Lecture 5

Maps

Definition.

Definition. Let X and Y be sets.

Definition. Let X and Y be sets. A map

Definition. Let X and Y be sets. A map (or mapping,

Definition. Let X and Y be sets. A map (or mapping, or function)

Definition. Let X and Y be sets.

A map (or mapping, or function) f from X to Y

Definition. Let X and Y be sets.

A map (or mapping, or function) f from X to Y is a rule assigning to **each** element in X a **unique** element in Y:

Definition. Let X and Y be sets.

A map (or mapping, or function) f from X to Y is a rule assigning to **each** element in X a **unique** element in Y:

 $\forall x \in X \quad \exists ! y \in Y \quad y = f(x).$

Definition. Let X and Y be sets.

A map (or mapping, or function) f from X to Y is a rule assigning to **each** element in X a **unique** element in Y:

 $\forall x \in X \quad \exists ! y \in Y \quad y = f(x).$

X is called the **domain** of f,

Definition. Let X and Y be sets.

A map (or mapping, or function) f from X to Y is a rule assigning to **each** element in X a **unique** element in Y:

 $\forall x \in X \quad \exists ! y \in Y \quad y = f(x).$

X is called the **domain** of f, Y is called the **codomain** of f.

Definition. Let X and Y be sets.

A map (or mapping, or function) f from X to Y is a rule assigning to **each** element in X a **unique** element in Y:

 $\forall x \in X \quad \exists ! y \in Y \quad y = f(x).$

X is called the **domain** of f, Y is called the **codomain** of f.

y = f(x) is called the **image** of x under f

Definition. Let X and Y be sets.

A map (or mapping, or function) f from X to Y is a rule assigning to **each** element in X a **unique** element in Y:

 $\forall x \in X \quad \exists ! y \in Y \quad y = f(x).$

X is called the **domain** of f, Y is called the **codomain** of f.

y = f(x) is called the **image** of x under f (or the **value** of f at x).

Definition. Let X and Y be sets.

A map (or mapping, or function) f from X to Y is a rule assigning to **each** element in X a **unique** element in Y:

 $\forall x \in X \quad \exists ! y \in Y \quad y = f(x).$

X is called the **domain** of f, Y is called the **codomain** of f.

y = f(x) is called the **image** of x under f (or the **value** of f at x). **Notation.**

Definition. Let X and Y be sets.

A map (or mapping, or function) f from X to Y is a rule assigning to **each** element in X a **unique** element in Y:

 $\forall x \in X \quad \exists ! y \in Y \quad y = f(x).$

X is called the **domain** of f, Y is called the **codomain** of f.

y = f(x) is called the **image** of x under f (or the **value** of f at x). **Notation.** $f: X \to Y$

Definition. Let X and Y be sets.

A map (or mapping, or function) f from X to Y is a rule assigning to **each** element in X a **unique** element in Y:

 $\forall x \in X \quad \exists ! y \in Y \quad y = f(x).$

X is called the **domain** of f, Y is called the **codomain** of f.

y = f(x) is called the **image** of x under f (or the **value** of f at x). **Notation.** $f: X \to Y$

 $x \mapsto y$

Definition. Let X and Y be sets. A map (or mapping, or function) f from X to Y is a rule assigning to each element in X a unique element in Y: $\forall x \in X \quad \exists ! y \in Y \quad y = f(x).$ X is called the domain of f, Y is called the codomain of f. y = f(x) is called the image of x under f (or the value of f at x). Notation. $f : X \to Y$ $x \mapsto y$ The range (or image) of f

Definition. Let X and Y be sets. A map (or mapping, or function) f from X to Y is a rule assigning to each element in X a unique element in Y: $\forall x \in X \quad \exists ! y \in Y \quad y = f(x).$ X is called the domain of f, Y is called the codomain of f. y = f(x) is called the image of x under f (or the value of f at x). Notation. $f : X \to Y$ $x \mapsto y$ The range (or image) of f is the set $\{f(x) \mid x \in X\}$.

Definition. Let X and Y be sets. A map (or mapping, or function) f from X to Y is a rule assigning to each element in X a unique element in Y: $\forall x \in X \quad \exists ! y \in Y \quad y = f(x).$ X is called the domain of f, Y is called the codomain of f. y = f(x) is called the image of x under f (or the value of f at x). Notation. $f : X \to Y$ $x \mapsto y$ The range (or image) of f is the set $\{f(x) \mid x \in X\}$.

It is denoted by $\operatorname{Im} f$ or f(X):

Definition. Let X and Y be sets.

A map (or mapping, or function) f from X to Y is a rule assigning to **each** element in X a **unique** element in Y:

 $\forall x \in X \quad \exists ! y \in Y \quad y = f(x).$

X is called the **domain** of f, Y is called the **codomain** of f.

y = f(x) is called the **image** of x under f (or the **value** of f at x). **Notation.** $f: X \to Y$

 $x \mapsto y$

The **range** (or image) of f is the set $\{f(x) \mid x \in X\}$. It is denoted by $\operatorname{Im} f$ or f(X): $\operatorname{Im} f = f(X) = \{f(x) \mid x \in X\}$.

Definition. Let X and Y be sets.

A map (or mapping, or function) f from X to Y is a rule assigning to **each** element in X a **unique** element in Y:

 $\forall x \in X \quad \exists ! y \in Y \quad y = f(x).$

X is called the **domain** of f, Y is called the **codomain** of f.

y = f(x) is called the **image** of x under f (or the **value** of f at x). Notation. $f : X \to Y$

 $x \mapsto y$

The **range** (or image) of f is the set $\{f(x) \mid x \in X\}$. It is denoted by $\operatorname{Im} f$ or f(X): $\operatorname{Im} f = f(X) = \{f(x) \mid x \in X\}$.

Let $f: X \to Y$ be a map

Let $f: X \to Y$ be a map and $A \subset X$, $B \subset Y$ be subsets.

Let $f: X \to Y$ be a map and $A \subset X$, $B \subset Y$ be subsets.

The **image** of A is the set

Let $f: X \to Y$ be a map and $A \subset X$, $B \subset Y$ be subsets.

The **image** of A is the set $f(A) = \{f(x) \mid x \in A\}$

Let $f : X \to Y$ be a map and $A \subset X$, $B \subset Y$ be subsets. The **image** of A is the set $f(A) = \{f(x) \mid x \in A\} \subset Y$.

Let $f: X \to Y$ be a map and $A \subset X$, $B \subset Y$ be subsets.

The **image** of A is the set $f(A) = \{f(x) \mid x \in A\} \subset Y$.

Let $f: X \to Y$ be a map and $A \subset X$, $B \subset Y$ be subsets.

The **image** of A is the set $f(A) = \{f(x) \mid x \in A\} \subset Y$.

The **preimage** of B is the set

Let $f: X \to Y$ be a map and $A \subset X$, $B \subset Y$ be subsets.

The **image** of A is the set $f(A) = \{f(x) \mid x \in A\} \subset Y$.

The **preimage** of B is the set $f^{-1}(B) = \{x \mid f(x) \in B\}$

Let $f: X \to Y$ be a map and $A \subset X$, $B \subset Y$ be subsets.

The **image** of A is the set $f(A) = \{f(x) \mid x \in A\} \subset Y$.

The **preimage** of *B* is the set $f^{-1}(B) = \{x \mid f(x) \in B\} \subset X$.

Let $f: X \to Y$ be a map and $A \subset X$, $B \subset Y$ be subsets.

The **image** of A is the set $f(A) = \{f(x) \mid x \in A\} \subset Y$.

The **preimage** of *B* is the set $f^{-1}(B) = \{x \mid f(x) \in B\} \subset X$.

Let $f: X \to Y$ be a map and $A \subset X$, $B \subset Y$ be subsets.

The **image** of A is the set $f(A) = \{f(x) \mid x \in A\} \subset Y$.

The **preimage** of *B* is the set $f^{-1}(B) = \{x \mid f(x) \in B\} \subset X$.

Warning:

Let $f: X \to Y$ be a map and $A \subset X$, $B \subset Y$ be subsets.

The **image** of A is the set $f(A) = \{f(x) \mid x \in A\} \subset Y$.

The **preimage** of *B* is the set $f^{-1}(B) = \{x \mid f(x) \in B\} \subset X$.

Warning: f^{-1} is **not** the inverse map!

Definition.

Definition. Two maps $f, g: X \to Y$ are equal

Definition. Two maps $f, g: X \to Y$ are equal if they have the same domain,

Definition. Two maps $f, g: X \to Y$ are equal if they have the same domain, codomain,

Definition. Two maps $f, g: X \to Y$ are equal

if they have the same domain, codomain, and f(x) = g(x) for all $x \in X$.

Definition. Two maps $f, g: X \to Y$ are equal

if they have the same domain, codomain, and f(x) = g(x) for all $x \in X$.

Example.

Definition. Two maps $f, g: X \to Y$ are equal if they have the same domain, codomain, and f(x) = g(x) for all $x \in X$. **Example.** Let $f(x) = \frac{x^2 - 1}{x + 1}$

Definition. Two maps $f, g: X \to Y$ are equal if they have the same domain, codomain, and f(x) = g(x) for all $x \in X$. **Example.** Let $f(x) = \frac{x^2 - 1}{x + 1}$ and g(x) = x - 1.

Definition. Two maps $f, g: X \to Y$ are **equal** if they have the same domain, codomain, and f(x) = g(x) for all $x \in X$. **Example.** Let $f(x) = \frac{x^2 - 1}{x + 1}$ and g(x) = x - 1.

If a function is given by a formula,

Definition. Two maps $f, g: X \to Y$ are **equal** if they have the same domain, codomain, and f(x) = g(x) for all $x \in X$. **Example.** Let $f(x) = \frac{x^2 - 1}{x + 1}$ and g(x) = x - 1.

If a function is given by a formula, then the domain is,

Definition. Two maps $f, g: X \to Y$ are **equal** if they have the same domain, codomain, and f(x) = g(x) for all $x \in X$. **Example.** Let $f(x) = \frac{x^2 - 1}{x + 1}$ and g(x) = x - 1.

If a function is given by a formula, then the domain is, by default,

Definition. Two maps $f, g: X \to Y$ are **equal** if they have the same domain, codomain, and f(x) = g(x) for all $x \in X$. **Example.** Let $f(x) = \frac{x^2 - 1}{x + 1}$ and g(x) = x - 1. If a function is given by a formula, then the domain is, by default,

f a function is given by a formula, then the domain is, by default the set of **values** of the variable

Definition. Two maps $f, g: X \to Y$ are equal if they have the same domain, codomain, and f(x) = g(x) for all $x \in X$. **Example.** Let $f(x) = \frac{x^2 - 1}{x + 1}$ and g(x) = x - 1.

If a function is given by a formula, then the domain is, by default,

the set of values of the variable for which the formula makes sense.

Definition. Two maps $f, g: X \to Y$ are equal if they have the same domain, codomain, and f(x) = g(x) for all $x \in X$. **Example.** Let $f(x) = \frac{x^2 - 1}{x + 1}$ and g(x) = x - 1. If a function is given by a formula, then the domain is, by default,

the set of **values** of the variable for which the formula makes sense.

By this, the domain of f is $\mathbb{R}\smallsetminus \{-1\}$,

Definition. Two maps $f, g: X \to Y$ are equal if they have the same domain, codomain, and f(x) = g(x) for all $x \in X$. **Example.** Let $f(x) = \frac{x^2 - 1}{x + 1}$ and g(x) = x - 1. If a function is given by a formula, then the domain is, by default, the set of **values** of the variable for which the formula makes sense.

