x)=\frac{x^{2}-1}{x+1}=\frac{(x-1)(x+1)}{x+1}$

Definition. Two maps $f, g: X \rightarrow Y$ are equal
if they have the same domain, codomain, and $f(x)=g(x)$ for all $x \in X$.
Example. Let $f(x)=\frac{x^{2}-1}{x+1}$ and $g(x)=x-1$.
If a function is given by a formula, then the domain is, by default, the set of values of the variable for which the formula makes sense.
By this, the domain of f is $\mathbb{R} \backslash\{-1\}$, and the domain of g is \mathbb{R}.
Although $f(x)=\frac{x^{2}-1}{x+1}=\frac{(x-1)(x+1)}{x+1} \underbrace{=}_{x \neq-1} x-1=$

Definition. Two maps $f, g: X \rightarrow Y$ are equal
if they have the same domain, codomain, and $f(x)=g(x)$ for all $x \in X$.
Example. Let $f(x)=\frac{x^{2}-1}{x+1}$ and $g(x)=x-1$.
If a function is given by a formula, then the domain is, by default, the set of values of the variable for which the formula makes sense.
By this, the domain of f is $\mathbb{R} \backslash\{-1\}$, and the domain of g is \mathbb{R}.
Although $f(x)=\frac{x^{2}-1}{x+1}=\frac{(x-1)(x+1)}{x+1} \underbrace{=}_{x \neq-1} x-1=g(x)$,

Definition. Two maps $f, g: X \rightarrow Y$ are equal
if they have the same domain, codomain, and $f(x)=g(x)$ for all $x \in X$.
Example. Let $f(x)=\frac{x^{2}-1}{x+1}$ and $g(x)=x-1$.
If a function is given by a formula, then the domain is, by default, the set of values of the variable for which the formula makes sense.
By this, the domain of f is $\mathbb{R} \backslash\{-1\}$, and the domain of g is \mathbb{R}.
Although $f(x)=\frac{x^{2}-1}{x+1}=\frac{(x-1)(x+1)}{x+1} \underbrace{=}_{x \neq-1} x-1=g(x)$,
the functions f and g are not equal,

Definition. Two maps $f, g: X \rightarrow Y$ are equal
if they have the same domain, codomain, and $f(x)=g(x)$ for all $x \in X$.
Example. Let $f(x)=\frac{x^{2}-1}{x+1}$ and $g(x)=x-1$.
If a function is given by a formula, then the domain is, by default, the set of values of the variable for which the formula makes sense.
By this, the domain of f is $\mathbb{R} \backslash\{-1\}$, and the domain of g is \mathbb{R}.
Although $f(x)=\frac{x^{2}-1}{x+1}=\frac{(x-1)(x+1)}{x+1} \underbrace{=}_{x \neq-1} x-1=g(x)$,
the functions f and g are not equal,
since they have different domains.

Definition. Two maps $f, g: X \rightarrow Y$ are equal
if they have the same domain, codomain, and $f(x)=g(x)$ for all $x \in X$.
Example. Let $f(x)=\frac{x^{2}-1}{x+1}$ and $g(x)=x-1$.
If a function is given by a formula, then the domain is, by default, the set of values of the variable for which the formula makes sense.
By this, the domain of f is $\mathbb{R} \backslash\{-1\}$, and the domain of g is \mathbb{R}.
Although $f(x)=\frac{x^{2}-1}{x+1}=\frac{(x-1)(x+1)}{x+1} \underbrace{=}_{x \neq-1} x-1=g(x)$,
the functions f and g are not equal,
since they have different domains.

Composition of maps
Lecture 5

Composition of maps

Definition.

Composition of maps

Definition. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be maps.

Definition. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be maps.
A composition of f and g

Definition. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be maps.
A composition of f and g is a map $g \circ f: X \rightarrow Z$

Composition of maps

Definition. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be maps.
A composition of f and g is a map $g \circ f: X \rightarrow Z$ defined by

Composition of maps

Definition. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be maps.
A composition of f and g is a map $g \circ f: X \rightarrow Z$ defined by $g \circ f(x)=g(f(x))$ for any $x \in X$.

Composition of maps

Definition. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be maps.
A composition of f and g is a map $g \circ f: X \rightarrow Z$ defined by $g \circ f(x)=g(f(x))$ for any $x \in X$.

Composition of maps

Definition. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be maps.
A composition of f and g is a map $g \circ f: X \rightarrow Z$ defined by

$$
g \circ f(x)=g(f(x)) \text { for any } x \in X .
$$

Composition of maps

Definition. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be maps.
A composition of f and g is a map $g \circ f: X \rightarrow Z$ defined by $g \circ f(x)=g(f(x))$ for any $x \in X$.

Composition of maps

Definition. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be maps.
A composition of f and g is a map $g \circ f: X \rightarrow Z$ defined by $g \circ f(x)=g(f(x))$ for any $x \in X$.

Composition of maps

Definition. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be maps.
A composition of f and g is a map $g \circ f: X \rightarrow Z$ defined by $g \circ f(x)=g(f(x))$ for any $x \in X$.

Composition of maps

Definition. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be maps.
A composition of f and g is a map $g \circ f: X \rightarrow Z$ defined by $g \circ f(x)=g(f(x))$ for any $x \in X$.

Composition of maps

Definition. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be maps.
A composition of f and g is a map $g \circ f: X \rightarrow Z$ defined by $g \circ f(x)=g(f(x))$ for any $x \in X$.

Composition is associative
Lecture 5

Composition is associative

Theorem.

Composition is associative

Theorem. A composition of maps is associative:

Composition is associative

Theorem. A composition of maps is associative:

$$
\text { If } f: X \rightarrow Y, \quad g: Y \rightarrow Z, \quad h: Z \rightarrow W \text { are maps, then }
$$

Composition is associative

Theorem. A composition of maps is associative:

$$
\begin{aligned}
& \text { If } f: X \rightarrow Y, \quad g: Y \rightarrow Z, \quad h: Z \rightarrow W \text { are maps, then } \\
& h \circ(g \circ f)=(h \circ g) \circ f .
\end{aligned}
$$

Theorem. A composition of maps is associative:

$$
\begin{aligned}
& \text { If } f: X \rightarrow Y, \quad g: Y \rightarrow Z, \quad h: Z \rightarrow W \text { are maps, then } \\
& h \circ(g \circ f)=(h \circ g) \circ f .
\end{aligned}
$$

Proof.

Theorem. A composition of maps is associative:

$$
\begin{aligned}
& \text { If } f: X \rightarrow Y, \quad g: Y \rightarrow Z, \quad h: Z \rightarrow W \text { are maps, then } \\
& h \circ(g \circ f)=(h \circ g) \circ f .
\end{aligned}
$$

Proof. Take any $x \in X$.

Theorem. A composition of maps is associative:

$$
\begin{aligned}
& \text { If } f: X \rightarrow Y, \quad g: Y \rightarrow Z, \quad h: Z \rightarrow W \text { are maps, then } \\
& h \circ(g \circ f)=(h \circ g) \circ f .
\end{aligned}
$$

Proof. Take any $x \in X$. Then

$$
(h \circ(g \circ f))(x)
$$

Theorem. A composition of maps is associative:

$$
\begin{aligned}
& \text { If } f: X \rightarrow Y, \quad g: Y \rightarrow Z, \quad h: Z \rightarrow W \text { are maps, then } \\
& h \circ(g \circ f)=(h \circ g) \circ f .
\end{aligned}
$$

Proof. Take any $x \in X$. Then

$$
(h \circ(g \circ f))(x)=h((g \circ f)(x))
$$

Theorem. A composition of maps is associative:

$$
\begin{aligned}
& \text { If } f: X \rightarrow Y, \quad g: Y \rightarrow Z, \quad h: Z \rightarrow W \text { are maps, then } \\
& h \circ(g \circ f)=(h \circ g) \circ f .
\end{aligned}
$$

Proof. Take any $x \in X$. Then

$$
(h \circ(g \circ f))(x)=h((g \circ f)(x))=h(g(f(x))),
$$

Theorem. A composition of maps is associative:

$$
\begin{aligned}
& \text { If } f: X \rightarrow Y, \quad g: Y \rightarrow Z, \quad h: Z \rightarrow W \text { are maps, then } \\
& h \circ(g \circ f)=(h \circ g) \circ f .
\end{aligned}
$$

Proof. Take any $x \in X$. Then

$$
\begin{aligned}
& (h \circ(g \circ f))(x)=h((g \circ f)(x))=h(g(f(x))), \\
& ((h \circ g) \circ f)(x)
\end{aligned}
$$

Theorem. A composition of maps is associative:

$$
\begin{aligned}
& \text { If } f: X \rightarrow Y, \quad g: Y \rightarrow Z, \quad h: Z \rightarrow W \text { are maps, then } \\
& h \circ(g \circ f)=(h \circ g) \circ f .
\end{aligned}
$$

Proof. Take any $x \in X$. Then

$$
\begin{aligned}
& (h \circ(g \circ f))(x)=h((g \circ f)(x))=h(g(f(x))), \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))
\end{aligned}
$$

Theorem. A composition of maps is associative:

$$
\begin{aligned}
& \text { If } f: X \rightarrow Y, \quad g: Y \rightarrow Z, \quad h: Z \rightarrow W \text { are maps, then } \\
& h \circ(g \circ f)=(h \circ g) \circ f .
\end{aligned}
$$

Proof. Take any $x \in X$. Then

$$
\begin{aligned}
& (h \circ(g \circ f))(x)=h((g \circ f)(x))=h(g(f(x))) \text {, } \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x)))
\end{aligned}
$$

Theorem. A composition of maps is associative:

$$
\begin{aligned}
& \text { If } f: X \rightarrow Y, \quad g: Y \rightarrow Z, \quad h: Z \rightarrow W \text { are maps, then } \\
& h \circ(g \circ f)=(h \circ g) \circ f .
\end{aligned}
$$

Proof. Take any $x \in X$. Then

$$
\begin{aligned}
& (h \circ(g \circ f))(x)=h((g \circ f)(x))=h(g(f(x))), \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x)))
\end{aligned}
$$

Therefore, $(h \circ(g \circ f))(x)=((h \circ g) \circ f)(x)$ for any $x \in X$,

Composition is associative

Theorem. A composition of maps is associative:

$$
\begin{aligned}
& \text { If } f: X \rightarrow Y, \quad g: Y \rightarrow Z, \quad h: Z \rightarrow W \text { are maps, then } \\
& h \circ(g \circ f)=(h \circ g) \circ f .
\end{aligned}
$$

Proof. Take any $x \in X$. Then

$$
\begin{aligned}
& (h \circ(g \circ f))(x)=h((g \circ f)(x))=h(g(f(x))), \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x)))
\end{aligned}
$$

Therefore, $(h \circ(g \circ f))(x)=((h \circ g) \circ f)(x)$ for any $x \in X$,

$$
\text { so } h \circ(g \circ f)=(h \circ g) \circ f .
$$

Theorem. A composition of maps is associative:

$$
\begin{aligned}
& \text { If } f: X \rightarrow Y, \quad g: Y \rightarrow Z, \quad h: Z \rightarrow W \text { are maps, then } \\
& h \circ(g \circ f)=(h \circ g) \circ f .
\end{aligned}
$$

Proof. Take any $x \in X$. Then

$$
\begin{aligned}
& (h \circ(g \circ f))(x)=h((g \circ f)(x))=h(g(f(x))), \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x)))
\end{aligned}
$$

Therefore, $(h \circ(g \circ f))(x)=((h \circ g) \circ f)(x)$ for any $x \in X$,

$$
\text { so } h \circ(g \circ f)=(h \circ g) \circ f .
$$

Due to associativity,

Theorem. A composition of maps is associative:

$$
\begin{aligned}
& \text { If } f: X \rightarrow Y, \quad g: Y \rightarrow Z, \quad h: Z \rightarrow W \text { are maps, then } \\
& h \circ(g \circ f)=(h \circ g) \circ f .
\end{aligned}
$$

Proof. Take any $x \in X$. Then

$$
\begin{aligned}
& (h \circ(g \circ f))(x)=h((g \circ f)(x))=h(g(f(x))), \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x)))
\end{aligned}
$$

Therefore, $(h \circ(g \circ f))(x)=((h \circ g) \circ f)(x)$ for any $x \in X$,

$$
\text { so } h \circ(g \circ f)=(h \circ g) \circ f .
$$

Due to associativity, one can omit parentheses: $h \circ g \circ f$.

Theorem. A composition of maps is associative:

$$
\begin{aligned}
& \text { If } f: X \rightarrow Y, \quad g: Y \rightarrow Z, \quad h: Z \rightarrow W \text { are maps, then } \\
& h \circ(g \circ f)=(h \circ g) \circ f .
\end{aligned}
$$

Proof. Take any $x \in X$. Then

$$
\begin{aligned}
& (h \circ(g \circ f))(x)=h((g \circ f)(x))=h(g(f(x))), \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x)))
\end{aligned}
$$

Therefore, $(h \circ(g \circ f))(x)=((h \circ g) \circ f)(x)$ for any $x \in X$,

$$
\text { so } h \circ(g \circ f)=(h \circ g) \circ f .
$$

Due to associativity, one can omit parentheses: $h \circ g \circ f$.
cream and coffee and sugar $=$ (cream and coffee) and sugar = cream and (coffee and sugar)

Warning. A composition is not commutative:

Warning. A composition is not commutative: $f \circ g \neq g \circ f$.

Warning. A composition is not commutative: $f \circ g \neq g \circ f$.
For example,

Warning. A composition is not commutative: $f \circ g \neq g \circ f$.
For example, if $f(x)=\sin x$ and $g(x)=\frac{1}{x}$, then

Warning. A composition is not commutative: $f \circ g \neq g \circ f$.
For example, if $f(x)=\sin x$ and $g(x)=\frac{1}{x}$, then
$(g \circ f)(x)$

Warning. A composition is not commutative: $f \circ g \neq g \circ f$.
For example, if $f(x)=\sin x$ and $g(x)=\frac{1}{x}$, then
$(g \circ f)(x)=g(f(x))=$

Warning. A composition is not commutative: $f \circ g \neq g \circ f$.
For example, if $f(x)=\sin x$ and $g(x)=\frac{1}{x}$, then
$(g \circ f)(x)=g(f(x))=g(\sin x)$

Warning. A composition is not commutative: $f \circ g \neq g \circ f$.
For example, if $f(x)=\sin x$ and $g(x)=\frac{1}{x}$, then
$(g \circ f)(x)=g(f(x))=g(\sin x)=\frac{1}{\sin x}$,

Warning. A composition is not commutative: $f \circ g \neq g \circ f$.
For example, if $f(x)=\sin x$ and $g(x)=\frac{1}{x}$, then
$(g \circ f)(x)=g(f(x))=g(\sin x)=\frac{1}{\sin x}$,
$(f \circ g)(x)$

Warning. A composition is not commutative: $f \circ g \neq g \circ f$.
For example, if $f(x)=\sin x$ and $g(x)=\frac{1}{x}$, then
$(g \circ f)(x)=g(f(x))=g(\sin x)=\frac{1}{\sin x}$,
$(f \circ g)(x)=f(g(x))=$

Warning. A composition is not commutative: $f \circ g \neq g \circ f$.
For example, if $f(x)=\sin x$ and $g(x)=\frac{1}{x}$, then
$(g \circ f)(x)=g(f(x))=g(\sin x)=\frac{1}{\sin x}$,
$(f \circ g)(x)=f(g(x))=f\left(\frac{1}{x}\right)$

Warning. A composition is not commutative: $f \circ g \neq g \circ f$.
For example, if $f(x)=\sin x$ and $g(x)=\frac{1}{x}$, then
$(g \circ f)(x)=g(f(x))=g(\sin x)=\frac{1}{\sin x}$,
$(f \circ g)(x)=f(g(x))=f\left(\frac{1}{x}\right)=\sin \frac{1}{x}$.

Warning. A composition is not commutative: $f \circ g \neq g \circ f$.
For example, if $f(x)=\sin x$ and $g(x)=\frac{1}{x}$, then
$(g \circ f)(x)=g(f(x))=g(\sin x)=\frac{1}{\sin x}$,
$(f \circ g)(x)=f(g(x))=f\left(\frac{1}{x}\right)=\sin \frac{1}{x}$.
Keep in mind.

Warning. A composition is not commutative: $f \circ g \neq g \circ f$.
For example, if $f(x)=\sin x$ and $g(x)=\frac{1}{x}$, then
$(g \circ f)(x)=g(f(x))=g(\sin x)=\frac{1}{\sin x}$,
$(f \circ g)(x)=f(g(x))=f\left(\frac{1}{x}\right)=\sin \frac{1}{x}$.
Keep in mind. In the following set up $X \xrightarrow{f} Y \xrightarrow{g} Z$,

Warning. A composition is not commutative: $f \circ g \neq g \circ f$.
For example, if $f(x)=\sin x$ and $g(x)=\frac{1}{x}$, then
$(g \circ f)(x)=g(f(x))=g(\sin x)=\frac{1}{\sin x}$,
$(f \circ g)(x)=f(g(x))=f\left(\frac{1}{x}\right)=\sin \frac{1}{x}$.
Keep in mind. In the following set up $X \xrightarrow{f} Y \xrightarrow{g} Z$, the composition $g \circ f$ makes sense,

Warning. A composition is not commutative: $f \circ g \neq g \circ f$.
For example, if $f(x)=\sin x$ and $g(x)=\frac{1}{x}$, then
$(g \circ f)(x)=g(f(x))=g(\sin x)=\frac{1}{\sin x}$,
$(f \circ g)(x)=f(g(x))=f\left(\frac{1}{x}\right)=\sin \frac{1}{x}$.
Keep in mind. In the following set up $X \xrightarrow{f} Y \xrightarrow{g} Z$, the composition $g \circ f$ makes sense, while $f \circ g$ doesn't.

Warning. A composition is not commutative: $f \circ g \neq g \circ f$.
For example, if $f(x)=\sin x$ and $g(x)=\frac{1}{x}$, then
$(g \circ f)(x)=g(f(x))=g(\sin x)=\frac{1}{\sin x}$,
$(f \circ g)(x)=f(g(x))=f\left(\frac{1}{x}\right)=\sin \frac{1}{x}$.
Keep in mind. In the following set up $X \xrightarrow{f} Y \xrightarrow{g} Z$, the composition $g \circ f$ makes sense, while $f \circ g$ doesn't.
Open garage door

Warning. A composition is not commutative: $f \circ g \neq g \circ f$.
For example, if $f(x)=\sin x$ and $g(x)=\frac{1}{x}$, then
$(g \circ f)(x)=g(f(x))=g(\sin x)=\frac{1}{\sin x}$,
$(f \circ g)(x)=f(g(x))=f\left(\frac{1}{x}\right)=\sin \frac{1}{x}$.
Keep in mind. In the following set up $X \xrightarrow{f} Y \xrightarrow{g} Z$, the composition $g \circ f$ makes sense, while $f \circ g$ doesn't.
Open garage door and drive in

Warning. A composition is not commutative: $f \circ g \neq g \circ f$.
For example, if $f(x)=\sin x$ and $g(x)=\frac{1}{x}$, then
$(g \circ f)(x)=g(f(x))=g(\sin x)=\frac{1}{\sin x}$,
$(f \circ g)(x)=f(g(x))=f\left(\frac{1}{x}\right)=\sin \frac{1}{x}$.
Keep in mind. In the following set up $X \xrightarrow{f} Y \xrightarrow{g} Z$, the composition $g \circ f$ makes sense, while $f \circ g$ doesn't.
Open garage door and drive in \neq drive in

Warning. A composition is not commutative: $f \circ g \neq g \circ f$.
For example, if $f(x)=\sin x$ and $g(x)=\frac{1}{x}$, then
$(g \circ f)(x)=g(f(x))=g(\sin x)=\frac{1}{\sin x}$,
$(f \circ g)(x)=f(g(x))=f\left(\frac{1}{x}\right)=\sin \frac{1}{x}$.
Keep in mind. In the following set up $X \xrightarrow{f} Y \xrightarrow{g} Z$, the composition $g \circ f$ makes sense, while $f \circ g$ doesn't.
Open garage door and drive in \neq drive in and open garage door.