By this, the domain of f is $\mathbb{R} \smallsetminus \{-1\}$, and the domain of g is \mathbb{R} .

Definition. Two maps $f, g: X \to Y$ are **equal** if they have the same domain, codomain, and f(x) = g(x) for all $x \in X$. **Example.** Let $f(x) = \frac{x^2 - 1}{x + 1}$ and g(x) = x - 1.

If a function is given by a formula, then the domain is, by default, the set of **values** of the variable for which the formula makes sense.

By this, the domain of f is $\mathbb{R}\smallsetminus\{-1\}$, and the domain of g is \mathbb{R} .

Although
$$f(x) = \frac{x^2 - 1}{x + 1} =$$

Definition. Two maps $f, g: X \to Y$ are equal if they have the same domain, codomain, and f(x) = g(x) for all $x \in X$. **Example.** Let $f(x) = \frac{x^2 - 1}{x + 1}$ and g(x) = x - 1.

If a function is given by a formula, then the domain is, by default, the set of **values** of the variable for which the formula makes sense.

By this, the domain of f is $\mathbb{R}\smallsetminus\{-1\}$, and the domain of g is \mathbb{R} .

Although $f(x) = \frac{x^2 - 1}{x + 1} = \frac{(x - 1)(x + 1)}{x + 1}$

Definition. Two maps $f, g: X \to Y$ are equal if they have the same domain, codomain, and f(x) = g(x) for all $x \in X$. **Example.** Let $f(x) = \frac{x^2 - 1}{x + 1}$ and g(x) = x - 1.

If a function is given by a formula, then the domain is, by default, the set of **values** of the variable for which the formula makes sense.

By this, the domain of f is $\mathbb{R}\smallsetminus \{-1\}$, and the domain of g is \mathbb{R} .

Although
$$f(x) = \frac{x^2 - 1}{x + 1} = \frac{(x - 1)(x + 1)}{x + 1} \underbrace{=}_{x \neq -1} x - 1 =$$

Definition. Two maps $f, g: X \to Y$ are equal if they have the same domain, codomain, and f(x) = g(x) for all $x \in X$. **Example.** Let $f(x) = \frac{x^2 - 1}{x + 1}$ and g(x) = x - 1.

If a function is given by a formula, then the domain is, by default, the set of **values** of the variable for which the formula makes sense.

By this, the domain of f is $\mathbb{R}\smallsetminus \{-1\}$, and the domain of g is \mathbb{R} .

Although
$$f(x) = \frac{x^2 - 1}{x + 1} = \frac{(x - 1)(x + 1)}{x + 1} \underbrace{=}_{x \neq -1} x - 1 = g(x)$$
,

Definition. Two maps $f, g: X \to Y$ are **equal** if they have the same domain, codomain, and f(x) = g(x) for all $x \in X$. **Example.** Let $f(x) = \frac{x^2 - 1}{x + 1}$ and g(x) = x - 1. If a function is given by a formula, then the domain is, by default, the set of **values** of the variable for which the formula makes sense. By this, the domain of f is $\mathbb{R} \setminus \{-1\}$, and the domain of g is \mathbb{R} . Although $f(x) = \frac{x^2 - 1}{x + 1} = \frac{(x - 1)(x + 1)}{x + 1} = \frac{x - 1}{x + 1} = \frac{x - 1}{x + 1} = \frac{x - 1}{x + 1}$

the functions f and g are **not** equal,

Definition. Two maps $f, g: X \to Y$ are **equal** if they have the same domain, codomain, and f(x) = g(x) for all $x \in X$. **Example.** Let $f(x) = \frac{x^2 - 1}{x + 1}$ and g(x) = x - 1. If a function is given by a formula, then the domain is, by default, the set of **values** of the variable for which the formula makes sense. By this, the domain of f is $\mathbb{R} \setminus \{-1\}$, and the domain of g is \mathbb{R} . Although $f(x) = \frac{x^2 - 1}{x + 1} = \frac{(x - 1)(x + 1)}{x + 1} = x - 1 = g(x)$,

the functions f and g are **not** equal,

since they have different domains.

Definition. Two maps $f, g: X \to Y$ are equal if they have the same domain, codomain, and f(x) = g(x) for all $x \in X$. **Example.** Let $f(x) = \frac{x^2 - 1}{x + 1}$ and g(x) = x - 1. If a function is given by a formula, then the domain is, by default, the set of **values** of the variable for which the formula makes sense.

By this, the domain of f is $\mathbb{R}\smallsetminus \{-1\}$, and the domain of g is \mathbb{R} .

Although
$$f(x) = \frac{x^2 - 1}{x + 1} = \frac{(x - 1)(x + 1)}{x + 1} \underbrace{=}_{x \neq -1} x - 1 = g(x)$$
,

the functions f and g are **not** equal,

since they have different domains.

Definition.

Definition. Let $f: X \to Y$ and $g: Y \to Z$ be maps.

Definition. Let $f: X \to Y$ and $g: Y \to Z$ be maps.

A composition of f and g

A composition of f and g is a map $g \circ f : X \to Z$

A composition of f and g is a map $g \circ f : X \to Z$ defined by

A composition of f and g is a map $g \circ f : X \to Z$ defined by $g \circ f(x) = g(f(x))$ for any $x \in X$.

A composition of f and g is a map $g \circ f : X \to Z$ defined by $g \circ f(x) = g(f(x))$ for any $x \in X$.

Theorem.

Theorem. A composition of maps is **associative**:

If $f: X \to Y$, $g: Y \to Z$, $h: Z \to W$ are maps, then

Theorem. A composition of maps is **associative**:

If $f: X \to Y$, $g: Y \to Z$, $h: Z \to W$ are maps, then $h \circ (g \circ f) = (h \circ g) \circ f$.

Theorem. A composition of maps is **associative**:

If $f: X \to Y$, $g: Y \to Z$, $h: Z \to W$ are maps, then $h \circ (g \circ f) = (h \circ g) \circ f$.

Proof.

If $f: X \to Y$, $g: Y \to Z$, $h: Z \to W$ are maps, then $h \circ (g \circ f) = (h \circ g) \circ f$.

Proof. Take any $x \in X$.

If $f:X \to Y$, $g:Y \to Z$, $h:Z \to W$ are maps, then $h \circ (g \circ f) = (h \circ g) \circ f$.

Proof. Take any $x \in X$. Then

 $(h \circ (g \circ f))(x)$

If $f:X \to Y$, $g:Y \to Z$, $h:Z \to W$ are maps, then $h \circ (g \circ f) = (h \circ g) \circ f$.

Proof. Take any $x \in X$. Then

 $(h \circ (g \circ f))(x) = h((g \circ f)(x))$

If $f: X \to Y$, $g: Y \to Z$, $h: Z \to W$ are maps, then $h \circ (g \circ f) = (h \circ g) \circ f$.

Proof. Take any $x \in X$. Then

 $(h\circ (g\circ f))(x)=h((g\circ f)(x))=h(g(f(x)))$,

If $f:X \to Y$, $g:Y \to Z$, $h:Z \to W$ are maps, then $h \circ (g \circ f) = (h \circ g) \circ f$.

Proof. Take any $x \in X$. Then

 $(h\circ (g\circ f))(x)=h((g\circ f)(x))=h(g(f(x)))\,,$ $((h\circ g)\circ f)(x)$

If $f:X \to Y$, $g:Y \to Z$, $h:Z \to W$ are maps, then $h \circ (g \circ f) = (h \circ g) \circ f$.

Proof. Take any $x \in X$. Then

 $\begin{aligned} (h\circ(g\circ f))(x) &= h((g\circ f)(x)) = h(g(f(x))) \,, \\ ((h\circ g)\circ f)(x) &= (h\circ g)(f(x)) \end{aligned}$

If $f: X \to Y$, $g: Y \to Z$, $h: Z \to W$ are maps, then $h \circ (g \circ f) = (h \circ g) \circ f$.

Proof. Take any $x \in X$. Then

 $\begin{aligned} (h\circ(g\circ f))(x) &= h((g\circ f)(x)) = h(g(f(x))) \,, \\ ((h\circ g)\circ f)(x) &= (h\circ g)(f(x)) = h(g(f(x))) \end{aligned}$

Theorem. A composition of maps is **associative**:

If $f: X \to Y$, $g: Y \to Z$, $h: Z \to W$ are maps, then $h \circ (g \circ f) = (h \circ g) \circ f$.

Proof. Take any $x \in X$. Then

 $(h \circ (g \circ f))(x) = h((g \circ f)(x)) = h(g(f(x))),$ $((h \circ g) \circ f)(x) = (h \circ g)(f(x)) = h(g(f(x)))$

Therefore, $(h \circ (g \circ f))(x) = ((h \circ g) \circ f)(x)$ for any $x \in X$,

If $f: X \to Y$, $g: Y \to Z$, $h: Z \to W$ are maps, then $h \circ (g \circ f) = (h \circ g) \circ f$.

Proof. Take any $x \in X$. Then

 $(h \circ (g \circ f))(x) = h((g \circ f)(x)) = h(g(f(x))),$ $((h \circ g) \circ f)(x) = (h \circ g)(f(x)) = h(g(f(x)))$

Therefore, $(h \circ (g \circ f))(x) = ((h \circ g) \circ f)(x)$ for any $x \in X$,

so $h \circ (g \circ f) = (h \circ g) \circ f$.

 \square

Theorem. A composition of maps is **associative**:

If $f:X \to Y$, $g:Y \to Z$, $h:Z \to W$ are maps, then $h \circ (g \circ f) = (h \circ g) \circ f$.

Proof. Take any $x \in X$. Then

 $(h \circ (g \circ f))(x) = h((g \circ f)(x)) = h(g(f(x))),$ $((h \circ g) \circ f)(x) = (h \circ g)(f(x)) = h(g(f(x)))$

Therefore, $(h \circ (g \circ f))(x) = ((h \circ g) \circ f)(x)$ for any $x \in X$,

so $h \circ (g \circ f) = (h \circ g) \circ f$.

Due to associativity,

 \square

If $f: X \to Y$, $g: Y \to Z$, $h: Z \to W$ are maps, then $h \circ (g \circ f) = (h \circ g) \circ f$.

Proof. Take any $x \in X$. Then

 $(h \circ (g \circ f))(x) = h((g \circ f)(x)) = h(g(f(x))),$ $((h \circ g) \circ f)(x) = (h \circ g)(f(x)) = h(g(f(x)))$

Therefore, $(h \circ (g \circ f))(x) = ((h \circ g) \circ f)(x)$ for any $x \in X$,

so $h \circ (g \circ f) = (h \circ g) \circ f$.

Due to associativity, one can omit parentheses: $h \circ g \circ f$.

 \square

Lecture 5 Maps

MAT 250

Theorem. A composition of maps is **associative**:

If $f: X \to Y$, $g: Y \to Z$, $h: Z \to W$ are maps, then $h \circ (g \circ f) = (h \circ g) \circ f$.

Proof. Take any $x \in X$. Then

 $\begin{aligned} (h \circ (g \circ f))(x) &= h((g \circ f)(x)) = h(g(f(x))) \,, \\ ((h \circ g) \circ f)(x) &= (h \circ g)(f(x)) = h(g(f(x))) \end{aligned}$

Therefore, $(h \circ (g \circ f))(x) = ((h \circ g) \circ f)(x)$ for any $x \in X$, so $h \circ (g \circ f) = (h \circ g) \circ f$.

Due to associativity, one can omit parentheses: $h \circ g \circ f$.

cream and coffee and sugar = (cream and coffee) and sugar = cream and (coffee and sugar)

Warning. A composition is **not** commutative:

Warning. A composition is **not** commutative: $f \circ g \neq g \circ f$.

Warning. A composition is **not** commutative: $f \circ g \neq g \circ f$.

For example,

Warning. A composition is **not** commutative: $f \circ g \neq g \circ f$.

For example, if $f(x) = \sin x$ and $g(x) = \frac{1}{x}$, then

Warning. A composition is **not** commutative: $f \circ g \neq g \circ f$. For example, if $f(x) = \sin x$ and $g(x) = \frac{1}{x}$, then

 $(g \circ f)(x)$

Warning. A composition is **not** commutative: $f \circ g \neq g \circ f$.

For example, if $f(x) = \sin x$ and $g(x) = \frac{1}{x}$, then

 $(g \circ f)(x) = g(f(x)) =$

Warning. A composition is **not** commutative: $f \circ g \neq g \circ f$. For example, if $f(x) = \sin x$ and $g(x) = \frac{1}{x}$, then

 $(g \circ f)(x) = g(f(x)) = g(\sin x)$

Warning. A composition is **not** commutative: $f \circ g \neq g \circ f$.

For example, if $f(x) = \sin x$ and $g(x) = \frac{1}{x}$, then $(g \circ f)(x) = g(f(x)) = g(\sin x) = \frac{1}{\sin x}$,

Warning. A composition is **not** commutative: $f \circ g \neq g \circ f$.

For example, if $f(x) = \sin x$ and $g(x) = \frac{1}{x}$, then $(g \circ f)(x) = g(f(x)) = g(\sin x) = \frac{1}{\sin x}$,

 $(f \circ g)(x)$

Warning. A composition is **not** commutative: $f \circ g \neq g \circ f$.

For example, if $f(x) = \sin x$ and $g(x) = \frac{1}{x}$, then $(g \circ f)(x) = g(f(x)) = g(\sin x) = \frac{1}{\sin x}$,

 $(f \circ g)(x) = f(g(x)) =$

Warning. A composition is **not** commutative: $f \circ g \neq g \circ f$.

For example, if $f(x) = \sin x$ and $g(x) = \frac{1}{x}$, then $(g \circ f)(x) = g(f(x)) = g(\sin x) = \frac{1}{\sin x}$, $(f \circ g)(x) = f(g(x)) = f\left(\frac{1}{x}\right)$

Warning. A composition is **not** commutative: $f \circ g \neq g \circ f$.

For example, if
$$f(x) = \sin x$$
 and $g(x) = \frac{1}{x}$, then
 $(g \circ f)(x) = g(f(x)) = g(\sin x) = \frac{1}{\sin x}$,
 $(f \circ g)(x) = f(g(x)) = f\left(\frac{1}{x}\right) = \sin\frac{1}{x}$.

Warning. A composition is **not** commutative: $f \circ g \neq g \circ f$.

For example, if
$$f(x) = \sin x$$
 and $g(x) = \frac{1}{x}$, then
 $(g \circ f)(x) = g(f(x)) = g(\sin x) = \frac{1}{\sin x}$,
 $(f \circ g)(x) = f(g(x)) = f\left(\frac{1}{x}\right) = \sin\frac{1}{x}$.

Keep in mind.

Warning. A composition is **not** commutative: $f \circ g \neq g \circ f$.

For example, if $f(x) = \sin x$ and $g(x) = \frac{1}{x}$, then $(g \circ f)(x) = g(f(x)) = g(\sin x) = \frac{1}{\sin x}$, $(f \circ g)(x) = f(g(x)) = f\left(\frac{1}{x}\right) = \sin\frac{1}{x}$.

Keep in mind. In the following set up $X \xrightarrow{f} Y \xrightarrow{g} Z$,

Warning. A composition is **not** commutative: $f \circ g \neq g \circ f$.

For example, if $f(x) = \sin x$ and $g(x) = \frac{1}{x}$, then $(g \circ f)(x) = g(f(x)) = g(\sin x) = \frac{1}{\sin x}$, $(f \circ g)(x) = f(g(x)) = f\left(\frac{1}{x}\right) = \sin\frac{1}{x}$.

Keep in mind. In the following set up $X \xrightarrow{f} Y \xrightarrow{g} Z$, the composition $g \circ f$ makes sense,

Warning. A composition is **not** commutative: $f \circ g \neq g \circ f$.

For example, if $f(x) = \sin x$ and $g(x) = \frac{1}{x}$, then $(g \circ f)(x) = g(f(x)) = g(\sin x) = \frac{1}{\sin x}$, $(f \circ g)(x) = f(g(x)) = f\left(\frac{1}{x}\right) = \sin\frac{1}{x}$.

Keep in mind. In the following set up $X \xrightarrow{f} Y \xrightarrow{g} Z$,

the composition $g \circ f$ makes sense, while $f \circ g$ doesn't.

Warning. A composition is **not** commutative: $f \circ g \neq g \circ f$.

For example, if $f(x) = \sin x$ and $g(x) = \frac{1}{x}$, then $(g \circ f)(x) = g(f(x)) = g(\sin x) = \frac{1}{\sin x}$, $(f \circ g)(x) = f(g(x)) = f\left(\frac{1}{x}\right) = \sin\frac{1}{x}$.

Keep in mind. In the following set up $X \xrightarrow{f} Y \xrightarrow{g} Z$,

the composition $g \circ f$ makes sense, while $f \circ g$ doesn't. Open garage door

Warning. A composition is **not** commutative: $f \circ g \neq g \circ f$.

For example, if $f(x) = \sin x$ and $g(x) = \frac{1}{x}$, then $(g \circ f)(x) = g(f(x)) = g(\sin x) = \frac{1}{\sin x}$, $(f \circ g)(x) = f(g(x)) = f\left(\frac{1}{x}\right) = \sin\frac{1}{x}$.

Keep in mind. In the following set up $X \xrightarrow{f} Y \xrightarrow{g} Z$,

the composition $g \circ f$ makes sense, while $f \circ g$ doesn't. Open garage door and drive in

Warning. A composition is **not** commutative: $f \circ g \neq g \circ f$.

For example, if $f(x) = \sin x$ and $g(x) = \frac{1}{x}$, then $(g \circ f)(x) = g(f(x)) = g(\sin x) = \frac{1}{\sin x}$, $(f \circ g)(x) = f(g(x)) = f\left(\frac{1}{x}\right) = \sin\frac{1}{x}$.

Keep in mind. In the following set up $X \xrightarrow{f} Y \xrightarrow{g} Z$,

the composition $g \circ f$ makes sense, while $f \circ g$ doesn't. Open garage door and drive in \neq drive in

Warning. A composition is **not** commutative: $f \circ g \neq g \circ f$.

For example, if $f(x) = \sin x$ and $g(x) = \frac{1}{x}$, then $(g \circ f)(x) = g(f(x)) = g(\sin x) = \frac{1}{\sin x}$, $(f \circ g)(x) = f(g(x)) = f\left(\frac{1}{x}\right) = \sin\frac{1}{x}$.

Keep in mind. In the following set up $X \xrightarrow{f} Y \xrightarrow{g} Z$,

the composition $g \circ f$ makes sense, while $f \circ g$ doesn't. Open garage door and drive in \neq drive in and open garage door.

Warning. A composition is **not** commutative: $f \circ g \neq g \circ f$.

For example, if $f(x) = \sin x$ and $g(x) = \frac{1}{x}$, then $(g \circ f)(x) = g(f(x)) = g(\sin x) = \frac{1}{\sin x}$, $(f \circ g)(x) = f(g(x)) = f\left(\frac{1}{x}\right) = \sin\frac{1}{x}$.

Keep in mind. In the following set up $X \xrightarrow{f} Y \xrightarrow{g} Z$,

the composition $g \circ f$ makes sense, while $f \circ g$ doesn't. Open garage door and drive in \neq drive in and open garage door.

• A function in one variable y = f(x) is a map $f: D \to \mathbb{R}$,

• A function in one variable y = f(x) is a map $f: D \to \mathbb{R}$,

where $D \subset \mathbb{R}$ is the domain of f.

Domain convention:

Domain convention: when a function f is defined without specifying its domain,

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the **maximal** set of x-values

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the **maximal** set of x-values for which f(x) is defined.

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the **maximal** set of x-values for which f(x) is defined.

• A numerical sequence

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the **maximal** set of x-values for which f(x) is defined.

• A numerical sequence $\mathbb{Z}^+ \to \mathbb{R}$,

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the **maximal** set of x-values for which f(x) is defined.

• A numerical sequence $\mathbb{Z}^+ \to \mathbb{R}$, $n \mapsto a_n$ is a map.

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the **maximal** set of x-values for which f(x) is defined.

- A numerical sequence $\mathbb{Z}^+ \to \mathbb{R}$, $n \mapsto a_n$ is a map.
- A constant map

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the **maximal** set of x-values for which f(x) is defined.

- A numerical sequence $\mathbb{Z}^+ \to \mathbb{R}$, $n \mapsto a_n$ is a map.
- A constant map

Let X, Y be sets.

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the **maximal** set of x-values for which f(x) is defined.

- A numerical sequence $\mathbb{Z}^+ \to \mathbb{R}$, $n \mapsto a_n$ is a map.
- A constant map

Let X, Y be sets. Choose any $y_0 \in Y$

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the **maximal** set of x-values for which f(x) is defined.

- A numerical sequence $\mathbb{Z}^+ \to \mathbb{R}$, $n \mapsto a_n$ is a map.
- A constant map

Let X, Y be sets. Choose any $y_0 \in Y$ and define a map

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the **maximal** set of x-values for which f(x) is defined.

• A numerical sequence $\mathbb{Z}^+ \to \mathbb{R}$, $n \mapsto a_n$ is a map.

• A constant map

Let X, Y be sets. Choose any $y_0 \in Y$ and define a map $f: X \to Y$ by $f(x) = y_0$ for all $x \in X$.

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the **maximal** set of x-values for which f(x) is defined.

• A numerical sequence $\mathbb{Z}^+ \to \mathbb{R}$, $n \mapsto a_n$ is a map.

• A constant map

Let X, Y be sets. Choose any $y_0 \in Y$ and define a map $f: X \to Y$ by $f(x) = y_0$ for all $x \in X$. This map is called a **constant** map.

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the **maximal** set of x-values for which f(x) is defined.

• A numerical sequence $\mathbb{Z}^+ \to \mathbb{R}$, $n \mapsto a_n$ is a map.

• A constant map

Let X, Y be sets. Choose any $y_0 \in Y$ and define a map $f: X \to Y$ by $f(x) = y_0$ for all $x \in X$. This map is called a **constant** map.

Give a **descriptive definition** of a constant map.

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the **maximal** set of x-values for which f(x) is defined.

• A numerical sequence $\mathbb{Z}^+ \to \mathbb{R}$, $n \mapsto a_n$ is a map.

• A constant map

Let X, Y be sets. Choose any $y_0 \in Y$ and define a map $f: X \to Y$ by $f(x) = y_0$ for all $x \in X$. This map is called a **constant** map.