Warning. A composition is not commutative: $f \circ g \neq g \circ f$.
For example, if $f(x)=\sin x$ and $g(x)=\frac{1}{x}$, then
$(g \circ f)(x)=g(f(x))=g(\sin x)=\frac{1}{\sin x}$,
$(f \circ g)(x)=f(g(x))=f\left(\frac{1}{x}\right)=\sin \frac{1}{x}$.
Keep in mind. In the following set up $X \xrightarrow{f} Y \xrightarrow{g} Z$, the composition $g \circ f$ makes sense, while $f \circ g$ doesn't.
Open garage door and drive in \neq drive in and open garage door.

Examples of maps

Lecture 5

Examples of maps

- A function in one variable $y=f(x)$ is a map $f: D \rightarrow \mathbb{R}$,
- A function in one variable $y=f(x)$ is a map $f: D \rightarrow \mathbb{R}$, where $D \subset \mathbb{R}$ is the domain of f.
- A function in one variable $y=f(x)$ is a map $f: D \rightarrow \mathbb{R}$, where $D \subset \mathbb{R}$ is the domain of f.

Domain convention:

- A function in one variable $y=f(x)$ is a map $f: D \rightarrow \mathbb{R}$, where $D \subset \mathbb{R}$ is the domain of f.

Domain convention: when a function f is defined without specifying its domain,

- A function in one variable $y=f(x)$ is a map $f: D \rightarrow \mathbb{R}$, where $D \subset \mathbb{R}$ is the domain of f.

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the maximal set of x-values

- A function in one variable $y=f(x)$ is a map $f: D \rightarrow \mathbb{R}$, where $D \subset \mathbb{R}$ is the domain of f.

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the maximal set of x-values for which $f(x)$ is defined.

- A function in one variable $y=f(x)$ is a map $f: D \rightarrow \mathbb{R}$, where $D \subset \mathbb{R}$ is the domain of f.

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the maximal set of x-values for which $f(x)$ is defined.

- A numerical sequence
- A function in one variable $y=f(x)$ is a map $f: D \rightarrow \mathbb{R}$, where $D \subset \mathbb{R}$ is the domain of f.

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the maximal set of x-values for which $f(x)$ is defined.

- A numerical sequence $\mathbb{Z}^{+} \rightarrow \mathbb{R}$,
- A function in one variable $y=f(x)$ is a map $f: D \rightarrow \mathbb{R}$, where $D \subset \mathbb{R}$ is the domain of f.

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the maximal set of x-values for which $f(x)$ is defined.

- A numerical sequence $\mathbb{Z}^{+} \rightarrow \mathbb{R}, \quad n \mapsto a_{n}$ is a map.
- A function in one variable $y=f(x)$ is a map $f: D \rightarrow \mathbb{R}$, where $D \subset \mathbb{R}$ is the domain of f.

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the maximal set of x-values for which $f(x)$ is defined.

- A numerical sequence $\mathbb{Z}^{+} \rightarrow \mathbb{R}, \quad n \mapsto a_{n}$ is a map.
- A constant map
- A function in one variable $y=f(x)$ is a map $f: D \rightarrow \mathbb{R}$, where $D \subset \mathbb{R}$ is the domain of f.

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the maximal set of x-values for which $f(x)$ is defined.

- A numerical sequence $\mathbb{Z}^{+} \rightarrow \mathbb{R}, \quad n \mapsto a_{n}$ is a map.
- A constant map

Let X, Y be sets.

- A function in one variable $y=f(x)$ is a map $f: D \rightarrow \mathbb{R}$, where $D \subset \mathbb{R}$ is the domain of f.

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the maximal set of x-values for which $f(x)$ is defined.

- A numerical sequence $\mathbb{Z}^{+} \rightarrow \mathbb{R}, \quad n \mapsto a_{n}$ is a map.
- A constant map

Let X, Y be sets. Choose any $y_{0} \in Y$

- A function in one variable $y=f(x)$ is a map $f: D \rightarrow \mathbb{R}$, where $D \subset \mathbb{R}$ is the domain of f.

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the maximal set of x-values for which $f(x)$ is defined.

- A numerical sequence $\mathbb{Z}^{+} \rightarrow \mathbb{R}, \quad n \mapsto a_{n}$ is a map.
- A constant map

Let X, Y be sets. Choose any $y_{0} \in Y$ and define a map

- A function in one variable $y=f(x)$ is a map $f: D \rightarrow \mathbb{R}$, where $D \subset \mathbb{R}$ is the domain of f.

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the maximal set of x-values for which $f(x)$ is defined.

- A numerical sequence $\mathbb{Z}^{+} \rightarrow \mathbb{R}, \quad n \mapsto a_{n}$ is a map.
- A constant map

Let X, Y be sets. Choose any $y_{0} \in Y$ and define a map $f: X \rightarrow Y$ by $f(x)=y_{0}$ for all $x \in X$.

- A function in one variable $y=f(x)$ is a map $f: D \rightarrow \mathbb{R}$, where $D \subset \mathbb{R}$ is the domain of f.

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the maximal set of x-values for which $f(x)$ is defined.

- A numerical sequence $\mathbb{Z}^{+} \rightarrow \mathbb{R}, \quad n \mapsto a_{n}$ is a map.
- A constant map

Let X, Y be sets. Choose any $y_{0} \in Y$ and define a map $f: X \rightarrow Y$ by $f(x)=y_{0}$ for all $x \in X$. This map is called a constant map.

- A function in one variable $y=f(x)$ is a map $f: D \rightarrow \mathbb{R}$, where $D \subset \mathbb{R}$ is the domain of f.

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the maximal set of x-values for which $f(x)$ is defined.

- A numerical sequence $\mathbb{Z}^{+} \rightarrow \mathbb{R}, \quad n \mapsto a_{n}$ is a map.
- A constant map

Let X, Y be sets. Choose any $y_{0} \in Y$ and define a map $f: X \rightarrow Y$ by $f(x)=y_{0}$ for all $x \in X$. This map is called a constant map. Give a descriptive definition of a constant map.

- A function in one variable $y=f(x)$ is a map $f: D \rightarrow \mathbb{R}$, where $D \subset \mathbb{R}$ is the domain of f.

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the maximal set of x-values for which $f(x)$ is defined.

- A numerical sequence $\mathbb{Z}^{+} \rightarrow \mathbb{R}, \quad n \mapsto a_{n}$ is a map.
- A constant map

Let X, Y be sets. Choose any $y_{0} \in Y$ and define a map $f: X \rightarrow Y$ by $f(x)=y_{0}$ for all $x \in X$. This map is called a constant map. Give a descriptive definition of a constant map.

A map $f: X \rightarrow Y$ is said to be constant if

- A function in one variable $y=f(x)$ is a map $f: D \rightarrow \mathbb{R}$, where $D \subset \mathbb{R}$ is the domain of f.

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the maximal set of x-values for which $f(x)$ is defined.

- A numerical sequence $\mathbb{Z}^{+} \rightarrow \mathbb{R}, \quad n \mapsto a_{n}$ is a map.
- A constant map

Let X, Y be sets. Choose any $y_{0} \in Y$ and define a map $f: X \rightarrow Y$ by $f(x)=y_{0}$ for all $x \in X$. This map is called a constant map. Give a descriptive definition of a constant map.
A map $f: X \rightarrow Y$ is said to be constant if $\forall a, b \in X f(a)=f(b)$.

- A function in one variable $y=f(x)$ is a map $f: D \rightarrow \mathbb{R}$, where $D \subset \mathbb{R}$ is the domain of f.

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the maximal set of x-values for which $f(x)$ is defined.

- A numerical sequence $\mathbb{Z}^{+} \rightarrow \mathbb{R}, \quad n \mapsto a_{n}$ is a map.
- A constant map

Let X, Y be sets. Choose any $y_{0} \in Y$ and define a map $f: X \rightarrow Y$ by $f(x)=y_{0}$ for all $x \in X$. This map is called a constant map. Give a descriptive definition of a constant map.
A map $f: X \rightarrow Y$ is said to be constant if $\quad \forall a, b \in X f(a)=f(b)$.
Or $\exists c \in Y \forall a \in X f(a)=c$.

The identity map of X is

The identity map of X is $\operatorname{id}_{X}: X \rightarrow X$,

The identity map of X is $\operatorname{id}_{X}: X \rightarrow X, x \mapsto x$.

The identity map of X is $\operatorname{id}_{X}: X \rightarrow X, x \mapsto x$. Theorem.

The identity map of X is $\operatorname{id}_{X}: X \rightarrow X, x \mapsto x$.
Theorem. The identity map is a unit with respect to the map composition.

The identity map of X is $\operatorname{id}_{X}: X \rightarrow X, x \mapsto x$.
Theorem. The identity map is a unit with respect to the map composition.
That is, for any map $f: X \rightarrow Y$,

The identity map of X is $\operatorname{id}_{X}: X \rightarrow X, x \mapsto x$.
Theorem. The identity map is a unit with respect to the map composition.
That is, for any map $f: X \rightarrow Y, f \circ$ id $_{X}=f$

The identity map of X is $\mathrm{id}_{X}: X \rightarrow X, x \mapsto x$.
Theorem. The identity map is a unit with respect to the map composition.
That is, for any map $f: X \rightarrow Y, \quad f \circ \mathrm{id}_{X}=f$ and $\operatorname{id}_{Y} \circ f=f$.

The identity map of X is $\operatorname{id}_{X}: X \rightarrow X, x \mapsto x$.
Theorem. The identity map is a unit with respect to the map composition.
That is, for any map $f: X \rightarrow Y, \quad f \circ \mathrm{id}_{X}=f$ and $\operatorname{id}_{Y} \circ f=f$.
Proof.

The identity map of X is $\operatorname{id}_{X}: X \rightarrow X, x \mapsto x$.
Theorem. The identity map is a unit with respect to the map composition.
That is, for any map $f: X \rightarrow Y, \quad f \circ \mathrm{id}_{X}=f$ and $\operatorname{id}_{Y} \circ f=f$.

Proof.

The identity map of X is $\mathrm{id}_{X}: X \rightarrow X, x \mapsto x$.
Theorem. The identity map is a unit with respect to the map composition.
That is, for any map $f: X \rightarrow Y, \quad f \circ \mathrm{id}_{X}=f$ and $\operatorname{id}_{Y} \circ f=f$.

Proof.

$X \xrightarrow[\text { foid } X]{\stackrel{\mathrm{id}_{X}}{\longrightarrow}} X \xrightarrow{f} Y, \quad X \xrightarrow[\mathrm{id}_{Y} \circ f]{\xrightarrow{f}} Y \xrightarrow{\mathrm{id}_{Y}} Y$

The identity map of X is $\mathrm{id}_{X}: X \rightarrow X, x \mapsto x$.
Theorem. The identity map is a unit with respect to the map composition.
That is, for any map $f: X \rightarrow Y, \quad f \circ \mathrm{id}_{X}=f$ and $\operatorname{id}_{Y} \circ f=f$.

Proof.

Take any $x \in X$. Then

The identity map of X is $\mathrm{id}_{X}: X \rightarrow X, x \mapsto x$.
Theorem. The identity map is a unit with respect to the map composition.
That is, for any map $f: X \rightarrow Y, \quad f \circ \mathrm{id}_{X}=f$ and $\operatorname{id}_{Y} \circ f=f$.

Proof.

Take any $x \in X$. Then

$$
\left(f \circ \mathrm{id}_{X}\right)(x)
$$

The identity map of X is $\mathrm{id}_{X}: X \rightarrow X, x \mapsto x$.
Theorem. The identity map is a unit with respect to the map composition.
That is, for any map $f: X \rightarrow Y, \quad f \circ \mathrm{id}_{X}=f$ and $\operatorname{id}_{Y} \circ f=f$.

Proof.

Take any $x \in X$. Then

$$
\left(f \circ \mathrm{id}_{X}\right)(x)=f\left(\operatorname{id}_{X}(x)\right)
$$

The identity map of X is $\mathrm{id}_{X}: X \rightarrow X, x \mapsto x$.
Theorem. The identity map is a unit with respect to the map composition.
That is, for any map $f: X \rightarrow Y, \quad f \circ \mathrm{id}_{X}=f$ and $\operatorname{id}_{Y} \circ f=f$.

Proof.

Take any $x \in X$. Then

$$
\left(f \circ \mathrm{id}_{X}\right)(x)=f\left(\operatorname{id}_{X}(x)\right)=f(x),
$$

The identity map of X is id $_{X}: X \rightarrow X, x \mapsto x$.
Theorem. The identity map is a unit with respect to the map composition.
That is, for any map $f: X \rightarrow Y, \quad f \circ \mathrm{id}_{X}=f$ and $\operatorname{id}_{Y} \circ f=f$.

Proof.

Take any $x \in X$. Then

$$
\left(f \circ \mathrm{id}_{X}\right)(x)=f\left(\operatorname{id}_{X}(x)\right)=f(x), \quad \text { so } f \circ \mathrm{id}_{X}=f
$$

The identity map of X is id $_{X}: X \rightarrow X, x \mapsto x$.
Theorem. The identity map is a unit with respect to the map composition.
That is, for any map $f: X \rightarrow Y, \quad f \circ \mathrm{id}_{X}=f$ and $\operatorname{id}_{Y} \circ f=f$.

Proof.

Take any $x \in X$. Then
$\left(f \circ \mathrm{id}_{X}\right)(x)=f\left(\mathrm{id}_{X}(x)\right)=f(x), \quad$ so $f \circ \mathrm{id}_{X}=f$
$\left(\mathrm{idd}_{Y} \circ f\right)(x)$

The identity map of X is id $_{X}: X \rightarrow X, x \mapsto x$.
Theorem. The identity map is a unit with respect to the map composition.
That is, for any map $f: X \rightarrow Y, \quad f \circ \mathrm{id}_{X}=f$ and $\operatorname{id}_{Y} \circ f=f$.

Proof.

Take any $x \in X$. Then
$\left(f \circ \mathrm{id}_{X}\right)(x)=f\left(\mathrm{id}_{X}(x)\right)=f(x), \quad$ so $f \circ \mathrm{id}_{X}=f$
$\left(\mathrm{id}_{Y} \circ f\right)(x)=\operatorname{id}_{Y}(f(x))$

The identity map of X is id $_{X}: X \rightarrow X, x \mapsto x$.
Theorem. The identity map is a unit with respect to the map composition.
That is, for any map $f: X \rightarrow Y, \quad f \circ \mathrm{id}_{X}=f$ and $\operatorname{id}_{Y} \circ f=f$.

Proof.

Take any $x \in X$. Then
$\left(f \circ \mathrm{id}_{X}\right)(x)=f\left(\mathrm{id}_{X}(x)\right)=f(x), \quad$ so $f \circ \mathrm{id}_{X}=f$
$\left(\operatorname{id}_{Y} \circ f\right)(x)=\operatorname{id}_{Y}(f(x))=f(x)$,

The identity map of X is id $_{X}: X \rightarrow X, x \mapsto x$.
Theorem. The identity map is a unit with respect to the map composition.
That is, for any map $f: X \rightarrow Y, \quad f \circ \mathrm{id}_{X}=f$ and $\operatorname{id}_{Y} \circ f=f$.

Proof.

Take any $x \in X$. Then
$\left(f \circ \mathrm{id}_{X}\right)(x)=f\left(\operatorname{id}_{X}(x)\right)=f(x), \quad$ so $f \circ \mathrm{id}_{X}=f$
$\left(\operatorname{id}_{Y} \circ f\right)(x)=\operatorname{id}_{Y}(f(x))=f(x), \quad$ so $\mathrm{id}_{Y} \circ f=f$.

- Inclusion map

- Inclusion map $A \subset X$,
- Inclusion map $A \subset X, \quad$ in $: A \rightarrow X$,
- Inclusion map $A \subset X$, in $: A \rightarrow X, a \mapsto a$.
- Inclusion map $A \subset X, \quad$ in $: A \rightarrow X, a \mapsto a$.
- Restriction of a map
- Inclusion map $A \subset X$, in $: A \rightarrow X, a \mapsto a$.
- Restriction of a map $f: X \rightarrow Y$,
- Inclusion map $A \subset X$, in $: A \rightarrow X, a \mapsto a$.
- Restriction of a map $f: X \rightarrow Y, A \subset X$
- Inclusion map $A \subset X, \quad$ in $: A \rightarrow X, a \mapsto a$.
- Restriction of a map $f: X \rightarrow Y, A \subset X$

$$
\left.f\right|_{A}: A \rightarrow Y,
$$

- Inclusion map $A \subset X, \quad$ in $: A \rightarrow X, a \mapsto a$.
- Restriction of a map $f: X \rightarrow Y, A \subset X$

$$
\left.f\right|_{A}: A \rightarrow Y, a \mapsto f(a)
$$

- Inclusion map $A \subset X$, in $: A \rightarrow X, a \mapsto a$.
- Restriction of a map $f: X \rightarrow Y, A \subset X$

$$
\left.f\right|_{A}: A \rightarrow Y, a \mapsto f(a)
$$

The restriction is a composition of in : $A \rightarrow X$ and $f: X \rightarrow Y$:

- Inclusion map $A \subset X$, in : $A \rightarrow X, a \mapsto a$.
- Restriction of a map $f: X \rightarrow Y, A \subset X$

$$
\left.f\right|_{A}: A \rightarrow Y, a \mapsto f(a)
$$

The restriction is a composition of in : $A \rightarrow X$ and $f: X \rightarrow Y:$

$$
\left.f\right|_{A}=f \circ \text { in }: A \xrightarrow{\text { in }} X \xrightarrow{f} Y
$$

- Inclusion map $A \subset X$, in $: A \rightarrow X, a \mapsto a$.
- Restriction of a map $f: X \rightarrow Y, A \subset X$

$$
\left.f\right|_{A}: A \rightarrow Y, a \mapsto f(a)
$$

The restriction is a composition of in : $A \rightarrow X$ and $f: X \rightarrow Y:$

$$
\left.f\right|_{A}=f \circ \text { in }: A \xrightarrow{\text { in }} X \xrightarrow{f} Y
$$

- Submap
- Inclusion map $A \subset X, \quad$ in $: A \rightarrow X, a \mapsto a$.
- Restriction of a map $f: X \rightarrow Y, A \subset X$

$$
\left.f\right|_{A}: A \rightarrow Y, a \mapsto f(a)
$$

The restriction is a composition of in : $A \rightarrow X$ and $f: X \rightarrow Y$:

$$
\left.f\right|_{A}=f \circ \text { in }: A \xrightarrow{\text { in }} X \xrightarrow{f} Y
$$