Give a **descriptive definition** of a constant map.

A map $f: X \to Y$ is said to be **constant** if

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the **maximal** set of x-values for which f(x) is defined.

• A numerical sequence $\mathbb{Z}^+ \to \mathbb{R}$, $n \mapsto a_n$ is a map.

• A constant map

Let X, Y be sets. Choose any $y_0 \in Y$ and define a map $f: X \to Y$ by $f(x) = y_0$ for all $x \in X$. This map is called a **constant** map.

Give a **descriptive definition** of a constant map.

A map $f: X \to Y$ is said to be **constant** if $\forall a, b \in X \ f(a) = f(b)$.

Domain convention: when a function f is defined without specifying its domain, we assume that the domain is the **maximal** set of x-values for which f(x) is defined.

• A numerical sequence $\mathbb{Z}^+ \to \mathbb{R}$, $n \mapsto a_n$ is a map.

• A constant map

Let X, Y be sets. Choose any $y_0 \in Y$ and define a map $f: X \to Y$ by $f(x) = y_0$ for all $x \in X$. This map is called a **constant** map.

Give a **descriptive definition** of a constant map.

A map $f: X \to Y$ is said to be **constant** if $\forall a, b \in X f(a) = f(b)$. Or $\exists c \in Y \ \forall a \in X f(a) = c$.

The **identity map** of X is

The **identity map** of X is $id_X : X \to X$,

The **identity map** of X is $\operatorname{id}_X : X \to X$, $x \mapsto x$.

The identity map of X is $\operatorname{id}_X : X \to X$, $x \mapsto x$.

Theorem.

The **identity map** of X is $id_X : X \to X$, $x \mapsto x$.

Theorem. The identity map is a unit with respect to the map composition.

Theorem. The identity map is a unit with respect to the map composition.

That is, for any map $f:X \to Y$,

Theorem. The identity map is a unit with respect to the map composition.

That is, for any map $f: X \to Y$, $f \circ \mathsf{id}_X = f$

Theorem. The identity map is a unit with respect to the map composition.

That is, for any map $f: X \to Y$, $f \circ \operatorname{id}_X = f$ and $\operatorname{id}_Y \circ f = f$.

Theorem. The identity map is a unit with respect to the map composition.

That is, for any map $f: X \to Y$, $f \circ \operatorname{id}_X = f$ and $\operatorname{id}_Y \circ f = f$.

Proof.

The **identity map** of X is $\operatorname{id}_X : X \to X$, $x \mapsto x$.

Theorem. The identity map is a unit with respect to the map composition.

That is, for any map $f: X \to Y$, $f \circ \operatorname{id}_X = f$ and $\operatorname{id}_Y \circ f = f$.

The **identity map** of X is $\operatorname{id}_X : X \to X$, $x \mapsto x$.

Theorem. The identity map is a unit with respect to the map composition.

That is, for any map $f:X \to Y$, $f \circ \mathsf{id}_X = f$ and $\mathsf{id}_Y \circ f = f$.

The **identity map** of X is $\operatorname{id}_X : X \to X$, $x \mapsto x$.

Theorem. The identity map is a unit with respect to the map composition.

That is, for any map $f:X \to Y$, $f \circ \mathsf{id}_X = f$ and $\mathsf{id}_Y \circ f = f$.

Take any $x \in X$. Then

The **identity map** of X is $\operatorname{id}_X : X \to X$, $x \mapsto x$.

Theorem. The identity map is a unit with respect to the map composition.

That is, for any map f:X o Y, $f \circ \mathsf{id}_X = f$ and $\mathsf{id}_Y \circ f = f$.

Take any $x \in X$. Then

 $(f \circ \mathsf{id}_X)(x)$

The **identity map** of X is $\operatorname{id}_X : X \to X$, $x \mapsto x$.

Theorem. The identity map is a unit with respect to the map composition.

That is, for any map $f:X \to Y$, $f \circ \mathsf{id}_X = f$ and $\mathsf{id}_Y \circ f = f$.

Take any $x \in X$. Then

 $(f \circ \mathsf{id}_X)(x) = f(\mathsf{id}_X(x))$

The **identity map** of X is $\operatorname{id}_X : X \to X$, $x \mapsto x$.

Theorem. The identity map is a unit with respect to the map composition.

That is, for any map $f:X \to Y$, $f \circ \mathsf{id}_X = f$ and $\mathsf{id}_Y \circ f = f$.

Take any $x \in X$. Then

 $(f \circ \mathsf{id}_X)(x) = f(\mathsf{id}_X(x)) = f(x) ,$

The **identity map** of X is $\operatorname{id}_X : X \to X$, $x \mapsto x$.

Theorem. The identity map is a unit with respect to the map composition.

That is, for any map $f:X \to Y$, $f \circ \mathsf{id}_X = f$ and $\mathsf{id}_Y \circ f = f$.

Take any $x \in X$. Then

 $(f \circ \operatorname{id}_X)(x) = f(\operatorname{id}_X(x)) = f(x) \text{, so } f \circ \operatorname{id}_X = f$

The **identity map** of X is $\operatorname{id}_X : X \to X$, $x \mapsto x$.

Theorem. The identity map is a unit with respect to the map composition.

That is, for any map $f:X \to Y$, $f \circ \mathsf{id}_X = f$ and $\mathsf{id}_Y \circ f = f$.

Take any $x \in X$. Then

 $(f \circ id_X)(x) = f(id_X(x)) = f(x)$, so $f \circ id_X = f$ $(id_Y \circ f)(x)$

The **identity map** of X is $id_X : X \to X$, $x \mapsto x$.

Theorem. The identity map is a unit with respect to the map composition.

That is, for any map $f:X \to Y$, $f \circ \mathsf{id}_X = f$ and $\mathsf{id}_Y \circ f = f$.

Take any $x \in X$. Then

 $(f \circ id_X)(x) = f(id_X(x)) = f(x), \text{ so } f \circ id_X = f$ $(id_Y \circ f)(x) = id_Y(f(x))$

The **identity map** of X is $\operatorname{id}_X : X \to X$, $x \mapsto x$.

Theorem. The identity map is a unit with respect to the map composition.

That is, for any map $f:X \to Y$, $f \circ \mathsf{id}_X = f$ and $\mathsf{id}_Y \circ f = f$.

Take any $x \in X$. Then

 $(f \circ \operatorname{id}_X)(x) = f(\operatorname{id}_X(x)) = f(x), \text{ so } f \circ \operatorname{id}_X = f$ $(\operatorname{id}_Y \circ f)(x) = \operatorname{id}_Y(f(x)) = f(x),$

The **identity map** of X is $\operatorname{id}_X : X \to X$, $x \mapsto x$.

Theorem. The identity map is a unit with respect to the map composition.

That is, for any map $f:X \to Y$, $f \circ \mathsf{id}_X = f$ and $\mathsf{id}_Y \circ f = f$.

Take any $x \in X$. Then

 $(f \circ \operatorname{id}_X)(x) = f(\operatorname{id}_X(x)) = f(x), \text{ so } f \circ \operatorname{id}_X = f$ $(\operatorname{id}_Y \circ f)(x) = \operatorname{id}_Y(f(x)) = f(x), \text{ so } \operatorname{id}_Y \circ f = f.$

• Inclusion map

• Inclusion map $A \subset X$,

• Inclusion map $A \subset X$, $\operatorname{in} : A \to X$,

• Inclusion map $A \subset X$, in $: A \to X$, $a \mapsto a$.

- Inclusion map $A \subset X$, in $: A \to X$, $a \mapsto a$.
- Restriction of a map

Inclusion, restriction and submap

- Inclusion map $A \subset X$, in $: A \to X$, $a \mapsto a$.
- Restriction of a map f:X o Y ,

- Inclusion map $A \subset X$, in $: A \to X$, $a \mapsto a$.
- Restriction of a map $f: X \to Y$, $A \subset X$

- Inclusion map $A \subset X$, in $: A \to X$, $a \mapsto a$.
- Restriction of a map $f: X \to Y$, $A \subset X$

$$\left.f
ight|_{A}:A
ightarrow Y$$
 ,

- Inclusion map $A \subset X$, in $: A \to X$, $a \mapsto a$.
- Restriction of a map $f: X \to Y$, $A \subset X$

$$f|_A: A \to Y$$
 , $a \mapsto f(a)$

- Inclusion map $A \subset X$, in $: A \to X$, $a \mapsto a$.
- Restriction of a map $f:X \to Y$, $A \subset X$

 $f|_A: A \to Y$, $a \mapsto f(a)$

The restriction is a composition of in : $A \to X$ and $f: X \to Y$:

- Inclusion map $A \subset X$, in $: A \to X$, $a \mapsto a$.
- Restriction of a map $f:X \to Y$, $A \subset X$

 $f|_A: A \to Y$, $a \mapsto f(a)$

The restriction is a composition of in : $A \rightarrow X$ and $f : X \rightarrow Y$:

 $f\big|_A = f \circ \mathsf{in} : A \xrightarrow{\mathsf{in}} X \xrightarrow{f} Y$

- Inclusion map $A \subset X$, in $: A \to X$, $a \mapsto a$.
- Restriction of a map $f: X \to Y$, $A \subset X$

 $f|_A: A \to Y$, $a \mapsto f(a)$

The restriction is a composition of in : $A \rightarrow X$ and $f: X \rightarrow Y$:

$$f\big|_A = f \circ \mathsf{in} : A \xrightarrow{\mathsf{in}} X \xrightarrow{f} Y$$

• Submap

- Inclusion map $A \subset X$, in $: A \to X$, $a \mapsto a$.
- Restriction of a map $f: X \to Y$, $A \subset X$

 $f|_A: A \to Y$, $a \mapsto f(a)$

The restriction is a composition of in : $A \rightarrow X$ and $f : X \rightarrow Y$:

$$f\big|_A = f \circ \mathsf{in} : A \xrightarrow{\mathsf{in}} X \xrightarrow{f} Y$$

• Submap

 $f:X\to Y$,

- Inclusion map $A \subset X$, in $: A \to X$, $a \mapsto a$.
- Restriction of a map $f: X \to Y$, $A \subset X$

 $f|_A: A \to Y$, $a \mapsto f(a)$

The restriction is a composition of in : $A \to X$ and $f: X \to Y$:

$$f\big|_A = f \circ \mathsf{in} : A \xrightarrow{\mathsf{in}} X \xrightarrow{f} Y$$

• Submap

 $f:X \to Y$, $A \subset X$, $B \subset Y$, $f(A) \subset B$

- Inclusion map $A \subset X$, in $: A \to X$, $a \mapsto a$.
- Restriction of a map $f: X \to Y$, $A \subset X$

 $f|_A: A \to Y$, $a \mapsto f(a)$

The restriction is a composition of in : $A \to X$ and $f: X \to Y$:

$$f\big|_A = f \circ \mathsf{in} : A \xrightarrow{\mathsf{in}} X \xrightarrow{f} Y$$

• Submap

 $f:X \to Y$, $A \subset X$, $B \subset Y$, $f(A) \subset B$ $f|_{A,B}:A \to B$,

- Inclusion map $A \subset X$, in $: A \to X$, $a \mapsto a$.
- Restriction of a map $f: X \to Y$, $A \subset X$

 $f|_A: A \to Y$, $a \mapsto f(a)$

The restriction is a composition of in : $A \to X$ and $f: X \to Y$:

$$f|_A = f \circ \mathsf{in} : A \xrightarrow{\mathsf{in}} X \xrightarrow{f} Y$$

• Submap

 $f: X \to Y$, $A \subset X$, $B \subset Y$, $f(A) \subset B$ $f|_{A,B}: A \to B$, $a \mapsto f(a)$

- Inclusion map $A \subset X$, in $: A \to X$, $a \mapsto a$.
- Restriction of a map $f: X \to Y$, $A \subset X$

 $f|_A: A \to Y$, $a \mapsto f(a)$

The restriction is a composition of in : $A \to X$ and $f: X \to Y$:

$$f\big|_A = f \circ \mathsf{in} : A \xrightarrow{\mathsf{in}} X \xrightarrow{f} Y$$

• Submap

 $f: X \to Y, \ A \subset X, \ B \subset Y, \ f(A) \subset B \qquad f|_{A,B}: A \to B, \ a \mapsto f(a)$ $X \xrightarrow{f} Y$

- Inclusion map $A \subset X$, in $: A \to X$, $a \mapsto a$.
- Restriction of a map $f: X \to Y$, $A \subset X$

 $f|_A: A \to Y$, $a \mapsto f(a)$

The restriction is a composition of in : $A \rightarrow X$ and $f : X \rightarrow Y$:

$$f\big|_A = f \circ \mathsf{in} : A \xrightarrow{\mathsf{in}} X \xrightarrow{f} Y$$

• Submap

 $f:X\to Y\,,\ A\subset X\,,\ B\subset Y\,,\ f(A)\subset B \qquad f\big|_{A,B}:A\to B\,,\ a\mapsto f(a)$

This diagram is **commutative**,

- Inclusion map $A \subset X$, in $: A \to X$, $a \mapsto a$.
- Restriction of a map $f: X \to Y$, $A \subset X$

 $f|_A: A \to Y$, $a \mapsto f(a)$

The restriction is a composition of in : $A \to X$ and $f: X \to Y$:

$$f\big|_A = f \circ \mathsf{in} : A \xrightarrow{\mathsf{in}} X \xrightarrow{f} Y$$

• Submap

 $X \xrightarrow{f} Y$

 in_A in_B

 $A \xrightarrow{f}_{A \ P} B$

 $f: X \to Y$, $A \subset X$, $B \subset Y$, $f(A) \subset B$ $f|_{A,B}: A \to B$, $a \mapsto f(a)$

This diagram is **commutative**, that is

$$\mathsf{in}_B \circ f\big|_{A,B} = f \circ \mathsf{in}_A$$

Definition.

Definition. A map $f: X \to Y$ is called **injective**

Definition. A map $f: X \to Y$ is called **injective** (or injection

Definition. A map $f: X \to Y$ is called **injective** (or injection or one-to-one) if

Definition. A map $f: X \to Y$ is called **injective** (or injection or one-to-one) if $\forall x_1, x_2 \in X$

Definition. A map $f: X \to Y$ is called **injective** (or injection or one-to-one) if $\forall x_1, x_2 \in X \ x_1 \neq x_2$

Definition. A map $f: X \to Y$ is called **injective** (or injection or one-to-one) if $\forall x_1, x_2 \in X \ x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$

Definition. A map $f: X \to Y$ is called **injective** (or injection or one-to-one) if

 $\forall x_1, x_2 \in X \ x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$

(that is, different elements have different images)

Definition. A map $f: X \to Y$ is called **injective** (or injection or one-to-one) if

 $\forall x_1, x_2 \in X \ x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$

(that is, different elements have different images)

or, equivalently,

Definition. A map $f: X \to Y$ is called **injective** (or injection or one-to-one) if

 $\forall x_1, x_2 \in X \ x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$

(that is, different elements have different images)

or, equivalently,

 $\forall x_1, x_2 \in X$

Definition. A map $f: X \to Y$ is called **injective** (or injection or one-to-one) if

 $\forall x_1, x_2 \in X \ x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$

(that is, different elements have different images)

or, equivalently,

 $\forall x_1, x_2 \in X \ f(x_1) = f(x_2)$

Definition. A map $f: X \to Y$ is called **injective** (or injection or one-to-one) if

 $\forall x_1, x_2 \in X \ x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$

(that is, different elements have different images)

or, equivalently,

 $\forall x_1, x_2 \in X \ f(x_1) = f(x_2) \implies x_1 = x_2$

Definition. A map $f: X \to Y$ is called **injective** (or injection or one-to-one) if

 $\forall x_1, x_2 \in X \ x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$

(that is, different elements have different images)

or, equivalently,

 $\forall x_1, x_2 \in X \ f(x_1) = f(x_2) \implies x_1 = x_2$

(that is, if two elements have the same image, then the elements coincide)

Definition. A map $f: X \to Y$ is called **injective** (or injection or one-to-one) if

 $\forall x_1, x_2 \in X \ x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$

(that is, different elements have different images)

or, equivalently,

 $\forall x_1, x_2 \in X \ f(x_1) = f(x_2) \implies x_1 = x_2$

(that is, if two elements have the same image, then the elements coincide) or, equivalently,

Definition. A map $f: X \to Y$ is called **injective** (or injection or one-to-one) if

 $\forall x_1, x_2 \in X \ x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$

(that is, different elements have different images)

or, equivalently,

 $\forall x_1, x_2 \in X \ f(x_1) = f(x_2) \implies x_1 = x_2$

(that is, if two elements have the same image, then the elements coincide) or, equivalently,

 $\forall y \in \operatorname{Im} f \quad \exists \, ! \, x \in X \quad y = f(x)$

Definition. A map $f: X \to Y$ is called **injective** (or injection or one-to-one) if

 $\forall x_1, x_2 \in X \ x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$

(that is, different elements have different images)

or, equivalently,

 $\forall x_1, x_2 \in X \ f(x_1) = f(x_2) \implies x_1 = x_2$

(that is, if two elements have the same image, then the elements coincide) or, equivalently,

 $\forall y \in \operatorname{Im} f \quad \exists \, ! \, x \in X \quad y = f(x)$

(that is, each element in the range is the image of exactly one element).

Definition. A map $f: X \to Y$ is called **injective** (or injection or one-to-one) if

 $\forall x_1, x_2 \in X \ x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$

(that is, different elements have different images)

or, equivalently,

 $\forall x_1, x_2 \in X \ f(x_1) = f(x_2) \implies x_1 = x_2$

(that is, if two elements have the same image, then the elements coincide) or, equivalently,

 $\forall y \in \operatorname{Im} f \quad \exists \, ! \, x \in X \quad y = f(x)$

(that is, each element in the range is the image of exactly one element). or, equivalently,

Definition. A map $f: X \to Y$ is called **injective** (or injection or one-to-one) if

 $\forall x_1, x_2 \in X \ x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$

(that is, different elements have different images)

or, equivalently,

 $\forall x_1, x_2 \in X \ f(x_1) = f(x_2) \implies x_1 = x_2$

(that is, if two elements have the same image, then the elements coincide) or, equivalently,

 $\forall y \in \operatorname{Im} f \quad \exists \, ! \, x \in X \quad y = f(x)$

(that is, each element in the range is the image of exactly one element). or, equivalently,

 $\forall y \in \text{Im } f$ the equation y = f(x) has **at most one** solution.

- •
- •
- •

- - •
 - •

Theorem.

Theorem. A linear map $f : \mathbb{R} \to \mathbb{R}$

Theorem. A linear map $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b with $a \neq 0$

Theorem. A linear map $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b with $a \neq 0$ is injective.

Theorem. A linear map $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b with $a \neq 0$ is injective.

Proof.

Theorem. A linear map $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b with $a \neq 0$ is injective.

Proof. Take any $x_1, x_2 \in \mathbb{R}$.

Theorem. A linear map $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b with $a \neq 0$ is injective.

Proof. Take any $x_1, x_2 \in \mathbb{R}$. If $f(x_1) = f(x_2)$,

Theorem. A linear map $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b with $a \neq 0$ is injective.

Proof. Take any $x_1, x_2 \in \mathbb{R}$. If $f(x_1) = f(x_2)$, then $ax_1 + b = ax_2 + b$

Theorem. A linear map $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b with $a \neq 0$ is injective.

Proof. Take any $x_1, x_2 \in \mathbb{R}$. If $f(x_1) = f(x_2)$, then $ax_1 + b = ax_2 + b \implies a(x_1 - x_2) = 0$

Theorem. A linear map $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b with $a \neq 0$ is injective.

Proof. Take any $x_1, x_2 \in \mathbb{R}$. If $f(x_1) = f(x_2)$, then $ax_1 + b = ax_2 + b \implies a(x_1 - x_2) = 0 \implies x_1 = x_2$. $a \neq 0$

Theorem. A linear map $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b with $a \neq 0$ is injective.

Proof. Take any $x_1, x_2 \in \mathbb{R}$. If $f(x_1) = f(x_2)$, then $ax_1 + b = ax_2 + b \implies a(x_1 - x_2) = 0 \implies x_1 = x_2.$ $\stackrel{\uparrow}{a \neq 0}$

Therefore, $\forall x_1, x_2 \in \mathbb{R}$

Theorem. A linear map $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b with $a \neq 0$ is injective.

Proof. Take any $x_1, x_2 \in \mathbb{R}$. If $f(x_1) = f(x_2)$, then $ax_1 + b = ax_2 + b \implies a(x_1 - x_2) = 0 \implies x_1 = x_2.$ $\stackrel{\uparrow}{a \neq 0}$

Therefore, $\forall x_1, x_2 \in \mathbb{R}$ $f(x_1) = f(x_2)$

Theorem. A linear map $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b with $a \neq 0$ is injective.

Proof. Take any $x_1, x_2 \in \mathbb{R}$. If $f(x_1) = f(x_2)$, then $ax_1 + b = ax_2 + b \implies a(x_1 - x_2) = 0 \implies x_1 = x_2.$ $\stackrel{\uparrow}{a \neq 0}$

Therefore, $\forall x_1, x_2 \in \mathbb{R}$ $f(x_1) = f(x_2) \implies x_1 = x_2$,

Theorem. A linear map $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b with $a \neq 0$ is injective.

Proof. Take any $x_1, x_2 \in \mathbb{R}$. If $f(x_1) = f(x_2)$, then $ax_1 + b = ax_2 + b \implies a(x_1 - x_2) = 0 \implies x_1 = x_2.$ $a \neq 0$

Therefore, $\forall x_1, x_2 \in \mathbb{R}$ $f(x_1) = f(x_2) \implies x_1 = x_2$, which means that f is injective.

Theorem. A linear map $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b with $a \neq 0$ is injective.

Proof. Take any $x_1, x_2 \in \mathbb{R}$. If $f(x_1) = f(x_2)$, then $ax_1 + b = ax_2 + b \implies a(x_1 - x_2) = 0 \implies x_1 = x_2.$ $\stackrel{\uparrow}{a \neq 0}$

Therefore, $\forall x_1, x_2 \in \mathbb{R}$ $f(x_1) = f(x_2) \implies x_1 = x_2$, which means that f is injective.

Remark.

Theorem. A linear map $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b with $a \neq 0$ is injective.

Proof. Take any $x_1, x_2 \in \mathbb{R}$. If $f(x_1) = f(x_2)$, then $ax_1 + b = ax_2 + b \implies a(x_1 - x_2) = 0 \implies x_1 = x_2.$ $a \neq 0$

Therefore, $\forall x_1, x_2 \in \mathbb{R}$ $f(x_1) = f(x_2) \implies x_1 = x_2$, which means that f is injective.