- Submap
$f: X \rightarrow Y$,
- Inclusion map $A \subset X, \quad$ in $: A \rightarrow X, a \mapsto a$.
- Restriction of a map $f: X \rightarrow Y, A \subset X$

$$
\left.f\right|_{A}: A \rightarrow Y, a \mapsto f(a)
$$

The restriction is a composition of in : $A \rightarrow X$ and $f: X \rightarrow Y$:

$$
\left.f\right|_{A}=f \circ \text { in }: A \xrightarrow{\text { in }} X \xrightarrow{f} Y
$$

- Submap
$f: X \rightarrow Y, A \subset X, B \subset Y, f(A) \subset B$
- Inclusion map $A \subset X$, in $: A \rightarrow X, a \mapsto a$.
- Restriction of a map $f: X \rightarrow Y, A \subset X$

$$
\left.f\right|_{A}: A \rightarrow Y, a \mapsto f(a)
$$

The restriction is a composition of in : $A \rightarrow X$ and $f: X \rightarrow Y$:

$$
\left.f\right|_{A}=f \circ \text { in }: A \xrightarrow{\text { in }} X \xrightarrow{f} Y
$$

- Submap
$f: X \rightarrow Y, A \subset X, B \subset Y,\left.f(A) \subset B \quad f\right|_{A, B}: A \rightarrow B$,
- Inclusion map $A \subset X, \quad$ in $: A \rightarrow X, a \mapsto a$.
- Restriction of a map $f: X \rightarrow Y, A \subset X$

$$
\left.f\right|_{A}: A \rightarrow Y, a \mapsto f(a)
$$

The restriction is a composition of in : $A \rightarrow X$ and $f: X \rightarrow Y$:

$$
\left.f\right|_{A}=f \circ \text { in }: A \xrightarrow{\text { in }} X \xrightarrow{f} Y
$$

- Submap
$f: X \rightarrow Y, A \subset X, B \subset Y,\left.f(A) \subset B \quad f\right|_{A, B}: A \rightarrow B, a \mapsto f(a)$
- Inclusion map $A \subset X, \quad$ in $: A \rightarrow X, a \mapsto a$.
- Restriction of a map $f: X \rightarrow Y, A \subset X$

$$
\left.f\right|_{A}: A \rightarrow Y, a \mapsto f(a)
$$

The restriction is a composition of in : $A \rightarrow X$ and $f: X \rightarrow Y$:

$$
\left.f\right|_{A}=f \circ \text { in }: A \xrightarrow{\text { in }} X \xrightarrow{f} Y
$$

- Submap
$f: X \rightarrow Y, A \subset X, B \subset Y,\left.f(A) \subset B \quad f\right|_{A, B}: A \rightarrow B, a \mapsto f(a)$

- Inclusion map $A \subset X, \quad$ in $: A \rightarrow X, a \mapsto a$.
- Restriction of a map $f: X \rightarrow Y, A \subset X$

$$
\left.f\right|_{A}: A \rightarrow Y, a \mapsto f(a)
$$

The restriction is a composition of in : $A \rightarrow X$ and $f: X \rightarrow Y$:

$$
\left.f\right|_{A}=f \circ \text { in }: A \xrightarrow{\text { in }} X \xrightarrow{f} Y
$$

- Submap
$f: X \rightarrow Y, A \subset X, B \subset Y,\left.f(A) \subset B \quad f\right|_{A, B}: A \rightarrow B, a \mapsto f(a)$

This diagram is commutative,

- Inclusion map $A \subset X, \quad$ in $: A \rightarrow X, a \mapsto a$.
- Restriction of a map $f: X \rightarrow Y, A \subset X$

$$
\left.f\right|_{A}: A \rightarrow Y, a \mapsto f(a)
$$

The restriction is a composition of in : $A \rightarrow X$ and $f: X \rightarrow Y$:

$$
\left.f\right|_{A}=f \circ \text { in }: A \xrightarrow{\text { in }} X \xrightarrow{f} Y
$$

- Submap
$f: X \rightarrow Y, A \subset X, B \subset Y,\left.f(A) \subset B \quad f\right|_{A, B}: A \rightarrow B, a \mapsto f(a)$

This diagram is commutative, that is

$$
\left.\operatorname{in}_{B} \circ f\right|_{A, B}=f \circ \operatorname{in}_{A}
$$

Definition.

Definition. A map $f: X \rightarrow Y$ is called injective

Definition. A map $f: X \rightarrow Y$ is called injective (or injection

Definition. A map $f: X \rightarrow Y$ is called injective (or injection or one-to-one) if

Definition. A map $f: X \rightarrow Y$ is called injective (or injection or one-to-one) if
$\forall x_{1}, x_{2} \in X$

Definition. A map $f: X \rightarrow Y$ is called injective (or injection or one-to-one) if
$\forall x_{1}, x_{2} \in X \quad x_{1} \neq x_{2}$

Definition. A map $f: X \rightarrow Y$ is called injective (or injection or one-to-one) if

$$
\forall x_{1}, x_{2} \in X \quad x_{1} \neq x_{2} \Longrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

Definition. A map $f: X \rightarrow Y$ is called injective (or injection or one-to-one) if

$$
\forall x_{1}, x_{2} \in X \quad x_{1} \neq x_{2} \Longrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

(that is, different elements have different images)

Definition. A map $f: X \rightarrow Y$ is called injective (or injection or one-to-one) if

$$
\forall x_{1}, x_{2} \in X \quad x_{1} \neq x_{2} \Longrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

(that is, different elements have different images)
or, equivalently,

Definition. A map $f: X \rightarrow Y$ is called injective (or injection or one-to-one) if

$$
\forall x_{1}, x_{2} \in X \quad x_{1} \neq x_{2} \Longrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

(that is, different elements have different images)
or, equivalently,

$$
\forall x_{1}, x_{2} \in X
$$

Definition. A map $f: X \rightarrow Y$ is called injective (or injection or one-to-one) if

$$
\forall x_{1}, x_{2} \in X \quad x_{1} \neq x_{2} \Longrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

(that is, different elements have different images)
or, equivalently,

$$
\forall x_{1}, x_{2} \in X \quad f\left(x_{1}\right)=f\left(x_{2}\right)
$$

Definition. A map $f: X \rightarrow Y$ is called injective (or injection or one-to-one) if

$$
\forall x_{1}, x_{2} \in X \quad x_{1} \neq x_{2} \Longrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

(that is, different elements have different images)
or, equivalently,

$$
\forall x_{1}, x_{2} \in X \quad f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}
$$

Definition. A map $f: X \rightarrow Y$ is called injective (or injection or one-to-one) if

$$
\forall x_{1}, x_{2} \in X \quad x_{1} \neq x_{2} \Longrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

(that is, different elements have different images)
or, equivalently,

$$
\forall x_{1}, x_{2} \in X \quad f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}
$$

(that is, if two elements have the same image, then the elements coincide)

Definition. A map $f: X \rightarrow Y$ is called injective (or injection or one-to-one) if

$$
\forall x_{1}, x_{2} \in X \quad x_{1} \neq x_{2} \Longrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

(that is, different elements have different images)
or, equivalently,

$$
\forall x_{1}, x_{2} \in X \quad f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}
$$

(that is, if two elements have the same image, then the elements coincide)
or, equivalently,

Definition. A map $f: X \rightarrow Y$ is called injective (or injection or one-to-one) if

$$
\forall x_{1}, x_{2} \in X \quad x_{1} \neq x_{2} \Longrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

(that is, different elements have different images)
or, equivalently,

$$
\forall x_{1}, x_{2} \in X \quad f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}
$$

(that is, if two elements have the same image, then the elements coincide) or, equivalently,

$$
\forall y \in \operatorname{Im} f \quad \exists!x \in X \quad y=f(x)
$$

Definition. A map $f: X \rightarrow Y$ is called injective (or injection or one-to-one) if

$$
\forall x_{1}, x_{2} \in X \quad x_{1} \neq x_{2} \Longrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

(that is, different elements have different images)
or, equivalently,

$$
\forall x_{1}, x_{2} \in X \quad f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}
$$

(that is, if two elements have the same image, then the elements coincide) or, equivalently,

$$
\forall y \in \operatorname{Im} f \quad \exists!x \in X \quad y=f(x)
$$

(that is, each element in the range is the image of exactly one element).

Definition. A map $f: X \rightarrow Y$ is called injective (or injection or one-to-one) if

$$
\forall x_{1}, x_{2} \in X \quad x_{1} \neq x_{2} \Longrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

(that is, different elements have different images)
or, equivalently,

$$
\forall x_{1}, x_{2} \in X \quad f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}
$$

(that is, if two elements have the same image, then the elements coincide) or, equivalently,

$$
\forall y \in \operatorname{Im} f \quad \exists!x \in X \quad y=f(x)
$$

(that is, each element in the range is the image of exactly one element). or, equivalently,

Definition. A map $f: X \rightarrow Y$ is called injective (or injection or one-to-one) if

$$
\forall x_{1}, x_{2} \in X \quad x_{1} \neq x_{2} \Longrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

(that is, different elements have different images)
or, equivalently,

$$
\forall x_{1}, x_{2} \in X f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}
$$

(that is, if two elements have the same image, then the elements coincide) or, equivalently,

$$
\forall y \in \operatorname{Im} f \quad \exists!x \in X \quad y=f(x)
$$

(that is, each element in the range is the image of exactly one element). or, equivalently,
$\forall y \in \operatorname{Im} f$ the equation $y=f(x)$ has at most one solution.

Injective or not?

Lecture 5

Injective or not?

MAT 250
Lecture 5

Example.

Injective or not?

MAT 250
Lecture 5

Example.

Example.

Example.

Example.

Injective or not?

Example.

Injective or not?

Example.

Injective or not?

Example.

Example.

Example.

Example.

Example.

Example.

Theorem.

Theorem. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$

Theorem. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$

Theorem. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is injective.

Theorem. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is injective.
Proof.

Theorem. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is injective.
Proof. Take any $x_{1}, x_{2} \in \mathbb{R}$.

Theorem. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is injective.
Proof. Take any $x_{1}, x_{2} \in \mathbb{R}$. If $f\left(x_{1}\right)=f\left(x_{2}\right)$,

Theorem. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is injective.
Proof. Take any $x_{1}, x_{2} \in \mathbb{R}$. If $f\left(x_{1}\right)=f\left(x_{2}\right)$, then
$a x_{1}+b=a x_{2}+b$

Theorem. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is injective.
Proof. Take any $x_{1}, x_{2} \in \mathbb{R}$. If $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $a x_{1}+b=a x_{2}+b \Longrightarrow a\left(x_{1}-x_{2}\right)=0$

Theorem. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is injective.
Proof. Take any $x_{1}, x_{2} \in \mathbb{R}$. If $f\left(x_{1}\right)=f\left(x_{2}\right)$, then

$$
\begin{aligned}
& a x_{1}+b=a x_{2}+b \Longrightarrow a\left(x_{1}-x_{2}\right)=0 \Longrightarrow x_{1}=x_{2} . \\
& a \neq 0
\end{aligned}
$$

Theorem. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is injective.
Proof. Take any $x_{1}, x_{2} \in \mathbb{R}$. If $f\left(x_{1}\right)=f\left(x_{2}\right)$, then

$$
a x_{1}+b=a x_{2}+b \Longrightarrow a\left(x_{1}-x_{2}\right)=0 \underset{\substack{\uparrow \\ a \neq 0}}{\Longrightarrow} x_{1}=x_{2} .
$$

Therefore, $\forall x_{1}, x_{2} \in \mathbb{R}$

Theorem. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is injective.
Proof. Take any $x_{1}, x_{2} \in \mathbb{R}$. If $f\left(x_{1}\right)=f\left(x_{2}\right)$, then

$$
\begin{aligned}
a x_{1}+b=a x_{2}+b \Longrightarrow a\left(x_{1}-x_{2}\right)=0 \underset{\substack{\uparrow \\
a \neq 0}}{\Longrightarrow} x_{1}=x_{2} .
\end{aligned}
$$

Therefore, $\forall x_{1}, x_{2} \in \mathbb{R} f\left(x_{1}\right)=f\left(x_{2}\right)$

Theorem. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is injective.
Proof. Take any $x_{1}, x_{2} \in \mathbb{R}$. If $f\left(x_{1}\right)=f\left(x_{2}\right)$, then

$$
a x_{1}+b=a x_{2}+b \Longrightarrow a\left(x_{1}-x_{2}\right)=0 \underset{\substack{\uparrow \\ a \neq 0}}{\Longrightarrow} x_{1}=x_{2} .
$$

Therefore, $\forall x_{1}, x_{2} \in \mathbb{R} f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}$,

Theorem. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is injective.
Proof. Take any $x_{1}, x_{2} \in \mathbb{R}$. If $f\left(x_{1}\right)=f\left(x_{2}\right)$, then

$$
\begin{aligned}
a x_{1}+b=a x_{2}+b \Longrightarrow a\left(x_{1}-x_{2}\right)=0 \underset{\substack{\uparrow \\
a \neq 0}}{\Longrightarrow} x_{1}=x_{2} .
\end{aligned}
$$

Therefore, $\forall x_{1}, x_{2} \in \mathbb{R} f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}$, which means that f is injective.

Theorem. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is injective.
Proof. Take any $x_{1}, x_{2} \in \mathbb{R}$. If $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $a x_{1}+b=a x_{2}+b \Longrightarrow a\left(x_{1}-x_{2}\right)=0 \underset{\uparrow}{\Longrightarrow} x_{1}=x_{2}$. $a \neq 0$
Therefore, $\forall x_{1}, x_{2} \in \mathbb{R} f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}$, which means that f is injective.

Remark.

Theorem. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is injective.
Proof. Take any $x_{1}, x_{2} \in \mathbb{R}$. If $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $a x_{1}+b=a x_{2}+b \Longrightarrow a\left(x_{1}-x_{2}\right)=0 \underset{\uparrow}{\Longrightarrow} x_{1}=x_{2}$. $a \neq 0$
Therefore, $\forall x_{1}, x_{2} \in \mathbb{R} f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}$, which means that f is injective.

Remark. If $a=0$, then the map $f(x)=b$

Theorem. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is injective.
Proof. Take any $x_{1}, x_{2} \in \mathbb{R}$. If $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $a x_{1}+b=a x_{2}+b \Longrightarrow a\left(x_{1}-x_{2}\right)=0 \underset{\uparrow}{\Longrightarrow} x_{1}=x_{2}$.

$$
a \neq 0
$$

Therefore, $\forall x_{1}, x_{2} \in \mathbb{R} f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}$, which means that f is injective.

Remark. If $a=0$, then the map $f(x)=b$ is a constant map,

Theorem. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is injective.
Proof. Take any $x_{1}, x_{2} \in \mathbb{R}$. If $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $a x_{1}+b=a x_{2}+b \Longrightarrow a\left(x_{1}-x_{2}\right)=0 \underset{\uparrow}{\Longrightarrow} x_{1}=x_{2}$.

$$
a \neq 0
$$

Therefore, $\forall x_{1}, x_{2} \in \mathbb{R} f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}$, which means that f is injective.

Remark. If $a=0$, then the map $f(x)=b$ is a constant map,
it is not injective.

The map $f: \mathbb{R} \rightarrow \mathbb{R}$

The map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$

The map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is not injective.

The map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is not injective.

The map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is not injective.

The map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is not injective.

The map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is not injective.

The map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is not injective.

There are different x_{1} and x_{2}

The map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is not injective.

There are different x_{1} and x_{2} for which $f\left(x_{1}\right)=f\left(x_{2}\right)$.

The map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is not injective.

There are different x_{1} and x_{2} for which $f\left(x_{1}\right)=f\left(x_{2}\right)$.
For example, $1 \neq-1$ but $f(1)=f(-1)=1$.

The map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is not injective.

There are different x_{1} and x_{2} for which $f\left(x_{1}\right)=f\left(x_{2}\right)$.
For example, $1 \neq-1$ but $f(1)=f(-1)=1$.
Therefore, f is not injective.

The map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is not injective.

There are different x_{1} and x_{2} for which $f\left(x_{1}\right)=f\left(x_{2}\right)$.
For example, $1 \neq-1$ but $f(1)=f(-1)=1$.
Therefore, f is not injective.
Remark: The restriction $\left.f\right|_{\mathbb{R}_{+}}$is injective.

Surjective maps

Lecture 5

Surjective maps

Definition.

Surjective maps

Definition. Let $f: X \rightarrow Y$ be a map.

Surjective maps

Definition. Let $f: X \rightarrow Y$ be a map.
f is called surjective

Surjective maps

Definition. Let $f: X \rightarrow Y$ be a map.
f is called surjective (or surjection,

Surjective maps

Definition. Let $f: X \rightarrow Y$ be a map.
f is called surjective (or surjection,or onto) if

Surjective maps

Definition. Let $f: X \rightarrow Y$ be a map.
f is called surjective (or surjection,or onto) if

$$
\forall y \in Y
$$

Surjective maps

Definition. Let $f: X \rightarrow Y$ be a map.
f is called surjective (or surjection,or onto) if

$$
\forall y \in Y \quad \exists x \in X
$$

Surjective maps

Definition. Let $f: X \rightarrow Y$ be a map.
f is called surjective (or surjection,or onto) if

$$
\forall y \in Y \quad \exists x \in X \quad y=f(x)
$$

Definition. Let $f: X \rightarrow Y$ be a map.
f is called surjective (or surjection,or onto) if

$$
\forall y \in Y \quad \exists x \in X \quad y=f(x)
$$

(that is, all elements in Y are images of some elements in X)

Definition. Let $f: X \rightarrow Y$ be a map.
f is called surjective (or surjection,or onto) if

$$
\forall y \in Y \quad \exists x \in X \quad y=f(x)
$$

(that is, all elements in Y are images of some elements in X)
or, equivalently,

Definition. Let $f: X \rightarrow Y$ be a map.
f is called surjective (or surjection,or onto) if

$$
\forall y \in Y \quad \exists x \in X \quad y=f(x)
$$

(that is, all elements in Y are images of some elements in X)
or, equivalently, $Y=\operatorname{Im} f$

Definition. Let $f: X \rightarrow Y$ be a map.
f is called surjective (or surjection, or onto) if

$$
\forall y \in Y \quad \exists x \in X \quad y=f(x)
$$

(that is, all elements in Y are images of some elements in X)
or, equivalently, $Y=\operatorname{Im} f$
(that is, the range of the map is the whole Y)

Definition. Let $f: X \rightarrow Y$ be a map.
f is called surjective (or surjection, or onto) if

$$
\forall y \in Y \quad \exists x \in X \quad y=f(x)
$$

(that is, all elements in Y are images of some elements in X)
or, equivalently, $Y=\operatorname{Im} f$
(that is, the range of the map is the whole Y)
or, equivalently, $\forall y \in Y$ the equation $f(x)=y$ has a solution.

Sujective or not?

Lecture 5

Sujective or not?

Lecture 5

Example.

Example.

Example.

Sujective or not?

Example.

Sujective or not?

Example.

f is surjective

Sujective or not?

Example.

f is surjective

f is not surjective

Example 1.

Example 1. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$

Example 1. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$

Example 1. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$
is surjective.

Example 1. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is surjective.

Indeed,

Example 1. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is surjective.

Indeed, for any $y \in \mathbb{R}$

> Example 1. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is surjective.