Remark. If a = 0, then the map f(x) = b

Theorem. A linear map $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b with $a \neq 0$ is injective.

Proof. Take any $x_1, x_2 \in \mathbb{R}$. If $f(x_1) = f(x_2)$, then $ax_1 + b = ax_2 + b \implies a(x_1 - x_2) = 0 \implies x_1 = x_2.$ $\stackrel{\uparrow}{a \neq 0}$

Therefore, $\forall x_1, x_2 \in \mathbb{R}$ $f(x_1) = f(x_2) \implies x_1 = x_2$, which means that f is injective.

Remark. If a = 0, then the map f(x) = b is a **constant** map,

Theorem. A linear map $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b with $a \neq 0$ is injective.

Proof. Take any $x_1, x_2 \in \mathbb{R}$. If $f(x_1) = f(x_2)$, then $ax_1 + b = ax_2 + b \implies a(x_1 - x_2) = 0 \implies x_1 = x_2.$ $a \neq 0$

Therefore, $\forall x_1, x_2 \in \mathbb{R}$ $f(x_1) = f(x_2) \implies x_1 = x_2$, which means that f is injective.

Remark. If a = 0, then the map f(x) = b is a **constant** map,

it is **not** injective.

The map $f: \mathbb{R} \to \mathbb{R}$

The map $f:\mathbb{R}\to\mathbb{R}$ defined by $f(x)=x^2$

The map $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is **not** injective.

There are **different** x_1 and x_2

The map $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is **not** injective.

There are **different** x_1 and x_2 for which $f(x_1) = f(x_2)$.

The map $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is **not** injective.

There are **different** x_1 and x_2 for which $f(x_1) = f(x_2)$. For example, $1 \neq -1$ but f(1) = f(-1) = 1.

The map $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is **not** injective.

There are **different** x_1 and x_2 for which $f(x_1) = f(x_2)$. For example, $1 \neq -1$ but f(1) = f(-1) = 1. Therefore, f is **not** injective.

The map $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is **not** injective.

There are **different** x_1 and x_2 for which $f(x_1) = f(x_2)$.

For example, $1 \neq -1$ but f(1) = f(-1) = 1.

Therefore, f is **not** injective.

Remark: The restriction $f|_{\mathbb{R}_+}$ is injective.

Definition.

Definition. Let $f: X \to Y$ be a map.

Definition. Let $f: X \to Y$ be a map.

f is called **surjective**

Definition. Let $f: X \to Y$ be a map.

f is called **surjective** (or surjection,

f is called **surjective** (or surjection, or onto) if

Definition. Let $f: X \to Y$ be a map.

f is called **surjective** (or surjection,or onto) if $orall \, y \in Y$

Definition. Let $f: X \to Y$ be a map.

f is called **surjective** (or surjection, or onto) if

 $\forall \ y \in Y \ \exists \ x \in X$

Definition. Let $f: X \to Y$ be a map.

f is called **surjective** (or surjection, or onto) if

 $\forall y \in Y \ \exists x \in X \ y = f(x)$

f is called **surjective** (or surjection, or onto) if

 $\forall y \in Y \; \exists x \in X \; y = f(x)$

(that is, all elements in Y are images of some elements in X)

f is called **surjective** (or surjection, or onto) if

 $\forall y \in Y \; \exists x \in X \; y = f(x)$

(that is, all elements in Y are images of some elements in X)

or, equivalently,

f is called **surjective** (or surjection, or onto) if

 $\forall y \in Y \; \exists x \in X \; y = f(x)$

(that is, all elements in Y are images of some elements in X)

or, equivalently, $Y = \operatorname{Im} f$

f is called **surjective** (or surjection, or onto) if

 $\forall y \in Y \; \exists x \in X \; y = f(x)$

(that is, all elements in Y are images of some elements in X)

or, equivalently, $Y = \operatorname{Im} f$

(that is, the range of the map is the whole Y)

f is called **surjective** (or surjection, or onto) if

 $\forall y \in Y \ \exists x \in X \ y = f(x)$

(that is, all elements in Y are images of some elements in X)

or, equivalently, $Y = \operatorname{Im} f$

(that is, the range of the map is the whole Y)

or, equivalently, $\forall y \in Y$ the equation f(x) = y has a solution.

Example.

- •
- •
- •

- - •

Example 1.

Example 1. A linear map $f : \mathbb{R} \to \mathbb{R}$

Example 1. A linear map $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b with $a \neq 0$

Example 1. A linear map $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b with $a \neq 0$ is surjective.

Example 1. A linear map $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b with $a \neq 0$ is surjective.

Indeed,

Example 1. A linear map $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b with $a \neq 0$ is surjective.

Indeed, for any $y \in \mathbb{R}$

Example 1. A linear map $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b with $a \neq 0$ is surjective.

Indeed, for any $y \in \mathbb{R}$ there exists x,

Example 1. A linear map $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b with $a \neq 0$ is surjective.

Indeed, for any $y \in \mathbb{R}$ there exists x, namely $x = \frac{y-b}{a}$, such that

f(x) =

Example 1. A linear map $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b with $a \neq 0$ is surjective.

$$f(x) = f\left(\frac{y-b}{a}\right) =$$

$$f(x) = f\left(\frac{y-b}{a}\right) = a \cdot \frac{y-b}{a} + b = a$$

$$f(x) = f\left(\frac{y-b}{a}\right) = a \cdot \frac{y-b}{a} + b = y-b+b = a$$

$$f(x) = f\left(\frac{y-b}{a}\right) = a \cdot \frac{y-b}{a} + b = y - b + b = y.$$

Indeed, for any $y \in \mathbb{R}$ there exists x, namely $x = \frac{y-b}{a}$, such that

$$f(x) = f\left(\frac{y-b}{a}\right) = a \cdot \frac{y-b}{a} + b = y - b + b = y.$$

Therefore, $\forall \, y \in \mathbb{R} \;\; \exists \, x \in \mathbb{R} \;\; y = f(x)$,

Indeed, for any $y \in \mathbb{R}$ there exists x, namely $x = \frac{y-b}{a}$, such that

$$f(x) = f\left(\frac{y-b}{a}\right) = a \cdot \frac{y-b}{a} + b = y - b + b = y.$$

Therefore, $\forall y \in \mathbb{R} \ \exists x \in \mathbb{R} \ y = f(x)$, that is, f is surjective.

Indeed, for any $y \in \mathbb{R}$ there exists x, namely $x = \frac{y-b}{a}$, such that

$$f(x) = f\left(\frac{y-b}{a}\right) = a \cdot \frac{y-b}{a} + b = y-b + b = y.$$

Therefore, $\forall y \in \mathbb{R} \ \exists x \in \mathbb{R} \ y = f(x)$, that is, f is surjective.

Example 2.

Indeed, for any $y \in \mathbb{R}$ there exists x, namely $x = \frac{y-b}{a}$, such that

$$f(x) = f\left(\frac{y-b}{a}\right) = a \cdot \frac{y-b}{a} + b = y - b + b = y.$$

Therefore, $\forall y \in \mathbb{R} \ \exists x \in \mathbb{R} \ y = f(x)$, that is, f is surjective.

Example 2. A map $f : \mathbb{R} \to \mathbb{R}$

Indeed, for any $y \in \mathbb{R}$ there exists x, namely $x = \frac{y-b}{a}$, such that

$$f(x) = f\left(\frac{y-b}{a}\right) = a \cdot \frac{y-b}{a} + b = y - b + b = y.$$

Therefore, $\forall y \in \mathbb{R} \ \exists x \in \mathbb{R} \ y = f(x)$, that is, f is surjective.

Example 2. A map $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$

Indeed, for any $y \in \mathbb{R}$ there exists x, namely $x = \frac{y-b}{a}$, such that

$$f(x) = f\left(\frac{y-b}{a}\right) = a \cdot \frac{y-b}{a} + b = y-b + b = y.$$

Therefore, $\forall y \in \mathbb{R} \ \exists x \in \mathbb{R} \ y = f(x)$, that is, f is surjective.

Example 2. A map $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is **not** surjective.

Indeed, for any $y \in \mathbb{R}$ there exists x, namely $x = \frac{y-b}{a}$, such that

$$f(x) = f\left(\frac{y-b}{a}\right) = a \cdot \frac{y-b}{a} + b = y-b + b = y.$$

Therefore, $\forall y \in \mathbb{R} \ \exists x \in \mathbb{R} \ y = f(x)$, that is, f is surjective.

Example 2. A map $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is **not** surjective. Indeed,

Indeed, for any $y \in \mathbb{R}$ there exists x, namely $x = \frac{y-b}{a}$, such that

$$f(x) = f\left(\frac{y-b}{a}\right) = a \cdot \frac{y-b}{a} + b = y-b + b = y.$$

Therefore, $\forall y \in \mathbb{R} \ \exists x \in \mathbb{R} \ y = f(x)$, that is, f is surjective.

Example 2. A map $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is **not** surjective. Indeed, $\text{Im } f = [0, \infty)$

Indeed, for any $y \in \mathbb{R}$ there exists x, namely $x = \frac{y-b}{a}$, such that

$$f(x) = f\left(\frac{y-b}{a}\right) = a \cdot \frac{y-b}{a} + b = y-b + b = y.$$

Therefore, $\forall y \in \mathbb{R} \ \exists x \in \mathbb{R} \ y = f(x)$, that is, f is surjective.

Example 2. A map $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is **not** surjective. Indeed, $\operatorname{Im} f = [0, \infty) \neq \underset{\uparrow}{\mathbb{R}}$ codomain

Any map

Any map can be converted to a surjection

Any map can be converted to a surjection

by reducing its codomain to the range:

Any map can be converted to a surjection

by reducing its codomain to the range:

If $f: X \to Y$ is not a surjection,

Any map can be converted to a surjection

by reducing its codomain to the range:

If $f: X \to Y$ is not a surjection, then $\hat{f}: X \to \mathop{\mathrm{Im}}\limits^{\cup} f$,

Any map can be converted to a surjection

by reducing its codomain to the range:

Any map can be converted to a surjection

by reducing its codomain to the range:

If $f: X \to Y$ is not a surjection, then $\hat{f}: X \to \stackrel{\cup}{\operatorname{Im}} f$, where $\hat{f}(x) = f(x)$ for all $x \in X$, is a surjection.

Any map can be converted to a surjection

by reducing its codomain to the range:

If $f: X \to Y$ is not a surjection, then $\hat{f}: X \to \stackrel{\cup}{\operatorname{Im}} f$, where $\hat{f}(x) = f(x)$ for all $x \in X$, is a surjection.

Any map can be converted to a surjection

by reducing its codomain to the range:

If $f: X \to Y$ is not a surjection, then $\hat{f}: X \to \stackrel{\cup}{\operatorname{Im}} f$, where $\hat{f}(x) = f(x)$ for all $x \in X$, is a surjection.

Definition.

Definition. Let $f: X \to Y$ be a map.

Definition. Let $f: X \to Y$ be a map.

f is called **bijective**

Definition. Let $f: X \to Y$ be a map.

f is called **bijective** (or bijection

Definition. Let $f: X \to Y$ be a map.

f is called **bijective** (or bijection, or one-to-one correspondence) if

Definition. Let $f: X \to Y$ be a map.

f is called **bijective** (or bijection, or one-to-one correspondence) if

f is injective and surjective:

Definition. Let $f: X \to Y$ be a map.

f is called **bijective** (or bijection, or one-to-one correspondence) if

f is injective and surjective: $\forall \ y \in Y$

Definition. Let $f: X \to Y$ be a map.

f is called **bijective** (or bijection, or one-to-one correspondence) if

f is injective and surjective: $\forall y \in Y \exists ! x \in X$

Definition. Let $f: X \to Y$ be a map.

f is called **bijective** (or bijection, or one-to-one correspondence) if

f is injective and surjective: $\forall \; y \in Y \;\; \exists \, ! \; x \in X \;\; y = f(x)$,

Definition. Let $f: X \to Y$ be a map.

f is called **bijective** (or bijection, or one-to-one correspondence) if

f is injective and surjective: $\ \ \forall \; y \in Y \;\; \exists \, ! \; x \in X \;\; \; y = f(x)$,

Definition. Let $f: X \to Y$ be a map.

f is called **bijective** (or bijection, or one-to-one correspondence) if

f is injective and surjective: $\forall \ y \in Y \ \exists \ ! \ x \in X \ y = f(x)$,

Definition. Let $f: X \to Y$ be a map.

f is called **bijective** (or bijection, or one-to-one correspondence) if

f is injective and surjective: $\forall \ y \in Y \ \exists \ ! \ x \in X \ y = f(x)$,

Definition. Let $f: X \to Y$ be a map.

f is called **bijective** (or bijection, or one-to-one correspondence) if

f is injective and surjective: $\forall \ y \in Y \ \exists \ ! \ x \in X \ y = f(x)$,

Definition. Let $f: X \to Y$ be a map.

f is called **bijective** (or bijection, or one-to-one correspondence) if

f is injective and surjective: $\forall \ y \in Y \ \exists \ ! \ x \in X \ y = f(x)$,

Definition. Let $f: X \to Y$ be a map.

f is called **bijective** (or bijection, or one-to-one correspondence) if

f is injective and surjective: $\forall \ y \in Y \ \exists \ ! \ x \in X \ y = f(x)$,

Definition. Let $f: X \to Y$ be a map.

f is called **bijective** (or bijection, or one-to-one correspondence) if

f is injective and surjective: $\forall \ y \in Y \ \exists \ ! \ x \in X \ y = f(x)$,

Definition. Let $f: X \to Y$ be a map.

f is called **bijective** (or bijection, or one-to-one correspondence) if

f is injective and surjective: $\forall \ y \in Y \ \exists \ ! \ x \in X \ y = f(x)$,

Definition. Let $f: X \to Y$ be a map.

f is called **bijective** (or bijection, or one-to-one correspondence) if

f is injective and surjective: $\forall \ y \in Y \ \exists \ ! \ x \in X \ y = f(x)$,

Definition. Let $f: X \to Y$ be a map.

f is called **bijective** (or bijection, or one-to-one correspondence) if

f is injective and surjective: $\forall \ y \in Y \ \exists \ ! \ x \in X \ y = f(x)$,

Definition. Let $f: X \to Y$ be a map.

f is called **bijective** (or bijection, or one-to-one correspondence) if

f is injective and surjective: $\forall \ y \in Y \ \exists \ ! \ x \in X \ y = f(x)$,

Definition. Let $f: X \to Y$ be a map.

f is called **bijective** (or bijection, or one-to-one correspondence) if

f is injective and surjective: $\forall \ y \in Y \ \exists \ ! \ x \in X \ y = f(x)$,

A linear map $f: \mathbb{R} \to \mathbb{R}$

A linear map $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b with $a \neq 0$

A linear map $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b with $a \neq 0$ is bijective,

A linear map $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b with $a \neq 0$ is bijective, since it is injective and surjective.

A linear map $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b with $a \neq 0$ is bijective, since it is injective and surjective.

 $\forall y \in \mathbb{R} \quad \exists ! x \in \mathbb{R}$

$$\forall y \in \mathbb{R} \quad \exists ! x \in \mathbb{R} \quad y = ax + b$$

Definition.

Definition. A map $g: Y \to X$ is called **inverse** for $f: X \to Y$ if

Definition. A map $g: Y \to X$ is called **inverse** for $f: X \to Y$ if $g \circ f = \operatorname{id}_X$

Definition. A map $g: Y \to X$ is called **inverse** for $f: X \to Y$ if $g \circ f = \operatorname{id}_X$ and $f \circ g = \operatorname{id}_Y$,

Definition. A map $g: Y \to X$ is called **inverse** for $f: X \to Y$ if $g \circ f = \operatorname{id}_X$ and $f \circ g = \operatorname{id}_Y$, that is $(g \circ f)(x) = x$ for any $x \in X$,

 $g \circ f = \mathsf{id}_X$ and $f \circ g = \mathsf{id}_Y$, that is

 $(g \circ f)(x) = x$ for any $x \in X$, and

$$g \circ f = \operatorname{id}_X$$
 and $f \circ g = \operatorname{id}_Y$, that is

$$(g\circ f)(x)=x$$
 for any $x\in X$, and

 $g \circ f = \operatorname{id}_X$ and $f \circ g = \operatorname{id}_Y$, that is $(g \circ f)(x) = x$ for any $x \in X$, and

 $g\circ f={\rm id}_X \ {\rm and} \ f\circ g={\rm id}_Y$, that is $(g\circ f)(x)=x \ {\rm for \ any} \ x\in X$, and

 $g \circ f = \operatorname{id}_X$ and $f \circ g = \operatorname{id}_Y$, that is $(g \circ f)(x) = x$ for any $x \in X$, and $(f \circ g)(y) = y$ for any $y \in Y$.

 $g \circ f = \operatorname{id}_X$ and $f \circ g = \operatorname{id}_Y$, that is $(g \circ f)(x) = x$ for any $x \in X$, and $(f \circ g)(y) = y$ for any $y \in Y$.

 $g\circ f={\rm id}_X \ \mbox{and} \ \ f\circ g={\rm id}_Y$, that is $(g\circ f)(x)=x \ \ \mbox{for any} \ \ x\in X \ \mbox{, and}$

 $g \circ f = \operatorname{id}_X$ and $f \circ g = \operatorname{id}_Y$, that is $(g \circ f)(x) = x$ for any $x \in X$, and

 $g \circ f = \operatorname{id}_X$ and $f \circ g = \operatorname{id}_Y$, that is $(g \circ f)(x) = x$ for any $x \in X$, and $(f \circ g)(y) = y$ for any $y \in Y$.

$$g\circ f=\operatorname{id}_X$$
 and $f\circ g=\operatorname{id}_Y$, that is $(g\circ f)(x)=x$ for any $x\in X$, and

 $(f \circ g)(y) = y$ for any $y \in Y$.

Definition.

$$g \circ f = \operatorname{id}_X$$
 and $f \circ g = \operatorname{id}_Y$, that is

$$(g\circ f)(x)=x$$
 for any $x\in X$, and

 $(f\circ g)(y)=y \ \ {
m for \ any} \ \ y\in Y$.

Definition. A map is called **invertible** if it has an **inverse**.

$$g \circ f = \operatorname{id}_X$$
 and $f \circ g = \operatorname{id}_Y$, that is

$$(g\circ f)(x)=x$$
 for any $x\in X$, and

 $(f \circ g)(y) = y$ for any $y \in Y$.

Definition. A map is called **invertible** if it has an **inverse**.

Warning.

$$g \circ f = \operatorname{id}_X$$
 and $f \circ g = \operatorname{id}_Y$, that is

$$(g\circ f)(x)=x$$
 for any $x\in X$, and

 $(f \circ g)(y) = y$ for any $y \in Y$.

Definition. A map is called **invertible** if it has an **inverse**.

Warning. Not all maps are invertible!

Theorem.

Theorem. If an inverse map exists,

Theorem. If an inverse map exists, then it is **unique**.

Theorem. If an inverse map exists, then it is **unique**.

Proof.

Theorem. If an inverse map exists, then it is unique.

Proof. Let $f: X \to Y$ has two inverse maps, g and h.

Theorem. If an inverse map exists, then it is unique.