Indeed, for any $y \in \mathbb{R}$ there exists x,

Example 1. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is surjective.
Indeed, for any $y \in \mathbb{R}$ there exists x, namely $x=\frac{y-b}{a}$,

Example 1. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is surjective.
Indeed, for any $y \in \mathbb{R}$ there exists x, namely $x=\frac{y-b}{a}$, such that

$$
f(x)=
$$

Example 1. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is surjective.
Indeed, for any $y \in \mathbb{R}$ there exists x, namely $x=\frac{y-b}{a}$, such that

$$
f(x)=f\left(\frac{y-b}{a}\right)=
$$

Example 1. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is surjective.
Indeed, for any $y \in \mathbb{R}$ there exists x, namely $x=\frac{y-b}{a}$, such that

$$
f(x)=f\left(\frac{y-b}{a}\right)=a \cdot \frac{y-b}{a}+b=
$$

Example 1. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is surjective.
Indeed, for any $y \in \mathbb{R}$ there exists x, namely $x=\frac{y-b}{a}$, such that

$$
f(x)=f\left(\frac{y-b}{a}\right)=a \cdot \frac{y-b}{a}+b=y-b+b=
$$

Example 1. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is surjective.
Indeed, for any $y \in \mathbb{R}$ there exists x, namely $x=\frac{y-b}{a}$, such that

$$
f(x)=f\left(\frac{y-b}{a}\right)=a \cdot \frac{y-b}{a}+b=y-b+b=y .
$$

Example 1. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is surjective.
Indeed, for any $y \in \mathbb{R}$ there exists x, namely $x=\frac{y-b}{a}$, such that

$$
f(x)=f\left(\frac{y-b}{a}\right)=a \cdot \frac{y-b}{a}+b=y-b+b=y .
$$

Therefore, $\forall y \in \mathbb{R} \exists x \in \mathbb{R} \quad y=f(x)$,

Example 1. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is surjective.
Indeed, for any $y \in \mathbb{R}$ there exists x, namely $x=\frac{y-b}{a}$, such that

$$
f(x)=f\left(\frac{y-b}{a}\right)=a \cdot \frac{y-b}{a}+b=y-b+b=y .
$$

Therefore, $\forall y \in \mathbb{R} \exists x \in \mathbb{R} \quad y=f(x)$, that is, f is surjective.

Example 1. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is surjective.
Indeed, for any $y \in \mathbb{R}$ there exists x, namely $x=\frac{y-b}{a}$, such that

$$
f(x)=f\left(\frac{y-b}{a}\right)=a \cdot \frac{y-b}{a}+b=y-b+b=y .
$$

Therefore, $\forall y \in \mathbb{R} \exists x \in \mathbb{R} \quad y=f(x)$, that is, f is surjective.

Example 2.

Example 1. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is surjective.
Indeed, for any $y \in \mathbb{R}$ there exists x, namely $x=\frac{y-b}{a}$, such that

$$
f(x)=f\left(\frac{y-b}{a}\right)=a \cdot \frac{y-b}{a}+b=y-b+b=y .
$$

Therefore, $\forall y \in \mathbb{R} \exists x \in \mathbb{R} \quad y=f(x)$, that is, f is surjective.

Example 2. A map $f: \mathbb{R} \rightarrow \mathbb{R}$

Example 1. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is surjective.
Indeed, for any $y \in \mathbb{R}$ there exists x, namely $x=\frac{y-b}{a}$, such that

$$
f(x)=f\left(\frac{y-b}{a}\right)=a \cdot \frac{y-b}{a}+b=y-b+b=y .
$$

Therefore, $\forall y \in \mathbb{R} \exists x \in \mathbb{R} \quad y=f(x)$, that is, f is surjective.

Example 2. A map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$

Example 1. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is surjective.
Indeed, for any $y \in \mathbb{R}$ there exists x, namely $x=\frac{y-b}{a}$, such that

$$
f(x)=f\left(\frac{y-b}{a}\right)=a \cdot \frac{y-b}{a}+b=y-b+b=y .
$$

Therefore, $\forall y \in \mathbb{R} \exists x \in \mathbb{R} \quad y=f(x)$, that is, f is surjective.
Example 2. A map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is not surjective.

Example 1. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is surjective.
Indeed, for any $y \in \mathbb{R}$ there exists x, namely $x=\frac{y-b}{a}$, such that

$$
f(x)=f\left(\frac{y-b}{a}\right)=a \cdot \frac{y-b}{a}+b=y-b+b=y .
$$

Therefore, $\forall y \in \mathbb{R} \exists x \in \mathbb{R} \quad y=f(x)$, that is, f is surjective.

Example 2. A map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is not surjective. Indeed,

Example 1. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is surjective.
Indeed, for any $y \in \mathbb{R}$ there exists x, namely $x=\frac{y-b}{a}$, such that

$$
f(x)=f\left(\frac{y-b}{a}\right)=a \cdot \frac{y-b}{a}+b=y-b+b=y .
$$

Therefore, $\forall y \in \mathbb{R} \exists x \in \mathbb{R} \quad y=f(x)$, that is, f is surjective.

Example 2. A map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is not surjective. Indeed, $\operatorname{Im} f=[0, \infty)$

Example 1. A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is surjective.
Indeed, for any $y \in \mathbb{R}$ there exists x, namely $x=\frac{y-b}{a}$, such that

$$
f(x)=f\left(\frac{y-b}{a}\right)=a \cdot \frac{y-b}{a}+b=y-b+b=y .
$$

Therefore, $\forall y \in \mathbb{R} \exists x \in \mathbb{R} \quad y=f(x)$, that is, f is surjective.

Example 2. A map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is not surjective. Indeed, $\operatorname{Im} f=[0, \infty) \neq \underset{\uparrow}{\mathbb{R}}$ codomain

Any map

Any map can be converted to a surjection

Any map can be converted to a surjection
by reducing its codomain to the range:

Any map can be converted to a surjection
by reducing its codomain to the range:
If $f: X \rightarrow Y$ is not a surjection,

Not surjective? We can fix this!

Any map can be converted to a surjection
by reducing its codomain to the range:
If $f: X \rightarrow Y$ is not a surjection, then
$\hat{f}: X \rightarrow \operatorname{Im} f$,

Not surjective? We can fix this!

Any map can be converted to a surjection
by reducing its codomain to the range:
If $f: X \rightarrow Y$ is not a surjection, then
$\hat{f}: X \rightarrow \operatorname{Im} f$, where $\hat{f}(x)=f(x)$ for all $x \in X$,

Not surjective? We can fix this!

Any map can be converted to a surjection
by reducing its codomain to the range:
If $f: X \rightarrow Y$ is not a surjection, then
$\hat{f}: X \rightarrow \operatorname{Im} f$, where $\hat{f}(x)=f(x)$ for all $x \in X$, is a surjection.

Not surjective? We can fix this!

Any map can be converted to a surjection
by reducing its codomain to the range:
If $f: X \rightarrow Y$ is not a surjection, then
$\hat{f}: X \rightarrow \operatorname{Im} f$, where $\hat{f}(x)=f(x)$ for all $x \in X$, is a surjection.

Not surjective? We can fix this!

Any map can be converted to a surjection
by reducing its codomain to the range:
If $f: X \rightarrow Y$ is not a surjection, then
$\hat{f}: X \rightarrow \operatorname{Im} f$, where $\hat{f}(x)=f(x)$ for all $x \in X$, is a surjection.

Bijective maps

Lecture 5

Bijective maps

Lecture 5

Definition.

Bijective maps

Definition. Let $f: X \rightarrow Y$ be a map.

Bijective maps

Definition. Let $f: X \rightarrow Y$ be a map.
f is called bijective

Bijective maps

Definition. Let $f: X \rightarrow Y$ be a map.
f is called bijective (or bijection

Definition. Let $f: X \rightarrow Y$ be a map.
f is called bijective (or bijection, or one-to-one correspondence) if

Definition. Let $f: X \rightarrow Y$ be a map.
f is called bijective (or bijection, or one-to-one correspondence) if f is injective and surjective:

Definition. Let $f: X \rightarrow Y$ be a map.
f is called bijective (or bijection, or one-to-one correspondence) if f is injective and surjective: $\forall y \in Y$

Definition. Let $f: X \rightarrow Y$ be a map.
f is called bijective (or bijection, or one-to-one correspondence) if f is injective and surjective: $\forall y \in Y \quad \exists!x \in X$

Definition. Let $f: X \rightarrow Y$ be a map.
f is called bijective (or bijection, or one-to-one correspondence) if f is injective and surjective: $\quad \forall y \in Y \quad \exists!x \in X \quad y=f(x)$,

Definition. Let $f: X \rightarrow Y$ be a map.
f is called bijective (or bijection, or one-to-one correspondence) if
f is injective and surjective: $\quad \forall y \in Y \quad \exists!x \in X \quad y=f(x)$,
or, equivalently, $\forall y \in Y$ the equation $f(x)=y$ has a unique solution.

Definition. Let $f: X \rightarrow Y$ be a map.
f is called bijective (or bijection, or one-to-one correspondence) if
f is injective and surjective: $\quad \forall y \in Y \quad \exists!x \in X \quad y=f(x)$,
or, equivalently, $\forall y \in Y$ the equation $f(x)=y$ has a unique solution.

f is bijective

Definition. Let $f: X \rightarrow Y$ be a map.
f is called bijective (or bijection, or one-to-one correspondence) if
f is injective and surjective: $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$,
or, equivalently, $\forall y \in Y$ the equation $f(x)=y$ has a unique solution.

f is bijective

Definition. Let $f: X \rightarrow Y$ be a map.
f is called bijective (or bijection, or one-to-one correspondence) if
f is injective and surjective: $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$,
or, equivalently, $\forall y \in Y$ the equation $f(x)=y$ has a unique solution.

f is bijective

Definition. Let $f: X \rightarrow Y$ be a map.
f is called bijective (or bijection, or one-to-one correspondence) if
f is injective and surjective: $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$,
or, equivalently, $\forall y \in Y$ the equation $f(x)=y$ has a unique solution.

f is bijective

Definition. Let $f: X \rightarrow Y$ be a map.
f is called bijective (or bijection, or one-to-one correspondence) if
f is injective and surjective: $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$,
or, equivalently, $\forall y \in Y$ the equation $f(x)=y$ has a unique solution.

f is bijective

f is not bijective

Definition. Let $f: X \rightarrow Y$ be a map.
f is called bijective (or bijection, or one-to-one correspondence) if
f is injective and surjective: $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$,
or, equivalently, $\forall y \in Y$ the equation $f(x)=y$ has a unique solution.

f is bijective

f is not bijective
(f is not injective)

Definition. Let $f: X \rightarrow Y$ be a map.
f is called bijective (or bijection, or one-to-one correspondence) if
f is injective and surjective: $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$,
or, equivalently, $\forall y \in Y$ the equation $f(x)=y$ has a unique solution.

f is bijective

f is not bijective
(f is not injective)

Definition. Let $f: X \rightarrow Y$ be a map.
f is called bijective (or bijection, or one-to-one correspondence) if
f is injective and surjective: $\quad \forall y \in Y \quad \exists!x \in X \quad y=f(x)$,
or, equivalently, $\forall y \in Y$ the equation $f(x)=y$ has a unique solution.

f is bijective

f is not bijective
(f is not injective)

Definition. Let $f: X \rightarrow Y$ be a map.
f is called bijective (or bijection, or one-to-one correspondence) if
f is injective and surjective: $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$,
or, equivalently, $\forall y \in Y$ the equation $f(x)=y$ has a unique solution.

f is bijective

f is not bijective
(f is not injective)

Definition. Let $f: X \rightarrow Y$ be a map.
f is called bijective (or bijection, or one-to-one correspondence) if
f is injective and surjective: $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$,
or, equivalently, $\forall y \in Y$ the equation $f(x)=y$ has a unique solution.

f is bijective

f is not bijective
(f is not injective)

f is not bijective

Definition. Let $f: X \rightarrow Y$ be a map.
f is called bijective (or bijection, or one-to-one correspondence) if
f is injective and surjective: $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$,
or, equivalently, $\forall y \in Y$ the equation $f(x)=y$ has a unique solution.

f is bijective

f is not bijective
(f is not injective)

f is not bijective
(f is neither injective nor surjective)

Linear function is bijective

Lecture 5

Linear function is bijective

A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$

Linear function is bijective

A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$

Linear function is bijective

A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is bijective,

Linear function is bijective

A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is bijective, since it is injective and surjective.

A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is bijective, since it is injective and surjective.

Linear function is bijective

A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is bijective, since it is injective and surjective.

Linear function is bijective

A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is bijective, since it is injective and surjective.

$$
\forall y \in \mathbb{R}
$$

Linear function is bijective

A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is bijective, since it is injective and surjective.

$$
\forall y \in \mathbb{R}
$$

Linear function is bijective

A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is bijective, since it is injective and surjective.

$$
\forall y \in \mathbb{R} \quad \exists!x \in \mathbb{R}
$$

Linear function is bijective

A linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ with $a \neq 0$ is bijective, since it is injective and surjective.

$$
\forall y \in \mathbb{R} \quad \exists!x \in \mathbb{R} \quad y=a x+b
$$

Definition.

Definition. A map $g: Y \rightarrow X$ is called inverse for $f: X \rightarrow Y$ if

Definition. A map $g: Y \rightarrow X$ is called inverse for $f: X \rightarrow Y$ if

$$
g \circ f=\operatorname{id}_{X}
$$

Definition. A map $g: Y \rightarrow X$ is called inverse for $f: X \rightarrow Y$ if

$$
g \circ f=\mathrm{id}_{X} \text { and } f \circ g=\mathrm{id}_{Y},
$$

Definition. A map $g: Y \rightarrow X$ is called inverse for $f: X \rightarrow Y$ if

$$
\begin{aligned}
& g \circ f=\mathrm{id}_{X} \text { and } f \circ g=\mathrm{id}_{Y}, \text { that is } \\
& (g \circ f)(x)=x \text { for any } x \in X,
\end{aligned}
$$

Definition. A map $g: Y \rightarrow X$ is called inverse for $f: X \rightarrow Y$ if

$$
\begin{aligned}
& g \circ f=\mathrm{id}_{X} \text { and } f \circ g=\mathrm{id}_{Y}, \text { that is } \\
& (g \circ f)(x)=x \text { for any } x \in X, \text { and } \\
& (f \circ g)(y)=y \text { for any } y \in Y .
\end{aligned}
$$

Definition. A map $g: Y \rightarrow X$ is called inverse for $f: X \rightarrow Y$ if

$$
\begin{aligned}
& g \circ f=\mathrm{id}_{X} \text { and } f \circ g=\mathrm{id}_{Y}, \text { that is } \\
& (g \circ f)(x)=x \text { for any } x \in X, \text { and } \\
& (f \circ g)(y)=y \text { for any } y \in Y .
\end{aligned}
$$

Definition. A map $g: Y \rightarrow X$ is called inverse for $f: X \rightarrow Y$ if

$$
\begin{aligned}
& g \circ f=\mathrm{id}_{X} \text { and } f \circ g=\mathrm{id}_{Y}, \text { that is } \\
& (g \circ f)(x)=x \text { for any } x \in X, \text { and } \\
& (f \circ g)(y)=y \text { for any } y \in Y .
\end{aligned}
$$

Definition. A map $g: Y \rightarrow X$ is called inverse for $f: X \rightarrow Y$ if

$$
\begin{aligned}
& g \circ f=\mathrm{id}_{X} \text { and } f \circ g=\mathrm{id}_{Y}, \text { that is } \\
& (g \circ f)(x)=x \text { for any } x \in X, \text { and } \\
& (f \circ g)(y)=y \text { for any } y \in Y .
\end{aligned}
$$

Definition. A map $g: Y \rightarrow X$ is called inverse for $f: X \rightarrow Y$ if

$$
\begin{aligned}
& g \circ f=\mathrm{id}_{X} \text { and } f \circ g=\mathrm{id}_{Y}, \text { that is } \\
& (g \circ f)(x)=x \text { for any } x \in X, \text { and } \\
& (f \circ g)(y)=y \text { for any } y \in Y .
\end{aligned}
$$

Definition. A map $g: Y \rightarrow X$ is called inverse for $f: X \rightarrow Y$ if

$$
\begin{aligned}
& g \circ f=\mathrm{id}_{X} \text { and } f \circ g=\mathrm{id}_{Y}, \text { that is } \\
& (g \circ f)(x)=x \text { for any } x \in X, \text { and } \\
& (f \circ g)(y)=y \text { for any } y \in Y .
\end{aligned}
$$

Definition. A map $g: Y \rightarrow X$ is called inverse for $f: X \rightarrow Y$ if

$$
\begin{aligned}
& g \circ f=\mathrm{id}_{X} \text { and } f \circ g=\mathrm{id}_{Y}, \text { that is } \\
& (g \circ f)(x)=x \text { for any } x \in X, \text { and } \\
& (f \circ g)(y)=y \text { for any } y \in Y .
\end{aligned}
$$

Definition. A map $g: Y \rightarrow X$ is called inverse for $f: X \rightarrow Y$ if

$$
\begin{aligned}
& g \circ f=\mathrm{id}_{X} \text { and } f \circ g=\mathrm{id}_{Y}, \text { that is } \\
& (g \circ f)(x)=x \text { for any } x \in X, \text { and } \\
& (f \circ g)(y)=y \text { for any } y \in Y .
\end{aligned}
$$

Definition. A map $g: Y \rightarrow X$ is called inverse for $f: X \rightarrow Y$ if

$$
\begin{aligned}
& g \circ f=\mathrm{id}_{X} \text { and } f \circ g=\mathrm{id}_{Y}, \text { that is } \\
& (g \circ f)(x)=x \text { for any } x \in X, \text { and } \\
& (f \circ g)(y)=y \text { for any } y \in Y .
\end{aligned}
$$

Definition. A map $g: Y \rightarrow X$ is called inverse for $f: X \rightarrow Y$ if

$$
\begin{aligned}
& g \circ f=\mathrm{id}_{X} \text { and } f \circ g=\mathrm{id}_{Y}, \text { that is } \\
& (g \circ f)(x)=x \text { for any } x \in X, \text { and } \\
& (f \circ g)(y)=y \text { for any } y \in Y .
\end{aligned}
$$

Definition.

Definition. A map $g: Y \rightarrow X$ is called inverse for $f: X \rightarrow Y$ if

$$
\begin{aligned}
& g \circ f=\mathrm{id}_{X} \text { and } f \circ g=\mathrm{id}_{Y}, \text { that is } \\
& (g \circ f)(x)=x \text { for any } x \in X, \text { and } \\
& (f \circ g)(y)=y \text { for any } y \in Y .
\end{aligned}
$$

Definition. A map is called invertible if it has an inverse.

Definition. A map $g: Y \rightarrow X$ is called inverse for $f: X \rightarrow Y$ if

$$
\begin{aligned}
& g \circ f=\mathrm{id}_{X} \text { and } f \circ g=\mathrm{id}_{Y}, \text { that is } \\
& (g \circ f)(x)=x \text { for any } x \in X, \text { and } \\
& (f \circ g)(y)=y \text { for any } y \in Y .
\end{aligned}
$$

Definition. A map is called invertible if it has an inverse.
Warning.

Definition. A map $g: Y \rightarrow X$ is called inverse for $f: X \rightarrow Y$ if

$$
\begin{aligned}
& g \circ f=\mathrm{id}_{X} \text { and } f \circ g=\mathrm{id}_{Y}, \text { that is } \\
& (g \circ f)(x)=x \text { for any } x \in X, \text { and } \\
& (f \circ g)(y)=y \text { for any } y \in Y .
\end{aligned}
$$

Definition. A map is called invertible if it has an inverse.
Warning. Not all maps are invertible!

Theorem.

Theorem. If an inverse map exists,

Theorem. If an inverse map exists, then it is unique.

Theorem. If an inverse map exists, then it is unique.
Proof.

Theorem. If an inverse map exists, then it is unique.
Proof. Let $f: X \rightarrow Y$ has two inverse maps, g and h.

Theorem. If an inverse map exists, then it is unique.
Proof. Let $f: X \rightarrow Y$ has two inverse maps, g and $h . g, h: Y \rightarrow X$

Theorem. If an inverse map exists, then it is unique.
Proof. Let $f: X \rightarrow Y$ has two inverse maps, g and $h . g, h: Y \rightarrow X$
Since g is an inverse for f, we have

Theorem. If an inverse map exists, then it is unique.
Proof. Let $f: X \rightarrow Y$ has two inverse maps, g and $h . g, h: Y \rightarrow X$ Since g is an inverse for f, we have $g \circ f=\mathrm{id}_{X}$

Theorem. If an inverse map exists, then it is unique.
Proof. Let $f: X \rightarrow Y$ has two inverse maps, g and $h . g, h: Y \rightarrow X$ Since g is an inverse for f, we have $g \circ f=\operatorname{id}_{X} \quad$ and $\quad f \circ g=\operatorname{id}_{Y}$.

Theorem. If an inverse map exists, then it is unique.
Proof. Let $f: X \rightarrow Y$ has two inverse maps, g and $h . g, h: Y \rightarrow X$ Since g is an inverse for f, we have
$g \circ f=\operatorname{id}_{X} \quad$ and $\quad f \circ g=\operatorname{id}_{Y}$.
Since h is an inverse for f, we have

Theorem. If an inverse map exists, then it is unique.
Proof. Let $f: X \rightarrow Y$ has two inverse maps, g and $h . g, h: Y \rightarrow X$
Since g is an inverse for f, we have
$g \circ f=\operatorname{id}_{X} \quad$ and $\quad f \circ g=\operatorname{id}_{Y}$.
Since h is an inverse for f, we have
$h \circ f=\operatorname{id}_{X}$

Theorem. If an inverse map exists, then it is unique.
Proof. Let $f: X \rightarrow Y$ has two inverse maps, g and $h . g, h: Y \rightarrow X$ Since g is an inverse for f, we have
$g \circ f=\operatorname{id}_{X} \quad$ and $\quad f \circ g=\operatorname{id}_{Y}$.
Since h is an inverse for f, we have
$h \circ f=\operatorname{id}_{X}$ and $f \circ h=\operatorname{id}_{Y}$.

Theorem. If an inverse map exists, then it is unique.
Proof. Let $f: X \rightarrow Y$ has two inverse maps, g and $h . g, h: Y \rightarrow X$ Since g is an inverse for f, we have
$g \circ f=\operatorname{id}_{X} \quad$ and $\quad f \circ g=\operatorname{id}_{Y}$.
Since h is an inverse for f, we have
$h \circ f=\operatorname{id}_{X}$ and $f \circ h=\operatorname{id}_{Y}$.

$$
g \circ f \circ h
$$

Theorem. If an inverse map exists, then it is unique.
Proof. Let $f: X \rightarrow Y$ has two inverse maps, g and $h . g, h: Y \rightarrow X$ Since g is an inverse for f, we have
$g \circ f=\operatorname{id}_{X} \quad$ and $\quad f \circ g=\operatorname{id}_{Y}$.
Since h is an inverse for f, we have
$h \circ f=\operatorname{id}_{X}$ and $f \circ h=\operatorname{id}_{Y}$.

$$
g \circ f \circ h=(g \circ f) \circ h
$$

Theorem. If an inverse map exists, then it is unique.
Proof. Let $f: X \rightarrow Y$ has two inverse maps, g and $h . g, h: Y \rightarrow X$ Since g is an inverse for f, we have
$g \circ f=\operatorname{id}_{X} \quad$ and $\quad f \circ g=\operatorname{id}_{Y}$.
Since h is an inverse for f, we have
$h \circ f=\operatorname{id}_{X}$ and $f \circ h=\operatorname{id}_{Y}$.

$$
g \circ f \circ h=(g \circ f) \circ h=\operatorname{id}_{X} \circ h
$$

Theorem. If an inverse map exists, then it is unique.
Proof. Let $f: X \rightarrow Y$ has two inverse maps, g and $h . g, h: Y \rightarrow X$ Since g is an inverse for f, we have
$g \circ f=\operatorname{id}_{X} \quad$ and $\quad f \circ g=\operatorname{id}_{Y}$.
Since h is an inverse for f, we have
$h \circ f=\operatorname{id}_{X}$ and $f \circ h=\operatorname{id}_{Y}$.

$$
g \circ f \circ h=(g \circ f) \circ h=\operatorname{id}_{X} \circ h=h
$$

Theorem. If an inverse map exists, then it is unique.
Proof. Let $f: X \rightarrow Y$ has two inverse maps, g and $h . g, h: Y \rightarrow X$ Since g is an inverse for f, we have
$g \circ f=\operatorname{id}_{X} \quad$ and $\quad f \circ g=\operatorname{id}_{Y}$.
Since h is an inverse for f, we have
$h \circ f=\operatorname{id}_{X}$ and $f \circ h=\operatorname{id}_{Y}$.

$$
g \circ(f \circ h)=g \circ f \circ h=(g \circ f) \circ h=\operatorname{id}_{X} \circ h=h
$$

Theorem. If an inverse map exists, then it is unique.
Proof. Let $f: X \rightarrow Y$ has two inverse maps, g and $h . g, h: Y \rightarrow X$ Since g is an inverse for f, we have
$g \circ f=\operatorname{id}_{X} \quad$ and $\quad f \circ g=\operatorname{id}_{Y}$.
Since h is an inverse for f, we have
$h \circ f=\operatorname{id}_{X}$ and $f \circ h=\operatorname{id}_{Y}$.

$$
g \circ \mathrm{id}_{Y}=g \circ(f \circ h)=g \circ f \circ h=(g \circ f) \circ h=\operatorname{id}_{X} \circ h=h
$$

Theorem. If an inverse map exists, then it is unique.
Proof. Let $f: X \rightarrow Y$ has two inverse maps, g and $h . g, h: Y \rightarrow X$ Since g is an inverse for f, we have
$g \circ f=\operatorname{id}_{X} \quad$ and $\quad f \circ g=\operatorname{id}_{Y}$.
Since h is an inverse for f, we have
$h \circ f=\operatorname{id}_{X}$ and $f \circ h=\operatorname{id}_{Y}$.
$g=g \circ \mathrm{id}_{Y}=g \circ(f \circ h)=g \circ f \circ h=(g \circ f) \circ h=\operatorname{id}_{X} \circ h=h$

Theorem. If an inverse map exists, then it is unique.
Proof. Let $f: X \rightarrow Y$ has two inverse maps, g and $h . g, h: Y \rightarrow X$ Since g is an inverse for f, we have
$g \circ f=\operatorname{id}_{X} \quad$ and $\quad f \circ g=\operatorname{id}_{Y}$.
Since h is an inverse for f, we have
$h \circ f=\operatorname{id}_{X}$ and $f \circ h=\operatorname{id}_{Y}$.
$g=g \circ \mathrm{id}_{Y}=g \circ(f \circ h)=g \circ f \circ h=(g \circ f) \circ h=\operatorname{id}_{X} \circ h=h$
Therefore, $g=h$

Theorem. If an inverse map exists, then it is unique.
Proof. Let $f: X \rightarrow Y$ has two inverse maps, g and $h . g, h: Y \rightarrow X$
Since g is an inverse for f, we have
$g \circ f=\operatorname{id}_{X} \quad$ and $\quad f \circ g=\operatorname{id}_{Y}$.
Since h is an inverse for f, we have
$h \circ f=\operatorname{id}_{X}$ and $f \circ h=\operatorname{id}_{Y}$.
$g=g \circ \mathrm{id}_{Y}=g \circ(f \circ h)=g \circ f \circ h=(g \circ f) \circ h=\operatorname{id}_{X} \circ h=h$
Therefore, $g=h$ and the inverse map is unique.

Theorem. If an inverse map exists, then it is unique.
Proof. Let $f: X \rightarrow Y$ has two inverse maps, g and $h . g, h: Y \rightarrow X$
Since g is an inverse for f, we have
$g \circ f=\operatorname{id}_{X} \quad$ and $\quad f \circ g=\operatorname{id}_{Y}$.
Since h is an inverse for f, we have
$h \circ f=\operatorname{id}_{X} \quad$ and $\quad f \circ h=\operatorname{id}_{Y}$.
$g=g \circ \mathrm{id}_{Y}=g \circ(f \circ h)=g \circ f \circ h=(g \circ f) \circ h=\operatorname{id}_{X} \circ h=h$
Therefore, $g=h$ and the inverse map is unique.
Since the inverse map is unique, it deserves a functional notation.

Theorem. If an inverse map exists, then it is unique.
Proof. Let $f: X \rightarrow Y$ has two inverse maps, g and $h . g, h: Y \rightarrow X$
Since g is an inverse for f, we have
$g \circ f=\operatorname{id}_{X} \quad$ and $\quad f \circ g=\operatorname{id}_{Y}$.
Since h is an inverse for f, we have
$h \circ f=\mathrm{id}_{X}$ and $f \circ h=\mathrm{id}_{Y}$.
$g=g \circ \mathrm{id}_{Y}=g \circ(f \circ h)=g \circ f \circ h=(g \circ f) \circ h=\operatorname{id}_{X} \circ h=h$
Therefore, $g=h$ and the inverse map is unique.
Since the inverse map is unique, it deserves a functional notation.
The inverse for f is denoted by f^{-1}.

Theorem. If an inverse map exists, then it is unique.
Proof. Let $f: X \rightarrow Y$ has two inverse maps, g and $h . g, h: Y \rightarrow X$
Since g is an inverse for f, we have
$g \circ f=\operatorname{id}_{X} \quad$ and $\quad f \circ g=\operatorname{id}_{Y}$.
Since h is an inverse for f, we have
$h \circ f=\mathrm{id}_{X}$ and $f \circ h=\mathrm{id}_{Y}$.
$g=g \circ \mathrm{id}_{Y}=g \circ(f \circ h)=g \circ f \circ h=(g \circ f) \circ h=\operatorname{id}_{X} \circ h=h$
Therefore, $g=h$ and the inverse map is unique.
Since the inverse map is unique, it deserves a functional notation.
The inverse for f is denoted by f^{-1}. By the definition of the inverse,

Theorem. If an inverse map exists, then it is unique.
Proof. Let $f: X \rightarrow Y$ has two inverse maps, g and $h . g, h: Y \rightarrow X$
Since g is an inverse for f, we have
$g \circ f=\operatorname{id}_{X} \quad$ and $\quad f \circ g=\operatorname{id}_{Y}$.
Since h is an inverse for f, we have
$h \circ f=\mathrm{id}_{X}$ and $f \circ h=\mathrm{id}_{Y}$.
$g=g \circ \mathrm{id}_{Y}=g \circ(f \circ h)=g \circ f \circ h=(g \circ f) \circ h=\mathrm{id}_{X} \circ h=h$
Therefore, $g=h$ and the inverse map is unique.
Since the inverse map is unique, it deserves a functional notation.
The inverse for f is denoted by f^{-1}. By the definition of the inverse,

$$
f^{-1} \circ f=\mathrm{id}_{X} \quad \text { and } \quad f \circ f^{-1}=\mathrm{id}_{Y}
$$

Theorem.

Theorem. A map is invertible iff

Theorem. A map is invertible iff it is a bijection.

Theorem. A map is invertible iff it is a bijection. Proof.

Theorem. A map is invertible iff it is a bijection.
Proof. Assume that $f: X \rightarrow Y$ is invertible

Theorem. A map is invertible iff it is a bijection.
Proof. Assume that $f: X \rightarrow Y$ is invertible and prove that f is a bijection.

Theorem. A map is invertible iff it is a bijection.
Proof. Assume that $f: X \rightarrow Y$ is invertible and prove that f is a bijection.
To show injectivity,

Theorem. A map is invertible iff it is a bijection.
Proof. Assume that $f: X \rightarrow Y$ is invertible and prove that f is a bijection.
To show injectivity, assume that $f\left(x_{1}\right)=f\left(x_{2}\right)$

Theorem. A map is invertible iff it is a bijection.
Proof. Assume that $f: X \rightarrow Y$ is invertible and prove that f is a bijection.
To show injectivity, assume that $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1}, x_{2} \in X$.

Theorem. A map is invertible iff it is a bijection.
Proof. Assume that $f: X \rightarrow Y$ is invertible and prove that f is a bijection.
To show injectivity, assume that $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1}, x_{2} \in X$.
Apply f^{-1}

Theorem. A map is invertible iff it is a bijection.
Proof. Assume that $f: X \rightarrow Y$ is invertible and prove that f is a bijection.
To show injectivity, assume that $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1}, x_{2} \in X$.
Apply f^{-1} (it exists since f is invertible)

Theorem. A map is invertible iff it is a bijection.
Proof. Assume that $f: X \rightarrow Y$ is invertible and prove that f is a bijection.
To show injectivity, assume that $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1}, x_{2} \in X$.
Apply f^{-1} (it exists since f is invertible) to this identity:

Theorem. A map is invertible iff it is a bijection.
Proof. Assume that $f: X \rightarrow Y$ is invertible and prove that f is a bijection.
To show injectivity, assume that $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1}, x_{2} \in X$.
Apply f^{-1} (it exists since f is invertible) to this identity:
$f^{-1}\left(f\left(x_{1}\right)\right)=f^{-1}\left(f\left(x_{2}\right)\right)$

Theorem. A map is invertible iff it is a bijection.
Proof. Assume that $f: X \rightarrow Y$ is invertible and prove that f is a bijection.
To show injectivity, assume that $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1}, x_{2} \in X$.
Apply f^{-1} (it exists since f is invertible) to this identity:
$f^{-1}\left(f\left(x_{1}\right)\right)=f^{-1}\left(f\left(x_{2}\right)\right) \Longrightarrow x_{1}=x_{2}$.

Theorem. A map is invertible iff it is a bijection.
Proof. Assume that $f: X \rightarrow Y$ is invertible and prove that f is a bijection.
To show injectivity, assume that $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1}, x_{2} \in X$.
Apply f^{-1} (it exists since f is invertible) to this identity:
$f^{-1}\left(f\left(x_{1}\right)\right)=f^{-1}\left(f\left(x_{2}\right)\right) \Longrightarrow x_{1}=x_{2}$.
By this, f is injective.

Theorem. A map is invertible iff it is a bijection.
Proof. Assume that $f: X \rightarrow Y$ is invertible and prove that f is a bijection.
To show injectivity, assume that $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1}, x_{2} \in X$.
Apply f^{-1} (it exists since f is invertible) to this identity:
$f^{-1}\left(f\left(x_{1}\right)\right)=f^{-1}\left(f\left(x_{2}\right)\right) \Longrightarrow x_{1}=x_{2}$.
By this, f is injective.
To show surjectivity,

Theorem. A map is invertible iff it is a bijection.
Proof. Assume that $f: X \rightarrow Y$ is invertible and prove that f is a bijection.
To show injectivity, assume that $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1}, x_{2} \in X$.
Apply f^{-1} (it exists since f is invertible) to this identity:
$f^{-1}\left(f\left(x_{1}\right)\right)=f^{-1}\left(f\left(x_{2}\right)\right) \Longrightarrow x_{1}=x_{2}$.
By this, f is injective.
To show surjectivity, take any $y \in Y$

Theorem. A map is invertible iff it is a bijection.
Proof. Assume that $f: X \rightarrow Y$ is invertible and prove that f is a bijection.
To show injectivity, assume that $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1}, x_{2} \in X$.
Apply f^{-1} (it exists since f is invertible) to this identity:
$f^{-1}\left(f\left(x_{1}\right)\right)=f^{-1}\left(f\left(x_{2}\right)\right) \Longrightarrow x_{1}=x_{2}$.
By this, f is injective.
To show surjectivity, take any $y \in Y$ and apply f^{-1}.

Theorem. A map is invertible iff it is a bijection.
Proof. Assume that $f: X \rightarrow Y$ is invertible and prove that f is a bijection.
To show injectivity, assume that $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1}, x_{2} \in X$.
Apply f^{-1} (it exists since f is invertible) to this identity:
$f^{-1}\left(f\left(x_{1}\right)\right)=f^{-1}\left(f\left(x_{2}\right)\right) \Longrightarrow x_{1}=x_{2}$.
By this, f is injective.
To show surjectivity, take any $y \in Y$ and apply f^{-1}. Let $x=f^{-1}(y)$.

Theorem. A map is invertible iff it is a bijection.
Proof. Assume that $f: X \rightarrow Y$ is invertible and prove that f is a bijection.
To show injectivity, assume that $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1}, x_{2} \in X$.
Apply f^{-1} (it exists since f is invertible) to this identity:
$f^{-1}\left(f\left(x_{1}\right)\right)=f^{-1}\left(f\left(x_{2}\right)\right) \Longrightarrow x_{1}=x_{2}$.
By this, f is injective.
To show surjectivity, take any $y \in Y$ and apply f^{-1}. Let $x=f^{-1}(y)$.
So for any $y \in Y$

Theorem. A map is invertible iff it is a bijection.
Proof. Assume that $f: X \rightarrow Y$ is invertible and prove that f is a bijection.
To show injectivity, assume that $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1}, x_{2} \in X$.
Apply f^{-1} (it exists since f is invertible) to this identity:
$f^{-1}\left(f\left(x_{1}\right)\right)=f^{-1}\left(f\left(x_{2}\right)\right) \Longrightarrow x_{1}=x_{2}$.
By this, f is injective.
To show surjectivity, take any $y \in Y$ and apply f^{-1}. Let $x=f^{-1}(y)$.
So for any $y \in Y$ there exists $x \in X$, namely $x=f^{-1}(y)$,

Theorem. A map is invertible iff it is a bijection.
Proof. Assume that $f: X \rightarrow Y$ is invertible and prove that f is a bijection.
To show injectivity, assume that $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1}, x_{2} \in X$.
Apply f^{-1} (it exists since f is invertible) to this identity:
$f^{-1}\left(f\left(x_{1}\right)\right)=f^{-1}\left(f\left(x_{2}\right)\right) \Longrightarrow x_{1}=x_{2}$.
By this, f is injective.
To show surjectivity, take any $y \in Y$ and apply f^{-1}. Let $x=f^{-1}(y)$.
So for any $y \in Y$ there exists $x \in X$, namely $x=f^{-1}(y)$,

$$
\text { such that } f(x)
$$

Theorem. A map is invertible iff it is a bijection.
Proof. Assume that $f: X \rightarrow Y$ is invertible and prove that f is a bijection.
To show injectivity, assume that $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1}, x_{2} \in X$.
Apply f^{-1} (it exists since f is invertible) to this identity:
$f^{-1}\left(f\left(x_{1}\right)\right)=f^{-1}\left(f\left(x_{2}\right)\right) \Longrightarrow x_{1}=x_{2}$.
By this, f is injective.
To show surjectivity, take any $y \in Y$ and apply f^{-1}. Let $x=f^{-1}(y)$.
So for any $y \in Y$ there exists $x \in X$, namely $x=f^{-1}(y)$,

$$
\text { such that } f(x)=f\left(f^{-1}(y)\right)
$$

Theorem. A map is invertible iff it is a bijection.
Proof. Assume that $f: X \rightarrow Y$ is invertible and prove that f is a bijection.
To show injectivity, assume that $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1}, x_{2} \in X$.
Apply f^{-1} (it exists since f is invertible) to this identity:
$f^{-1}\left(f\left(x_{1}\right)\right)=f^{-1}\left(f\left(x_{2}\right)\right) \Longrightarrow x_{1}=x_{2}$.
By this, f is injective.
To show surjectivity, take any $y \in Y$ and apply f^{-1}. Let $x=f^{-1}(y)$.
So for any $y \in Y$ there exists $x \in X$, namely $x=f^{-1}(y)$,

$$
\text { such that } f(x)=f\left(f^{-1}(y)\right)=y .
$$

Theorem. A map is invertible iff it is a bijection.
Proof. Assume that $f: X \rightarrow Y$ is invertible and prove that f is a bijection.
To show injectivity, assume that $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1}, x_{2} \in X$.
Apply f^{-1} (it exists since f is invertible) to this identity:
$f^{-1}\left(f\left(x_{1}\right)\right)=f^{-1}\left(f\left(x_{2}\right)\right) \Longrightarrow x_{1}=x_{2}$.
By this, f is injective.
To show surjectivity, take any $y \in Y$ and apply f^{-1}. Let $x=f^{-1}(y)$.
So for any $y \in Y$ there exists $x \in X$, namely $x=f^{-1}(y)$,

$$
\text { such that } f(x)=f\left(f^{-1}(y)\right)=y .
$$

By this, f is surjective.

Theorem. A map is invertible iff it is a bijection.
Proof. Assume that $f: X \rightarrow Y$ is invertible and prove that f is a bijection.
To show injectivity, assume that $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1}, x_{2} \in X$.
Apply f^{-1} (it exists since f is invertible) to this identity:
$f^{-1}\left(f\left(x_{1}\right)\right)=f^{-1}\left(f\left(x_{2}\right)\right) \Longrightarrow x_{1}=x_{2}$.
By this, f is injective.
To show surjectivity, take any $y \in Y$ and apply f^{-1}. Let $x=f^{-1}(y)$.
So for any $y \in Y$ there exists $x \in X$, namely $x=f^{-1}(y)$,

$$
\text { such that } f(x)=f\left(f^{-1}(y)\right)=y .
$$

By this, f is surjective.
We have proved that f is injective and surjective,

Theorem. A map is invertible iff it is a bijection.
Proof. Assume that $f: X \rightarrow Y$ is invertible and prove that f is a bijection.
To show injectivity, assume that $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1}, x_{2} \in X$.
Apply f^{-1} (it exists since f is invertible) to this identity:
$f^{-1}\left(f\left(x_{1}\right)\right)=f^{-1}\left(f\left(x_{2}\right)\right) \Longrightarrow x_{1}=x_{2}$.
By this, f is injective.
To show surjectivity, take any $y \in Y$ and apply f^{-1}. Let $x=f^{-1}(y)$.
So for any $y \in Y$ there exists $x \in X$, namely $x=f^{-1}(y)$,

$$
\text { such that } f(x)=f\left(f^{-1}(y)\right)=y .
$$

By this, f is surjective.
We have proved that f is injective and surjective, therefore, f is bijective.

Theorem. A map is invertible iff it is a bijection.
Proof. Assume that $f: X \rightarrow Y$ is invertible and prove that f is a bijection.
To show injectivity, assume that $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1}, x_{2} \in X$.
Apply f^{-1} (it exists since f is invertible) to this identity:
$f^{-1}\left(f\left(x_{1}\right)\right)=f^{-1}\left(f\left(x_{2}\right)\right) \Longrightarrow x_{1}=x_{2}$.
By this, f is injective.
To show surjectivity, take any $y \in Y$ and apply f^{-1}. Let $x=f^{-1}(y)$.
So for any $y \in Y$ there exists $x \in X$, namely $x=f^{-1}(y)$,

$$
\text { such that } f(x)=f\left(f^{-1}(y)\right)=y .
$$

By this, f is surjective.
We have proved that f is injective and surjective, therefore, f is bijective.
The half of the proof is done!

Assume now that f is a bijection,

Assume now that f is a bijection, and prove that f is invertible.

Assume now that f is a bijection, and prove that f is invertible. By definition of bijectivity,

Assume now that f is a bijection, and prove that f is invertible. By definition of bijectivity, $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$.

Assume now that f is a bijection, and prove that f is invertible. By definition of bijectivity, $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$.
Define a map $g: Y \rightarrow X$

Assume now that f is a bijection, and prove that f is invertible.
By definition of bijectivity, $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$.
Define a map $g: Y \rightarrow X$ by the formula $g(y)=x$,

Assume now that f is a bijection, and prove that f is invertible.
By definition of bijectivity, $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$.
Define a map $g: Y \rightarrow X$ by the formula $g(y)=x$, where $y=f(x)$.

Assume now that f is a bijection, and prove that f is invertible.
By definition of bijectivity, $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$.
Define a map $g: Y \rightarrow X$ by the formula $g(y)=x$, where $y=f(x)$.
Let us prove that g is the inverse for f.

Assume now that f is a bijection, and prove that f is invertible.
By definition of bijectivity, $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$.
Define a map $g: Y \rightarrow X$ by the formula $g(y)=x$, where $y=f(x)$.
Let us prove that g is the inverse for f.
$\forall x \in X$

Assume now that f is a bijection, and prove that f is invertible.
By definition of bijectivity, $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$.
Define a map $g: Y \rightarrow X$ by the formula $g(y)=x$, where $y=f(x)$.
Let us prove that g is the inverse for f.
$\forall x \in X \quad(g \circ f)(x)$

Assume now that f is a bijection, and prove that f is invertible.
By definition of bijectivity, $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$.
Define a map $g: Y \rightarrow X$ by the formula $g(y)=x$, where $y=f(x)$.
Let us prove that g is the inverse for f.
$\forall x \in X \quad(g \circ f)(x)=g(f(x))$

Assume now that f is a bijection, and prove that f is invertible.
By definition of bijectivity, $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$.
Define a map $g: Y \rightarrow X$ by the formula $g(y)=x$, where $y=f(x)$.
Let us prove that g is the inverse for f.
$\forall x \in X \quad(g \circ f)(x)=g(f(x))=g(y)$

Assume now that f is a bijection, and prove that f is invertible.
By definition of bijectivity, $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$.
Define a map $g: Y \rightarrow X$ by the formula $g(y)=x$, where $y=f(x)$.
Let us prove that g is the inverse for f.
$\forall x \in X \quad(g \circ f)(x)=g(f(x))=g(y)=x$.

Assume now that f is a bijection, and prove that f is invertible.
By definition of bijectivity, $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$.
Define a map $g: Y \rightarrow X$ by the formula $g(y)=x$, where $y=f(x)$.
Let us prove that g is the inverse for f.
$\forall x \in X \quad(g \circ f)(x)=g(f(x))=g(y)=x$. So $\quad g \circ f=\mathrm{id}_{X}$.

Assume now that f is a bijection, and prove that f is invertible.
By definition of bijectivity, $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$.
Define a map $g: Y \rightarrow X$ by the formula $g(y)=x$, where $y=f(x)$.
Let us prove that g is the inverse for f.
$\forall x \in X \quad(g \circ f)(x)=g(f(x))=g(y)=x$. So $\quad g \circ f=\mathrm{id}_{X}$.
$\forall y \in Y$

Assume now that f is a bijection, and prove that f is invertible.
By definition of bijectivity, $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$.
Define a map $g: Y \rightarrow X$ by the formula $g(y)=x$, where $y=f(x)$.
Let us prove that g is the inverse for f.
$\forall x \in X \quad(g \circ f)(x)=g(f(x))=g(y)=x . \quad$ So $\quad g \circ f=\mathrm{id}_{X}$.
$\forall y \in Y \quad(f \circ g)(y)$

Assume now that f is a bijection, and prove that f is invertible.
By definition of bijectivity, $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$.
Define a map $g: Y \rightarrow X$ by the formula $g(y)=x$, where $y=f(x)$.
Let us prove that g is the inverse for f.
$\forall x \in X \quad(g \circ f)(x)=g(f(x))=g(y)=x$. So $\quad g \circ f=\mathrm{id}_{X}$.
$\forall y \in Y \quad(f \circ g)(y)=f(g(y))$

Assume now that f is a bijection, and prove that f is invertible.
By definition of bijectivity, $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$.
Define a map $g: Y \rightarrow X$ by the formula $g(y)=x$, where $y=f(x)$.
Let us prove that g is the inverse for f.
$\forall x \in X \quad(g \circ f)(x)=g(f(x))=g(y)=x . \quad$ So $\quad g \circ f=\mathrm{id}_{X}$.
$\forall y \in Y \quad(f \circ g)(y)=f(g(y))=f(x)$

Assume now that f is a bijection, and prove that f is invertible.
By definition of bijectivity, $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$.
Define a map $g: Y \rightarrow X$ by the formula $g(y)=x$, where $y=f(x)$.
Let us prove that g is the inverse for f.
$\forall x \in X \quad(g \circ f)(x)=g(f(x))=g(y)=x$. So $\quad g \circ f=\mathrm{id}_{X}$.
$\forall y \in Y \quad(f \circ g)(y)=f(g(y))=f(x)=y$.

Assume now that f is a bijection, and prove that f is invertible.
By definition of bijectivity, $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$.
Define a map $g: Y \rightarrow X$ by the formula $g(y)=x$, where $y=f(x)$.
Let us prove that g is the inverse for f.
$\forall x \in X \quad(g \circ f)(x)=g(f(x))=g(y)=x . \quad$ So $\quad g \circ f=\mathrm{id}_{X}$.
$\forall y \in Y \quad(f \circ g)(y)=f(g(y))=f(x)=y$. So $\quad f \circ g=\operatorname{id}_{Y}$.

Assume now that f is a bijection, and prove that f is invertible.
By definition of bijectivity, $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$.
Define a map $g: Y \rightarrow X$ by the formula $g(y)=x$, where $y=f(x)$.
Let us prove that g is the inverse for f.
$\begin{array}{lll}\forall x \in X & (g \circ f)(x)=g(f(x))=g(y)=x . & \text { So } \\ \forall y \in Y & g \circ f=\mathrm{id}_{X} . \\ \forall y \in g)(y)=f(g(y))=f(x)=y . & \text { So } & f \circ g=\mathrm{id}_{Y} .\end{array}$
Therefore, by the definition of the inverse,

Assume now that f is a bijection, and prove that f is invertible.
By definition of bijectivity, $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$.
Define a map $g: Y \rightarrow X$ by the formula $g(y)=x$, where $y=f(x)$.
Let us prove that g is the inverse for f.
$\forall x \in X \quad(g \circ f)(x)=g(f(x))=g(y)=x . \quad$ So $\quad g \circ f=\mathrm{id}_{X}$.
$\forall y \in Y \quad(f \circ g)(y)=f(g(y))=f(x)=y$. So $f \circ g=\mathrm{id}_{Y}$.
Therefore, by the definition of the inverse, g is the inverse for f,

Assume now that f is a bijection, and prove that f is invertible.
By definition of bijectivity, $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$.
Define a map $g: Y \rightarrow X$ by the formula $g(y)=x$, where $y=f(x)$.
Let us prove that g is the inverse for f.
$\forall x \in X \quad(g \circ f)(x)=g(f(x))=g(y)=x . \quad$ So $\quad g \circ f=\mathrm{id}_{X}$.
$\forall y \in Y \quad(f \circ g)(y)=f(g(y))=f(x)=y$. So $f \circ g=\operatorname{id}_{Y}$.
Therefore, by the definition of the inverse, g is the inverse for $f, g=f^{-1}$.

Assume now that f is a bijection, and prove that f is invertible.
By definition of bijectivity, $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$.
Define a map $g: Y \rightarrow X$ by the formula $g(y)=x$, where $y=f(x)$.
Let us prove that g is the inverse for f.
$\forall x \in X \quad(g \circ f)(x)=g(f(x))=g(y)=x$. So $\quad g \circ f=\mathrm{id}_{X}$.
$\forall y \in Y \quad(f \circ g)(y)=f(g(y))=f(x)=y$. So $\quad f \circ g=\mathrm{id}_{Y}$.
Therefore, by the definition of the inverse, g is the inverse for $f, g=f^{-1}$.
Thus, f is invertible.

Assume now that f is a bijection, and prove that f is invertible.
By definition of bijectivity, $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$.
Define a map $g: Y \rightarrow X$ by the formula $g(y)=x$, where $y=f(x)$.
Let us prove that g is the inverse for f.
$\forall x \in X \quad(g \circ f)(x)=g(f(x))=g(y)=x$. So $\quad g \circ f=\mathrm{id}_{X}$.
$\forall y \in Y \quad(f \circ g)(y)=f(g(y))=f(x)=y$. So $f \circ g=\operatorname{id}_{Y}$.
Therefore, by the definition of the inverse, g is the inverse for $f, g=f^{-1}$.
Thus, f is invertible. And the other half of the proof is done!

Assume now that f is a bijection, and prove that f is invertible.
By definition of bijectivity, $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$.
Define a map $g: Y \rightarrow X$ by the formula $g(y)=x$, where $y=f(x)$.
Let us prove that g is the inverse for f.
$\forall x \in X \quad(g \circ f)(x)=g(f(x))=g(y)=x$. So $\quad g \circ f=\mathrm{id}_{X}$.
$\forall y \in Y \quad(f \circ g)(y)=f(g(y))=f(x)=y$. So $f \circ g=\operatorname{id}_{Y}$.
Therefore, by the definition of the inverse, g is the inverse for $f, g=f^{-1}$.
Thus, f is invertible. And the other half of the proof is done!

Assume now that f is a bijection, and prove that f is invertible.
By definition of bijectivity, $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$.
Define a map $g: Y \rightarrow X$ by the formula $g(y)=x$, where $y=f(x)$.
Let us prove that g is the inverse for f.
$\forall x \in X \quad(g \circ f)(x)=g(f(x))=g(y)=x . \quad$ So $\quad g \circ f=\mathrm{id}_{X}$.
$\forall y \in Y \quad(f \circ g)(y)=f(g(y))=f(x)=y$. So $\quad f \circ g=\operatorname{id}_{Y}$.
Therefore, by the definition of the inverse, g is the inverse for $f, g=f^{-1}$.
Thus, f is invertible. And the other half of the proof is done!
Warning.

Assume now that f is a bijection, and prove that f is invertible.
By definition of bijectivity, $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$.
Define a map $g: Y \rightarrow X$ by the formula $g(y)=x$, where $y=f(x)$.
Let us prove that g is the inverse for f.
$\forall x \in X \quad(g \circ f)(x)=g(f(x))=g(y)=x$. So $\quad g \circ f=\mathrm{id}_{X}$.
$\forall y \in Y \quad(f \circ g)(y)=f(g(y))=f(x)=y$. So $f \circ g=\operatorname{id}_{Y}$.
Therefore, by the definition of the inverse, g is the inverse for $f, g=f^{-1}$.
Thus, f is invertible. And the other half of the proof is done!
Warning. The symbol f^{-1} is used in two ways.

Assume now that f is a bijection, and prove that f is invertible.
By definition of bijectivity, $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$.
Define a map $g: Y \rightarrow X$ by the formula $g(y)=x$, where $y=f(x)$.
Let us prove that g is the inverse for f.
$\forall x \in X \quad(g \circ f)(x)=g(f(x))=g(y)=x . \quad$ So $\quad g \circ f=\mathrm{id}_{X}$.
$\forall y \in Y \quad(f \circ g)(y)=f(g(y))=f(x)=y$. So $f \circ g=\operatorname{id}_{Y}$.
Therefore, by the definition of the inverse, g is the inverse for $f, g=f^{-1}$.
Thus, f is invertible. And the other half of the proof is done!
Warning. The symbol f^{-1} is used in two ways.

1. f^{-1} denotes the inverse map for f if f is invertible.

Assume now that f is a bijection, and prove that f is invertible.
By definition of bijectivity, $\forall y \in Y \quad \exists!x \in X \quad y=f(x)$.
Define a map $g: Y \rightarrow X$ by the formula $g(y)=x$, where $y=f(x)$.
Let us prove that g is the inverse for f.
$\forall x \in X \quad(g \circ f)(x)=g(f(x))=g(y)=x . \quad$ So $\quad g \circ f=\mathrm{id}_{X}$.
$\forall y \in Y \quad(f \circ g)(y)=f(g(y))=f(x)=y$. So $f \circ g=\operatorname{id}_{Y}$.
Therefore, by the definition of the inverse, g is the inverse for $f, g=f^{-1}$.
Thus, f is invertible. And the other half of the proof is done!
Warning. The symbol f^{-1} is used in two ways.

1. f^{-1} denotes the inverse map for f if f is invertible.
2. $f^{-1}(B)$ denotes the preimage of a set B under under any f (not necessarily invertible).

Corollaries

Lecture 5

Corollaries

MAT 250
Lecture 5

Corollary 1.

Corollary 1. For any set X,

Corollary 1. For any set X, the identity map id $_{X}$ is a bijection.

Corollary 1. For any set X, the identity map id $_{X}$ is a bijection. Proof.

Corollary 1. For any set X, the identity map id_{X} is a bijection.
Proof. Since id X is invertible

Corollary 1. For any set X, the identity map id_{X} is a bijection.
Proof. Since id_{X} is invertible $\left(\mathrm{id}_{X}^{-1}=\mathrm{id}_{X}\right)$,

Corollary 1. For any set X, the identity map id $_{X}$ is a bijection.
Proof. Since id_{X} is invertible $\left(\mathrm{id}_{X}^{-1}=\mathrm{id}_{X}\right)$, it is a bijection.

Corollary 1. For any set X, the identity map id $_{X}$ is a bijection.
Proof. Since id_{X} is invertible $\left(\mathrm{id}_{X}^{-1}=\mathrm{id}_{X}\right)$, it is a bijection.
Corollary 2.

Corollary 1. For any set X, the identity map id $_{X}$ is a bijection.
Proof. Since id_{X} is invertible $\left(\mathrm{id}_{X}^{-1}=\mathrm{id}_{X}\right)$, it is a bijection.
Corollary 2. If f is a bijection,

Corollary 1. For any set X, the identity map id $_{X}$ is a bijection.
Proof. Since id_{X} is invertible $\left(\mathrm{id}_{X}^{-1}=\mathrm{id}_{X}\right)$, it is a bijection.
Corollary 2. If f is a bijection, then f^{-1} is also a bijection,

Corollary 1. For any set X, the identity map id $_{X}$ is a bijection.
Proof. Since id_{X} is invertible $\left(\mathrm{id}_{X}^{-1}=\mathrm{id}_{X}\right)$, it is a bijection.
Corollary 2. If f is a bijection, then f^{-1} is also a bijection, and $\left(f^{-1}\right)^{-1}=f$.

Corollary 1. For any set X, the identity map id $_{X}$ is a bijection.
Proof. Since id_{X} is invertible $\left(\mathrm{id}_{X}^{-1}=\mathrm{id}_{X}\right)$, it is a bijection.
Corollary 2. If f is a bijection, then f^{-1} is also a bijection, and $\left(f^{-1}\right)^{-1}=f$. Proof.

Corollary 1. For any set X, the identity map id $_{X}$ is a bijection.
Proof. Since id_{X} is invertible $\left(\mathrm{id}_{X}^{-1}=\mathrm{id}_{X}\right)$, it is a bijection.
Corollary 2. If f is a bijection, then f^{-1} is also a bijection, and $\left(f^{-1}\right)^{-1}=f$. Proof. Let $f: X \rightarrow Y$ be a bijection.

Corollary 1. For any set X, the identity map id $_{X}$ is a bijection.
Proof. Since id_{X} is invertible $\left(\mathrm{id}_{X}^{-1}=\mathrm{id}_{X}\right)$, it is a bijection.
Corollary 2. If f is a bijection, then f^{-1} is also a bijection, and $\left(f^{-1}\right)^{-1}=f$. Proof. Let $f: X \rightarrow Y$ be a bijection. Then f is invertible,

Corollary 1. For any set X, the identity map id $_{X}$ is a bijection.
Proof. Since id_{X} is invertible $\left(\mathrm{id}_{X}^{-1}=\mathrm{id}_{X}\right)$, it is a bijection.
Corollary 2. If f is a bijection, then f^{-1} is also a bijection, and $\left(f^{-1}\right)^{-1}=f$. Proof. Let $f: X \rightarrow Y$ be a bijection. Then f is invertible, that is there exists $f^{-1}: Y \rightarrow X$

Corollary 1. For any set X, the identity map id $_{X}$ is a bijection.
Proof. Since id_{X} is invertible $\left(\mathrm{id}_{X}^{-1}=\mathrm{id}_{X}\right)$, it is a bijection.
Corollary 2. If f is a bijection, then f^{-1} is also a bijection, and $\left(f^{-1}\right)^{-1}=f$. Proof. Let $f: X \rightarrow Y$ be a bijection. Then f is invertible, that is there exists $f^{-1}: Y \rightarrow X$ such that

Corollary 1. For any set X, the identity map id $_{X}$ is a bijection.
Proof. Since id_{X} is invertible $\left(\mathrm{id}_{X}^{-1}=\mathrm{id}_{X}\right)$, it is a bijection.
Corollary 2. If f is a bijection, then f^{-1} is also a bijection, and $\left(f^{-1}\right)^{-1}=f$. Proof. Let $f: X \rightarrow Y$ be a bijection. Then f is invertible, that is there exists $f^{-1}: Y \rightarrow X$ such that $f^{-1} \circ f=\mathrm{id}_{X}$ and $f \circ f^{-1}=\mathrm{id}_{Y}$

Corollary 1. For any set X, the identity map id $_{X}$ is a bijection.
Proof. Since id_{X} is invertible $\left(\mathrm{id}_{X}^{-1}=\mathrm{id}_{X}\right)$, it is a bijection.
Corollary 2. If f is a bijection, then f^{-1} is also a bijection, and $\left(f^{-1}\right)^{-1}=f$. Proof. Let $f: X \rightarrow Y$ be a bijection. Then f is invertible, that is there exists $f^{-1}: Y \rightarrow X$ such that $f^{-1} \circ f=\mathrm{id}_{X}$ and $f \circ f^{-1}=\mathrm{id}_{Y}$ In these identities, what is f from the point of view of f^{-1} ?

Corollary 1. For any set X, the identity map id $_{X}$ is a bijection.
Proof. Since id_{X} is invertible $\left(\mathrm{id}_{X}^{-1}=\mathrm{id}_{X}\right)$, it is a bijection.
Corollary 2. If f is a bijection, then f^{-1} is also a bijection, and $\left(f^{-1}\right)^{-1}=f$. Proof. Let $f: X \rightarrow Y$ be a bijection. Then f is invertible, that is there exists $f^{-1}: Y \rightarrow X$ such that $f^{-1} \circ f=\mathrm{id}_{X}$ and $f \circ f^{-1}=\mathrm{id}_{Y}$ In these identities, what is f from the point of view of f^{-1} ?
f is the inverse for f^{-1} !

Corollary 1. For any set X, the identity map id $_{X}$ is a bijection.
Proof. Since id_{X} is invertible $\left(\mathrm{id}_{X}^{-1}=\mathrm{id}_{X}\right)$, it is a bijection.
Corollary 2. If f is a bijection, then f^{-1} is also a bijection, and $\left(f^{-1}\right)^{-1}=f$. Proof. Let $f: X \rightarrow Y$ be a bijection. Then f is invertible, that is there exists $f^{-1}: Y \rightarrow X$ such that $f^{-1} \circ f=\mathrm{id}_{X}$ and $f \circ f^{-1}=\mathrm{id}_{Y}$ In these identities, what is f from the point of view of f^{-1} ?
f is the inverse for f^{-1} !
Therefore, f^{-1} is invertible (and by this, is a bijection) and $\left(f^{-1}\right)^{-1}=f$.

Corollaries

MAT 250
Lecture 5

Corollary 3.

Corollary 3. A composition of bijections is a bijection,

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are bijections,

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are bijections, then

$$
g \circ f: X \rightarrow Z \text { is a bijection and }(g \circ f)^{-1}=f^{-1} \circ g^{-1} .
$$

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are bijections, then

$$
g \circ f: X \rightarrow Z \text { is a bijection and }(g \circ f)^{-1}=f^{-1} \circ g^{-1} .
$$

Proof.

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are bijections, then

$$
g \circ f: X \rightarrow Z \text { is a bijection and }(g \circ f)^{-1}=f^{-1} \circ g^{-1} .
$$

Proof. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be bijections.

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are bijections, then

$$
g \circ f: X \rightarrow Z \text { is a bijection and }(g \circ f)^{-1}=f^{-1} \circ g^{-1} .
$$

Proof. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be bijections.
Then there exist $f^{-1}: Y \rightarrow X$ and $g^{-1}: Z \rightarrow Y:$

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are bijections, then

$$
g \circ f: X \rightarrow Z \text { is a bijection and }(g \circ f)^{-1}=f^{-1} \circ g^{-1} .
$$

Proof. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be bijections.
Then there exist $f^{-1}: Y \rightarrow X$ and $g^{-1}: Z \rightarrow Y$:

$$
X \underset{f^{-1}}{\stackrel{f}{\rightleftarrows}} Y \underset{g^{-1}}{\stackrel{g}{\rightleftarrows}} Z
$$

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are bijections, then

$$
g \circ f: X \rightarrow Z \text { is a bijection and }(g \circ f)^{-1}=f^{-1} \circ g^{-1} .
$$

Proof. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be bijections.
Then there exist $f^{-1}: Y \rightarrow X$ and $g^{-1}: Z \rightarrow Y$:

$$
X \underset{f^{-1}}{\stackrel{f}{\rightleftarrows}} Y \underset{g^{-1}}{\stackrel{g}{\rightleftarrows}} Z
$$

and

$$
\left(f^{-1} \circ g^{-1}\right) \circ(g \circ f)
$$

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are bijections, then

$$
g \circ f: X \rightarrow Z \text { is a bijection and }(g \circ f)^{-1}=f^{-1} \circ g^{-1} .
$$

Proof. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be bijections.
Then there exist $f^{-1}: Y \rightarrow X$ and $g^{-1}: Z \rightarrow Y$:

$$
X \underset{f^{-1}}{\stackrel{f}{\rightleftarrows}} Y \underset{g^{-1}}{\stackrel{g}{\rightleftarrows}} Z
$$

and

$$
\left(f^{-1} \circ g^{-1}\right) \circ(g \circ f)=f^{-1} \circ\left(g^{-1} \circ g\right) \circ f
$$

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are bijections, then

$$
g \circ f: X \rightarrow Z \text { is a bijection and }(g \circ f)^{-1}=f^{-1} \circ g^{-1} .
$$

Proof. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be bijections.
Then there exist $f^{-1}: Y \rightarrow X$ and $g^{-1}: Z \rightarrow Y$:

$$
X \underset{f^{-1}}{\stackrel{f}{\rightleftarrows}} Y \underset{g^{-1}}{\stackrel{g}{\rightleftarrows}} Z
$$

and

$$
\left(f^{-1} \circ g^{-1}\right) \circ(g \circ f)=f^{-1} \circ\left(g^{-1} \circ g\right) \circ f=f^{-1} \circ \operatorname{id}_{Y} \circ f
$$

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are bijections, then

$$
g \circ f: X \rightarrow Z \text { is a bijection and }(g \circ f)^{-1}=f^{-1} \circ g^{-1} .
$$

Proof. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be bijections.
Then there exist $f^{-1}: Y \rightarrow X$ and $g^{-1}: Z \rightarrow Y$:

$$
X \underset{f^{-1}}{\stackrel{f}{\rightleftarrows}} Y \underset{g^{-1}}{\stackrel{g}{\rightleftarrows}} Z
$$

and

$$
\left(f^{-1} \circ g^{-1}\right) \circ(g \circ f)=f^{-1} \circ\left(g^{-1} \circ g\right) \circ f=f^{-1} \circ \operatorname{id}_{Y} \circ f=f^{-1} \circ f
$$

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are bijections, then

$$
g \circ f: X \rightarrow Z \text { is a bijection and }(g \circ f)^{-1}=f^{-1} \circ g^{-1} .
$$

Proof. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be bijections.
Then there exist $f^{-1}: Y \rightarrow X$ and $g^{-1}: Z \rightarrow Y$:

$$
X \underset{f^{-1}}{\stackrel{f}{\rightleftarrows}} Y \underset{g^{-1}}{\stackrel{g}{\rightleftarrows}} Z
$$

and

$$
\left(f^{-1} \circ g^{-1}\right) \circ(g \circ f)=f^{-1} \circ\left(g^{-1} \circ g\right) \circ f=f^{-1} \circ \operatorname{id}_{Y} \circ f=f^{-1} \circ f=\operatorname{id}_{X},
$$

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are bijections, then

$$
g \circ f: X \rightarrow Z \text { is a bijection and }(g \circ f)^{-1}=f^{-1} \circ g^{-1} .
$$

Proof. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be bijections.
Then there exist $f^{-1}: Y \rightarrow X$ and $g^{-1}: Z \rightarrow Y$:

$$
X \underset{f^{-1}}{\stackrel{f}{\rightleftarrows}} Y \underset{g^{-1}}{\stackrel{g}{\rightleftarrows}} Z
$$

and

$$
\begin{aligned}
& \left(f^{-1} \circ g^{-1}\right) \circ(g \circ f)=f^{-1} \circ\left(g^{-1} \circ g\right) \circ f=f^{-1} \circ \operatorname{id}_{Y} \circ f=f^{-1} \circ f=\mathrm{id}_{X}, \\
& (g \circ f) \circ\left(f^{-1} \circ g^{-1}\right)
\end{aligned}
$$

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are bijections, then

$$
g \circ f: X \rightarrow Z \text { is a bijection and }(g \circ f)^{-1}=f^{-1} \circ g^{-1} .
$$

Proof. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be bijections.
Then there exist $f^{-1}: Y \rightarrow X$ and $g^{-1}: Z \rightarrow Y$:

$$
X \underset{f^{-1}}{\stackrel{f}{\rightleftarrows}} Y \underset{g^{-1}}{\stackrel{g}{\rightleftarrows}} Z
$$

and

$$
\begin{aligned}
& \left(f^{-1} \circ g^{-1}\right) \circ(g \circ f)=f^{-1} \circ\left(g^{-1} \circ g\right) \circ f=f^{-1} \circ \operatorname{id}_{Y} \circ f=f^{-1} \circ f=\mathrm{id}_{X}, \\
& (g \circ f) \circ\left(f^{-1} \circ g^{-1}\right)=g \circ\left(f \circ f^{-1}\right) \circ g^{-1}
\end{aligned}
$$

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are bijections, then

$$
g \circ f: X \rightarrow Z \text { is a bijection and }(g \circ f)^{-1}=f^{-1} \circ g^{-1} .
$$

Proof. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be bijections.
Then there exist $f^{-1}: Y \rightarrow X$ and $g^{-1}: Z \rightarrow Y$:

$$
X \underset{f^{-1}}{\stackrel{f}{\rightleftarrows}} Y \underset{g^{-1}}{\stackrel{g}{\rightleftarrows}} Z
$$

and

$$
\begin{aligned}
& \left(f^{-1} \circ g^{-1}\right) \circ(g \circ f)=f^{-1} \circ\left(g^{-1} \circ g\right) \circ f=f^{-1} \circ \operatorname{id}_{Y} \circ f=f^{-1} \circ f=\mathrm{id}_{X}, \\
& (g \circ f) \circ\left(f^{-1} \circ g^{-1}\right)=g \circ\left(f \circ f^{-1}\right) \circ g^{-1}=g \circ \mathrm{id}_{Y} \circ g^{-1}
\end{aligned}
$$

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are bijections, then

$$
g \circ f: X \rightarrow Z \text { is a bijection and }(g \circ f)^{-1}=f^{-1} \circ g^{-1} .
$$

Proof. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be bijections.
Then there exist $f^{-1}: Y \rightarrow X$ and $g^{-1}: Z \rightarrow Y$:

$$
X \underset{f^{-1}}{\stackrel{f}{\rightleftarrows}} Y \underset{g^{-1}}{\stackrel{g}{\rightleftarrows}} Z
$$

and

$$
\begin{aligned}
& \left(f^{-1} \circ g^{-1}\right) \circ(g \circ f)=f^{-1} \circ\left(g^{-1} \circ g\right) \circ f=f^{-1} \circ \mathrm{id}_{Y} \circ f=f^{-1} \circ f=\mathrm{id}_{X}, \\
& (g \circ f) \circ\left(f^{-1} \circ g^{-1}\right)=g \circ\left(f \circ f^{-1}\right) \circ g^{-1}=g \circ \mathrm{id}_{Y} \circ g^{-1}=g \circ g^{-1}
\end{aligned}
$$

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are bijections, then

$$
g \circ f: X \rightarrow Z \text { is a bijection and }(g \circ f)^{-1}=f^{-1} \circ g^{-1} .
$$

Proof. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be bijections.
Then there exist $f^{-1}: Y \rightarrow X$ and $g^{-1}: Z \rightarrow Y$:

$$
X \underset{f^{-1}}{\stackrel{f}{\rightleftarrows}} Y \underset{g^{-1}}{\stackrel{g}{\rightleftarrows}} Z
$$

and

$$
\begin{aligned}
& \left(f^{-1} \circ g^{-1}\right) \circ(g \circ f)=f^{-1} \circ\left(g^{-1} \circ g\right) \circ f=f^{-1} \circ \mathrm{id}_{Y} \circ f=f^{-1} \circ f=\mathrm{id}_{X}, \\
& (g \circ f) \circ\left(f^{-1} \circ g^{-1}\right)=g \circ\left(f \circ f^{-1}\right) \circ g^{-1}=g \circ \mathrm{id}_{Y} \circ g^{-1}=g \circ g^{-1}=\mathrm{id}_{Z} .
\end{aligned}
$$

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are bijections, then

$$
g \circ f: X \rightarrow Z \text { is a bijection and }(g \circ f)^{-1}=f^{-1} \circ g^{-1} .
$$

Proof. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be bijections.
Then there exist $f^{-1}: Y \rightarrow X$ and $g^{-1}: Z \rightarrow Y$:

$$
X \underset{f^{-1}}{\stackrel{f}{\rightleftarrows}} Y \underset{g^{-1}}{\stackrel{g}{\rightleftarrows}} Z
$$

and
$\left(f^{-1} \circ g^{-1}\right) \circ(g \circ f)=f^{-1} \circ\left(g^{-1} \circ g\right) \circ f=f^{-1} \circ \operatorname{id}_{Y} \circ f=f^{-1} \circ f=\mathrm{id}_{X}$, $(g \circ f) \circ\left(f^{-1} \circ g^{-1}\right)=g \circ\left(f \circ f^{-1}\right) \circ g^{-1}=g \circ \mathrm{id}_{Y} \circ g^{-1}=g \circ g^{-1}=\mathrm{id}_{Z}$.
Therefore, $f^{-1} \circ g^{-1}: Z \rightarrow X$ is the inverse for $g \circ f: X \rightarrow Z$,

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are bijections, then

$$
g \circ f: X \rightarrow Z \text { is a bijection and }(g \circ f)^{-1}=f^{-1} \circ g^{-1} .
$$

Proof. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be bijections.
Then there exist $f^{-1}: Y \rightarrow X$ and $g^{-1}: Z \rightarrow Y$:

$$
X \underset{f^{-1}}{\stackrel{f}{\rightleftarrows}} Y \underset{g^{-1}}{\stackrel{g}{\rightleftarrows}} Z
$$

and
$\left(f^{-1} \circ g^{-1}\right) \circ(g \circ f)=f^{-1} \circ\left(g^{-1} \circ g\right) \circ f=f^{-1} \circ \operatorname{id}_{Y} \circ f=f^{-1} \circ f=\mathrm{id}_{X}$, $(g \circ f) \circ\left(f^{-1} \circ g^{-1}\right)=g \circ\left(f \circ f^{-1}\right) \circ g^{-1}=g \circ \mathrm{id}_{Y} \circ g^{-1}=g \circ g^{-1}=\mathrm{id}_{Z}$.
Therefore, $f^{-1} \circ g^{-1}: Z \rightarrow X$ is the inverse for $g \circ f: X \rightarrow Z$, and $g \circ f: X \rightarrow Z$ is a bijection.

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are bijections, then

$$
g \circ f: X \rightarrow Z \text { is a bijection and }(g \circ f)^{-1}=f^{-1} \circ g^{-1} .
$$

Proof. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be bijections.
Then there exist $f^{-1}: Y \rightarrow X$ and $g^{-1}: Z \rightarrow Y$:

$$
X \underset{f^{-1}}{\stackrel{f}{\rightleftarrows}} Y \underset{g^{-1}}{\stackrel{g}{\rightleftarrows}} Z
$$

and
$\left(f^{-1} \circ g^{-1}\right) \circ(g \circ f)=f^{-1} \circ\left(g^{-1} \circ g\right) \circ f=f^{-1} \circ \operatorname{id}_{Y} \circ f=f^{-1} \circ f=\mathrm{id}_{X}$, $(g \circ f) \circ\left(f^{-1} \circ g^{-1}\right)=g \circ\left(f \circ f^{-1}\right) \circ g^{-1}=g \circ \mathrm{id}_{Y} \circ g^{-1}=g \circ g^{-1}=\mathrm{id}_{Z}$.
Therefore, $f^{-1} \circ g^{-1}: Z \rightarrow X$ is the inverse for $g \circ f: X \rightarrow Z$, and

$$
g \circ f: X \rightarrow Z \text { is a bijection. }
$$

Definition.

Definition. Let $X, Y \subset \mathbb{R}$ and $f: X \rightarrow Y$ be a function.

Definition. Let $X, Y \subset \mathbb{R}$ and $f: X \rightarrow Y$ be a function.
If f is strictly increasing or strictly decreasing on X,

Definition. Let $X, Y \subset \mathbb{R}$ and $f: X \rightarrow Y$ be a function.
If f is strictly increasing or strictly decreasing on X, then it is called (strictly) monotonic.

Definition. Let $X, Y \subset \mathbb{R}$ and $f: X \rightarrow Y$ be a function.
If f is strictly increasing or strictly decreasing on X, then it is called (strictly) monotonic.
Theorem.

Definition. Let $X, Y \subset \mathbb{R}$ and $f: X \rightarrow Y$ be a function.
If f is strictly increasing or strictly decreasing on X, then it is called (strictly) monotonic.
Theorem. A monotonic function is injective.

Definition. Let $X, Y \subset \mathbb{R}$ and $f: X \rightarrow Y$ be a function.
If f is strictly increasing or strictly decreasing on X, then it is called (strictly) monotonic.
Theorem. A monotonic function is injective.
Proof.

Definition. Let $X, Y \subset \mathbb{R}$ and $f: X \rightarrow Y$ be a function.
If f is strictly increasing or strictly decreasing on X, then it is called (strictly) monotonic.
Theorem. A monotonic function is injective.
Proof. Let $X, Y \subset \mathbb{R}$ and $f: X \rightarrow Y, x \mapsto f(x)$ be a function.

Definition. Let $X, Y \subset \mathbb{R}$ and $f: X \rightarrow Y$ be a function.
If f is strictly increasing or strictly decreasing on X, then it is called (strictly) monotonic.
Theorem. A monotonic function is injective.
Proof. Let $X, Y \subset \mathbb{R}$ and $f: X \rightarrow Y, x \mapsto f(x)$ be a function.
Assume that f is strictly increasing.

Definition. Let $X, Y \subset \mathbb{R}$ and $f: X \rightarrow Y$ be a function.
If f is strictly increasing or strictly decreasing on X, then it is called (strictly) monotonic.
Theorem. A monotonic function is injective.
Proof. Let $X, Y \subset \mathbb{R}$ and $f: X \rightarrow Y, x \mapsto f(x)$ be a function.
Assume that f is strictly increasing.
(For a strictly decreasing function the reasoning is similar.)

Definition. Let $X, Y \subset \mathbb{R}$ and $f: X \rightarrow Y$ be a function.
If f is strictly increasing or strictly decreasing on X, then it is called (strictly) monotonic.
Theorem. A monotonic function is injective.
Proof. Let $X, Y \subset \mathbb{R}$ and $f: X \rightarrow Y, x \mapsto f(x)$ be a function.
Assume that f is strictly increasing.
(For a strictly decreasing function the reasoning is similar.)
Take any $x_{1}, x_{2} \in X$.

Definition. Let $X, Y \subset \mathbb{R}$ and $f: X \rightarrow Y$ be a function.
If f is strictly increasing or strictly decreasing on X, then it is called (strictly) monotonic.
Theorem. A monotonic function is injective.
Proof. Let $X, Y \subset \mathbb{R}$ and $f: X \rightarrow Y, x \mapsto f(x)$ be a function.
Assume that f is strictly increasing.
(For a strictly decreasing function the reasoning is similar.)
Take any $x_{1}, x_{2} \in X$. If $x_{1} \neq x_{2}$,

Definition. Let $X, Y \subset \mathbb{R}$ and $f: X \rightarrow Y$ be a function.
If f is strictly increasing or strictly decreasing on X, then it is called (strictly) monotonic.
Theorem. A monotonic function is injective.
Proof. Let $X, Y \subset \mathbb{R}$ and $f: X \rightarrow Y, x \mapsto f(x)$ be a function.
Assume that f is strictly increasing.
(For a strictly decreasing function the reasoning is similar.)
Take any $x_{1}, x_{2} \in X$. If $x_{1} \neq x_{2}$, then $x_{1}<x_{2}$ or $x_{1}>x_{2}$.

Definition. Let $X, Y \subset \mathbb{R}$ and $f: X \rightarrow Y$ be a function.
If f is strictly increasing or strictly decreasing on X, then it is called (strictly) monotonic.
Theorem. A monotonic function is injective.
Proof. Let $X, Y \subset \mathbb{R}$ and $f: X \rightarrow Y, x \mapsto f(x)$ be a function.
Assume that f is strictly increasing.
(For a strictly decreasing function the reasoning is similar.)
Take any $x_{1}, x_{2} \in X$. If $x_{1} \neq x_{2}$, then $x_{1}<x_{2}$ or $x_{1}>x_{2}$.
In the case when $x_{1}<x_{2}$, we have $f\left(x_{1}\right)<f\left(x_{2}\right)$.

Definition. Let $X, Y \subset \mathbb{R}$ and $f: X \rightarrow Y$ be a function.
If f is strictly increasing or strictly decreasing on X, then it is called (strictly) monotonic.
Theorem. A monotonic function is injective.
Proof. Let $X, Y \subset \mathbb{R}$ and $f: X \rightarrow Y, x \mapsto f(x)$ be a function.
Assume that f is strictly increasing.
(For a strictly decreasing function the reasoning is similar.)
Take any $x_{1}, x_{2} \in X$. If $x_{1} \neq x_{2}$, then $x_{1}<x_{2}$ or $x_{1}>x_{2}$.
In the case when $x_{1}<x_{2}$, we have $f\left(x_{1}\right)<f\left(x_{2}\right)$.
In the case when $x_{1}>x_{2}$, we have $f\left(x_{1}\right)>f\left(x_{2}\right)$.

Definition. Let $X, Y \subset \mathbb{R}$ and $f: X \rightarrow Y$ be a function.
If f is strictly increasing or strictly decreasing on X, then it is called (strictly) monotonic.
Theorem. A monotonic function is injective.
Proof. Let $X, Y \subset \mathbb{R}$ and $f: X \rightarrow Y, x \mapsto f(x)$ be a function.
Assume that f is strictly increasing.
(For a strictly decreasing function the reasoning is similar.)
Take any $x_{1}, x_{2} \in X$. If $x_{1} \neq x_{2}$, then $x_{1}<x_{2}$ or $x_{1}>x_{2}$.
In the case when $x_{1}<x_{2}$, we have $f\left(x_{1}\right)<f\left(x_{2}\right)$.
In the case when $x_{1}>x_{2}$, we have $f\left(x_{1}\right)>f\left(x_{2}\right)$.
In either case, $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

Definition. Let $X, Y \subset \mathbb{R}$ and $f: X \rightarrow Y$ be a function.
If f is strictly increasing or strictly decreasing on X, then it is called (strictly) monotonic.
Theorem. A monotonic function is injective.
Proof. Let $X, Y \subset \mathbb{R}$ and $f: X \rightarrow Y, x \mapsto f(x)$ be a function.
Assume that f is strictly increasing.
(For a strictly decreasing function the reasoning is similar.)
Take any $x_{1}, x_{2} \in X$. If $x_{1} \neq x_{2}$, then $x_{1}<x_{2}$ or $x_{1}>x_{2}$.
In the case when $x_{1}<x_{2}$, we have $f\left(x_{1}\right)<f\left(x_{2}\right)$.
In the case when $x_{1}>x_{2}$, we have $f\left(x_{1}\right)>f\left(x_{2}\right)$.
In either case, $f\left(x_{1}\right) \neq f\left(x_{2}\right)$. Therefore
$\forall x_{1}, x_{2} \in X \quad x_{1} \neq x_{2} \Longrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

Definition. Let $X, Y \subset \mathbb{R}$ and $f: X \rightarrow Y$ be a function.
If f is strictly increasing or strictly decreasing on X, then it is called (strictly) monotonic.
Theorem. A monotonic function is injective.
Proof. Let $X, Y \subset \mathbb{R}$ and $f: X \rightarrow Y, x \mapsto f(x)$ be a function.
Assume that f is strictly increasing.
(For a strictly decreasing function the reasoning is similar.)
Take any $x_{1}, x_{2} \in X$. If $x_{1} \neq x_{2}$, then $x_{1}<x_{2}$ or $x_{1}>x_{2}$.
In the case when $x_{1}<x_{2}$, we have $f\left(x_{1}\right)<f\left(x_{2}\right)$.
In the case when $x_{1}>x_{2}$, we have $f\left(x_{1}\right)>f\left(x_{2}\right)$.
In either case, $f\left(x_{1}\right) \neq f\left(x_{2}\right)$. Therefore
$\forall x_{1}, x_{2} \in X \quad x_{1} \neq x_{2} \Longrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
Therefore, f is injective.

Example 1.

Example 1. Let $\exp : \mathbb{R} \rightarrow \mathbb{R}_{>0}, \quad x \mapsto e^{x}$ be the exponential function.

Example 1. Let $\exp : \mathbb{R} \rightarrow \mathbb{R}_{>0}, \quad x \mapsto e^{x} \quad$ be the exponential function.
It is monotonic and surjective, therefore invertible.

Example 1. Let $\exp : \mathbb{R} \rightarrow \mathbb{R}_{>0}, \quad x \mapsto e^{x} \quad$ be the exponential function.
It is monotonic and surjective, therefore invertible.
Its inverse is

Example 1. Let $\exp : \mathbb{R} \rightarrow \mathbb{R}_{>0}, \quad x \mapsto e^{x} \quad$ be the exponential function.
It is monotonic and surjective, therefore invertible.
Its inverse is $\ln : \mathbb{R}_{>0} \rightarrow \mathbb{R}, \quad y \mapsto \ln y$.

Example 1. Let $\exp : \mathbb{R} \rightarrow \mathbb{R}_{>0}, \quad x \mapsto e^{x} \quad$ be the exponential function.
It is monotonic and surjective, therefore invertible.
Its inverse is $\ln : \mathbb{R}_{>0} \rightarrow \mathbb{R}, y \mapsto \ln y$.
By the definition of the inverse,

Example 1. Let $\exp : \mathbb{R} \rightarrow \mathbb{R}_{>0}, \quad x \mapsto e^{x} \quad$ be the exponential function.
It is monotonic and surjective, therefore invertible.
Its inverse is $\ln : \mathbb{R}_{>0} \rightarrow \mathbb{R}, y \mapsto \ln y$.
By the definition of the inverse, $\quad f^{-1} \circ f=\mathrm{id}_{X}$ and $f \circ f^{-1}=\mathrm{id}_{Y}$.

Example 1. Let $\exp : \mathbb{R} \rightarrow \mathbb{R}_{>0}, \quad x \mapsto e^{x} \quad$ be the exponential function.
It is monotonic and surjective, therefore invertible.
Its inverse is $\ln : \mathbb{R}_{>0} \rightarrow \mathbb{R}, y \mapsto \ln y$.
By the definition of the inverse, $\quad f^{-1} \circ f=\mathrm{id}_{X}$ and $f \circ f^{-1}=\mathrm{id}_{Y}$.
In our case, these identities turn to

Example 1. Let exp : $\mathbb{R} \rightarrow \mathbb{R}_{>0}, x \mapsto e^{x}$ be the exponential function.
It is monotonic and surjective, therefore invertible.
Its inverse is $\ln : \mathbb{R}_{>0} \rightarrow \mathbb{R}, y \mapsto \ln y$.
By the definition of the inverse, $\quad f^{-1} \circ f=\mathrm{id}_{X}$ and $f \circ f^{-1}=\mathrm{id}_{Y}$.
In our case, these identities turn to
$\ln (\exp (x))=x$ for all $x \in \mathbb{R}$ and $\exp (\ln (y))=y$ for all $y \in \mathbb{R}_{>0}$.

Example 1. Let exp : $\mathbb{R} \rightarrow \mathbb{R}_{>0}, x \mapsto e^{x}$ be the exponential function.
It is monotonic and surjective, therefore invertible.
Its inverse is $\ln : \mathbb{R}_{>0} \rightarrow \mathbb{R}, y \mapsto \ln y$.
By the definition of the inverse, $\quad f^{-1} \circ f=\mathrm{id}_{X}$ and $f \circ f^{-1}=\mathrm{id}_{Y}$.
In our case, these identities turn to
$\ln (\exp (x))=x$ for all $x \in \mathbb{R}$ and $\exp (\ln (y))=y$ for all $y \in \mathbb{R}_{>0}$.
We get used to see these identities in the form

Example 1. Let exp : $\mathbb{R} \rightarrow \mathbb{R}_{>0}, x \mapsto e^{x}$ be the exponential function.
It is monotonic and surjective, therefore invertible.
Its inverse is $\ln : \mathbb{R}_{>0} \rightarrow \mathbb{R}, y \mapsto \ln y$.
By the definition of the inverse, $\quad f^{-1} \circ f=\mathrm{id}_{X}$ and $f \circ f^{-1}=\mathrm{id}_{Y}$.
In our case, these identities turn to
$\ln (\exp (x))=x$ for all $x \in \mathbb{R}$ and $\exp (\ln (y))=y$ for all $y \in \mathbb{R}_{>0}$.
We get used to see these identities in the form
$\ln e^{x}=x$ for all x and $e^{\ln x}=x$ for all $x>0$.

Example 1. Let exp : $\mathbb{R} \rightarrow \mathbb{R}_{>0}, x \mapsto e^{x}$ be the exponential function.
It is monotonic and surjective, therefore invertible.
Its inverse is $\ln : \mathbb{R}_{>0} \rightarrow \mathbb{R}, y \mapsto \ln y$.
By the definition of the inverse, $\quad f^{-1} \circ f=\mathrm{id}_{X}$ and $f \circ f^{-1}=\mathrm{id}_{Y}$.
In our case, these identities turn to
$\ln (\exp (x))=x$ for all $x \in \mathbb{R}$ and $\exp (\ln (y))=y$ for all $y \in \mathbb{R}_{>0}$.
We get used to see these identities in the form
$\ln e^{x}=x$ for all x and $e^{\ln x}=x$ for all $x>0$.
These identities are used as

Example 1. Let exp : $\mathbb{R} \rightarrow \mathbb{R}_{>0}, x \mapsto e^{x}$ be the exponential function.
It is monotonic and surjective, therefore invertible.
Its inverse is $\ln : \mathbb{R}_{>0} \rightarrow \mathbb{R}, y \mapsto \ln y$.
By the definition of the inverse, $\quad f^{-1} \circ f=\mathrm{id}_{X}$ and $f \circ f^{-1}=\mathrm{id}_{Y}$.
In our case, these identities turn to
$\ln (\exp (x))=x$ for all $x \in \mathbb{R}$ and $\exp (\ln (y))=y$ for all $y \in \mathbb{R}_{>0}$.
We get used to see these identities in the form
$\ln e^{x}=x$ for all x and $e^{\ln x}=x$ for all $x>0$.
These identities are used as
the definition of logarithmic function as the inverse for exponential function,

Example 1. Let exp : $\mathbb{R} \rightarrow \mathbb{R}_{>0}, x \mapsto e^{x}$ be the exponential function.
It is monotonic and surjective, therefore invertible.
Its inverse is $\ln : \mathbb{R}_{>0} \rightarrow \mathbb{R}, y \mapsto \ln y$.
By the definition of the inverse, $\quad f^{-1} \circ f=\mathrm{id}_{X}$ and $f \circ f^{-1}=\mathrm{id}_{Y}$.
In our case, these identities turn to
$\ln (\exp (x))=x$ for all $x \in \mathbb{R}$ and $\exp (\ln (y))=y$ for all $y \in \mathbb{R}_{>0}$.
We get used to see these identities in the form
$\ln e^{x}=x$ for all x and $e^{\ln x}=x$ for all $x>0$.
These identities are used as
the definition of logarithmic function as the inverse for exponential function, or the other way around:
as the definition of the exponential function as the inverse for logarithmic function.

Example 2.

$$
\text { Example 2. Let } \tan :\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}, \quad x \mapsto \tan x
$$

Example 2. Let $\tan :\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}, \quad x \mapsto \tan x$ be the tangent function restricted on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Example 2. Let $\tan :\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}, \quad x \mapsto \tan x$ be the tangent function restricted on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
It is monotonic and surjective, therefore invertible.

Example 2. Let $\tan :\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}, \quad x \mapsto \tan x$ be the tangent function restricted on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
It is monotonic and surjective, therefore invertible.
Its inverse is

Example 2. Let $\tan :\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}, \quad x \mapsto \tan x$ be the tangent function restricted on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. It is monotonic and surjective, therefore invertible.
Its inverse is $\arctan : \mathbb{R} \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), y \mapsto \arctan y$.

Example 2. Let $\tan :\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}, \quad x \mapsto \tan x$ be the tangent function restricted on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. It is monotonic and surjective, therefore invertible. Its inverse is arctan : $\mathbb{R} \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), y \mapsto \arctan y$.
By the definition of the inverse,

Example 2. Let $\tan :\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}, \quad x \mapsto \tan x$ be the tangent function restricted on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. It is monotonic and surjective, therefore invertible. Its inverse is $\arctan : \mathbb{R} \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), y \mapsto \arctan y$.
By the definition of the inverse,
$\arctan (\tan x)=x$ for all $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Example 2. Let $\tan :\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}, \quad x \mapsto \tan x$ be the tangent function restricted on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. It is monotonic and surjective, therefore invertible. Its inverse is $\arctan : \mathbb{R} \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), y \mapsto \arctan y$.
By the definition of the inverse,
$\arctan (\tan x)=x$ for all $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and
$\tan (\arctan y)=y$ for all $y \in \mathbb{R}$.

Example 2. Let $\tan :\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}, \quad x \mapsto \tan x$ be the tangent function restricted on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. It is monotonic and surjective, therefore invertible. Its inverse is $\arctan : \mathbb{R} \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), y \mapsto \arctan y$.
By the definition of the inverse,
$\arctan (\tan x)=x$ for all $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and
$\tan (\arctan y)=y$ for all $y \in \mathbb{R}$.
Warning.

Example 2. Let $\tan :\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}, \quad x \mapsto \tan x$ be the tangent function restricted on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. It is monotonic and surjective, therefore invertible. Its inverse is arctan : $\mathbb{R} \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), y \mapsto \arctan y$.
By the definition of the inverse, $\arctan (\tan x)=x$ for all $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\tan (\arctan y)=y$ for all $y \in \mathbb{R}$.

Warning. Using the symbol $\tan ^{-1}$ for the inverse for \tan is ambiguous.

Example 2. Let $\tan :\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}, \quad x \mapsto \tan x$ be the tangent function restricted on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. It is monotonic and surjective, therefore invertible. Its inverse is arctan : $\mathbb{R} \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), y \mapsto \arctan y$.
By the definition of the inverse, $\arctan (\tan x)=x$ for all $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\tan (\arctan y)=y$ for all $y \in \mathbb{R}$.

Warning. Using the symbol $\tan ^{-1}$ for the inverse for \tan is ambiguous. It may be understood as $\tan ^{-1} x=\frac{1}{\tan x}=\cot x$.

Example 2. Let $\tan :\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}, \quad x \mapsto \tan x$ be the tangent function restricted on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. It is monotonic and surjective, therefore invertible.
Its inverse is arctan : $\mathbb{R} \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), y \mapsto \arctan y$.
By the definition of the inverse,
$\arctan (\tan x)=x$ for all $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and
$\tan (\arctan y)=y$ for all $y \in \mathbb{R}$.
Warning. Using the symbol $\tan ^{-1}$ for the inverse for \tan is ambiguous.
It may be understood as $\tan ^{-1} x=\frac{1}{\tan x}=\cot x$.
To avoid this ambiguity, always use $\arctan x$ as a notation for the inverse function for $\tan x$.

Example 3. What function is inverse to $\sin x$?

Example 3. What function is inverse to $\sin x$?

Is the function $x \mapsto \sin x$ bijective?

Example 3. What function is inverse to $\sin x$?

Is the function $x \mapsto \sin x$ bijective?
How to make it bijective?

Example 3. What function is inverse to $\sin x$?
Is the function $x \mapsto \sin x$ bijective?
How to make it bijective? What is the standard way?

Example 3. What function is inverse to $\sin x$?

Is the function $x \mapsto \sin x$ bijective?
How to make it bijective? What is the standard way?
Invertible subfunction:

Example 3. What function is inverse to $\sin x$?

Is the function $x \mapsto \sin x$ bijective?
How to make it bijective? What is the standard way?
Invertible subfunction: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow[-1,1]$.

Example 3. What function is inverse to $\sin x$?
Is the function $x \mapsto \sin x$ bijective?
How to make it bijective? What is the standard way?
Invertible subfunction: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow[-1,1]$.
The inverse function $\arcsin :[-1,1] \rightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Example 3. What function is inverse to $\sin x$?
Is the function $x \mapsto \sin x$ bijective?
How to make it bijective? What is the standard way?
Invertible subfunction: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow[-1,1]$.
The inverse function $\arcsin :[-1,1] \rightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
Example 4. What is arccos?