Proof. Let $f: X \to Y$ has two inverse maps, g and $h = g, h: Y \to X$

Theorem. If an inverse map exists, then it is **unique**. **Proof.** Let $f: X \to Y$ has two inverse maps, g and h. $g, h: Y \to X$ Since g is an inverse for f, we have **Theorem.** If an inverse map exists, then it is **unique**. **Proof.** Let $f: X \to Y$ has two inverse maps, g and h. $g, h: Y \to X$ Since g is an inverse for f, we have $g \circ f = id_X$ **Theorem.** If an inverse map exists, then it is **unique**. **Proof.** Let $f: X \to Y$ has two inverse maps, g and h. $g, h: Y \to X$ Since g is an inverse for f, we have $g \circ f = \operatorname{id}_X$ and $f \circ g = \operatorname{id}_Y$. **Theorem.** If an inverse map exists, then it is **unique**. **Proof.** Let $f: X \to Y$ has two inverse maps, g and h. $g, h: Y \to X$ Since g is an inverse for f, we have $g \circ f = id_X$ and $f \circ g = id_Y$. Since h is an inverse for f, we have **Theorem.** If an inverse map exists, then it is **unique**. **Proof.** Let $f: X \to Y$ has two inverse maps, g and h. $g, h: Y \to X$ Since g is an inverse for f, we have $g \circ f = id_X$ and $f \circ g = id_Y$. Since h is an inverse for f, we have $h \circ f = id_X$ **Theorem.** If an inverse map exists, then it is **unique**. **Proof.** Let $f: X \to Y$ has two inverse maps, g and h. $g, h: Y \to X$ Since g is an inverse for f, we have $g \circ f = id_X$ and $f \circ g = id_Y$. Since h is an inverse for f, we have $h \circ f = id_X$ and $f \circ h = id_Y$. **Theorem.** If an inverse map exists, then it is **unique**. **Proof.** Let $f: X \to Y$ has two inverse maps, g and h. $g, h: Y \to X$ Since g is an inverse for f, we have $g \circ f = id_X$ and $f \circ g = id_Y$. Since h is an inverse for f, we have $h \circ f = id_X$ and $f \circ h = id_Y$. $g \circ f \circ h$ **Theorem.** If an inverse map exists, then it is **unique**. **Proof.** Let $f: X \to Y$ has two inverse maps, g and h. $g, h: Y \to X$ Since g is an inverse for f, we have $g \circ f = id_X$ and $f \circ g = id_Y$. Since h is an inverse for f, we have $h \circ f = id_X$ and $f \circ h = id_Y$. $g \circ f \circ h = (g \circ f) \circ h$ **Theorem.** If an inverse map exists, then it is **unique**. **Proof.** Let $f: X \to Y$ has two inverse maps, g and h. $g, h: Y \to X$ Since g is an inverse for f, we have $g \circ f = id_X$ and $f \circ g = id_Y$. Since h is an inverse for f, we have $h \circ f = id_X$ and $f \circ h = id_Y$. $g \circ f \circ h = (g \circ f) \circ h = id_X \circ h$ **Theorem.** If an inverse map exists, then it is **unique**. **Proof.** Let $f: X \to Y$ has two inverse maps, g and h. $g, h: Y \to X$ Since g is an inverse for f, we have $g \circ f = id_X$ and $f \circ g = id_Y$. Since h is an inverse for f, we have $h \circ f = id_X$ and $f \circ h = id_Y$. $g \circ f \circ h = (g \circ f) \circ h = id_X \circ h = h$ **Theorem.** If an inverse map exists, then it is **unique**. **Proof.** Let $f: X \to Y$ has two inverse maps, g and h. $g, h: Y \to X$ Since g is an inverse for f, we have $g \circ f = id_X$ and $f \circ g = id_Y$. Since h is an inverse for f, we have $h \circ f = id_X$ and $f \circ h = id_Y$. $g \circ (f \circ h) = g \circ f \circ h = (g \circ f) \circ h = id_X \circ h = h$ **Theorem.** If an inverse map exists, then it is **unique**. **Proof.** Let $f: X \to Y$ has two inverse maps, g and h. $g, h: Y \to X$ Since g is an inverse for f, we have $g \circ f = id_X$ and $f \circ g = id_Y$. Since h is an inverse for f, we have $h \circ f = id_X$ and $f \circ h = id_Y$. $g \circ id_Y = g \circ (f \circ h) = g \circ f \circ h = (g \circ f) \circ h = id_X \circ h = h$ **Theorem.** If an inverse map exists, then it is **unique**. **Proof.** Let $f: X \to Y$ has two inverse maps, g and h. $g, h: Y \to X$ Since g is an inverse for f, we have $g \circ f = id_X$ and $f \circ g = id_Y$. Since h is an inverse for f, we have $h \circ f = id_X$ and $f \circ h = id_Y$. $g = g \circ id_Y = g \circ (f \circ h) = g \circ f \circ h = (g \circ f) \circ h = id_X \circ h = h$ **Theorem.** If an inverse map exists, then it is **unique**. **Proof.** Let $f: X \to Y$ has two inverse maps, g and h. $g, h: Y \to X$ Since g is an inverse for f, we have $g \circ f = id_X$ and $f \circ g = id_Y$. Since h is an inverse for f, we have $h \circ f = id_X$ and $f \circ h = id_Y$. $g = g \circ id_Y = g \circ (f \circ h) = g \circ f \circ h = (g \circ f) \circ h = id_X \circ h = h$ Therefore, g = h **Theorem.** If an inverse map exists, then it is **unique**. **Proof.** Let $f: X \to Y$ has two inverse maps, g and h. $g, h: Y \to X$ Since g is an inverse for f, we have $g \circ f = id_X$ and $f \circ g = id_Y$. Since h is an inverse for f, we have $h \circ f = id_X$ and $f \circ h = id_Y$. $g = g \circ id_Y = g \circ (f \circ h) = g \circ f \circ h = (g \circ f) \circ h = id_X \circ h = h$ Therefore, g = h and the inverse map is unique. **Theorem.** If an inverse map exists, then it is **unique**. **Proof.** Let $f: X \to Y$ has two inverse maps, g and $h = g, h: Y \to X$ Since g is an inverse for f, we have $g \circ f = \operatorname{id}_X$ and $f \circ g = \operatorname{id}_Y$. Since h is an inverse for f, we have $h \circ f = \operatorname{id}_X$ and $f \circ h = \operatorname{id}_Y$. $g = g \circ \operatorname{id}_Y = g \circ (f \circ h) = g \circ f \circ h = (g \circ f) \circ h = \operatorname{id}_X \circ h = h$ Therefore, g = h and the inverse map is unique.

Since the inverse map is unique, it deserves a functional notation.

Theorem. If an inverse map exists, then it is **unique**. **Proof.** Let $f: X \to Y$ has two inverse maps, g and $h = g, h: Y \to X$ Since g is an inverse for f, we have $g \circ f = \operatorname{id}_X$ and $f \circ g = \operatorname{id}_Y$. Since h is an inverse for f, we have $h \circ f = \operatorname{id}_X$ and $f \circ h = \operatorname{id}_Y$. $g = g \circ \operatorname{id}_Y = g \circ (f \circ h) = g \circ f \circ h = (g \circ f) \circ h = \operatorname{id}_X \circ h = h$ Therefore, g = h and the inverse map is unique. Since the inverse map is **unique**, it deserves a **functional notation**. The inverse for f is denoted by f^{-1} .

Theorem. If an inverse map exists, then it is **unique**. **Proof.** Let $f: X \to Y$ has two inverse maps, g and $h = g, h: Y \to X$ Since g is an inverse for f, we have $g \circ f = \operatorname{id}_X$ and $f \circ g = \operatorname{id}_Y$. Since h is an inverse for f, we have $h \circ f = \operatorname{id}_X$ and $f \circ h = \operatorname{id}_Y$. $g = g \circ \operatorname{id}_Y = g \circ (f \circ h) = g \circ f \circ h = (g \circ f) \circ h = \operatorname{id}_X \circ h = h$ Therefore, g = h and the inverse map is unique. Since the inverse map is **unique**, it deserves a **functional notation**. The inverse for f is denoted by f^{-1} . By the definition of the inverse,

Theorem. If an inverse map exists, then it is **unique**. **Proof.** Let $f: X \to Y$ has two inverse maps, g and h. $g, h: Y \to X$ Since g is an inverse for f, we have $g \circ f = \operatorname{id}_X$ and $f \circ g = \operatorname{id}_Y$. Since h is an inverse for f, we have $h \circ f = \operatorname{id}_X$ and $f \circ h = \operatorname{id}_Y$. $g = g \circ \operatorname{id}_Y = g \circ (f \circ h) = g \circ f \circ h = (g \circ f) \circ h = \operatorname{id}_X \circ h = h$ Therefore, g = h and the inverse map is unique. Since the inverse map is **unique**, it deserves a **functional notation**. The inverse for f is denoted by f^{-1} . By the definition of the inverse,

$$f^{-1} \circ f = \operatorname{id}_X$$
 and $f \circ f^{-1} = \operatorname{id}_Y$

Theorem.

Theorem. A map is invertible iff

Theorem. A map is invertible iff it is a bijection.

Theorem. A map is invertible iff it is a bijection.

Proof.

Theorem. A map is invertible iff it is a bijection.

Proof. Assume that $f: X \to Y$ is invertible

Proof. Assume that $f: X \to Y$ is invertible and prove that f is a bijection.

Proof. Assume that $f: X \to Y$ is invertible and prove that f is a bijection. To show **injectivity**,

Proof. Assume that $f: X \to Y$ is invertible and prove that f is a bijection.

To show **injectivity**, assume that $f(x_1) = f(x_2)$

Proof. Assume that $f: X \to Y$ is invertible and prove that f is a bijection.

To show **injectivity**, assume that $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X$.

Proof. Assume that $f: X \to Y$ is invertible and prove that f is a bijection.

To show **injectivity**, assume that $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X$.

Apply f^{-1}

Proof. Assume that $f: X \to Y$ is invertible and prove that f is a bijection.

To show **injectivity**, assume that $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X$.

Apply f^{-1} (it exists since f is invertible)

Proof. Assume that $f: X \to Y$ is invertible and prove that f is a bijection.

To show **injectivity**, assume that $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X$.

Apply f^{-1} (it exists since f is invertible) to this identity:

Proof. Assume that $f: X \to Y$ is invertible and prove that f is a bijection.

To show **injectivity**, assume that $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X$.

Apply f^{-1} (it exists since f is invertible) to this identity:

 $f^{-1}(f(x_1)) = f^{-1}(f(x_2))$

Proof. Assume that $f: X \to Y$ is invertible and prove that f is a bijection.

To show **injectivity**, assume that $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X$.

Apply f^{-1} (it exists since f is invertible) to this identity:

 $f^{-1}(f(x_1)) = f^{-1}(f(x_2)) \implies x_1 = x_2.$

Proof. Assume that $f: X \to Y$ is invertible and prove that f is a bijection.

To show **injectivity**, assume that $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X$.

Apply f^{-1} (it exists since f is invertible) to this identity:

 $f^{-1}(f(x_1)) = f^{-1}(f(x_2)) \implies x_1 = x_2.$

By this, f is injective.

Proof. Assume that $f: X \to Y$ is invertible and prove that f is a bijection.

To show **injectivity**, assume that $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X$.

Apply f^{-1} (it exists since f is invertible) to this identity:

 $f^{-1}(f(x_1)) = f^{-1}(f(x_2)) \implies x_1 = x_2.$

By this, f is injective.

To show surjectivity,

Proof. Assume that $f: X \to Y$ is invertible and prove that f is a bijection.

To show **injectivity**, assume that $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X$.

Apply f^{-1} (it exists since f is invertible) to this identity:

$$f^{-1}(f(x_1)) = f^{-1}(f(x_2)) \implies x_1 = x_2$$
.

By this, f is injective.

To show **surjectivity**, take any $y \in Y$

Proof. Assume that $f: X \to Y$ is invertible and prove that f is a bijection.

To show **injectivity**, assume that $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X$.

Apply f^{-1} (it exists since f is invertible) to this identity:

$$f^{-1}(f(x_1)) = f^{-1}(f(x_2)) \implies x_1 = x_2$$

By this, f is injective.

To show **surjectivity**, take any $y \in Y$ and apply f^{-1} .

Proof. Assume that $f: X \to Y$ is invertible and prove that f is a bijection.

To show **injectivity**, assume that $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X$.

Apply f^{-1} (it exists since f is invertible) to this identity:

$$f^{-1}(f(x_1)) = f^{-1}(f(x_2)) \implies x_1 = x_2$$
.

By this, f is injective.

To show surjectivity, take any $y \in Y$ and apply f^{-1} . Let $x = f^{-1}(y)$.

Proof. Assume that $f: X \to Y$ is invertible and prove that f is a bijection.

To show **injectivity**, assume that $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X$.

Apply f^{-1} (it exists since f is invertible) to this identity:

$$f^{-1}(f(x_1)) = f^{-1}(f(x_2)) \implies x_1 = x_2$$

By this, f is injective.

To show surjectivity, take any $y \in Y$ and apply f^{-1} . Let $x = f^{-1}(y)$. So for any $y \in Y$

Proof. Assume that $f: X \to Y$ is invertible and prove that f is a bijection.

To show **injectivity**, assume that $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X$.

Apply f^{-1} (it exists since f is invertible) to this identity:

$$f^{-1}(f(x_1)) = f^{-1}(f(x_2)) \implies x_1 = x_2$$

By this, f is injective.

To show surjectivity, take any $y \in Y$ and apply f^{-1} . Let $x = f^{-1}(y)$.

So for any $y \in Y$ there exists $x \in X$, namely $x = f^{-1}(y)$,

Proof. Assume that $f: X \to Y$ is invertible and prove that f is a bijection.

To show **injectivity**, assume that $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X$.

Apply f^{-1} (it exists since f is invertible) to this identity:

$$f^{-1}(f(x_1)) = f^{-1}(f(x_2)) \implies x_1 = x_2$$
.

By this, f is injective.

To show **surjectivity**, take any $y \in Y$ and apply f^{-1} . Let $x = f^{-1}(y)$.

So for any $y \in Y$ there exists $x \in X$, namely $x = f^{-1}(y)$,

such that f(x)

Proof. Assume that $f: X \to Y$ is invertible and prove that f is a bijection.

To show **injectivity**, assume that $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X$.

Apply f^{-1} (it exists since f is invertible) to this identity:

$$f^{-1}(f(x_1)) = f^{-1}(f(x_2)) \implies x_1 = x_2$$
.

By this, f is injective.

To show surjectivity, take any $y \in Y$ and apply f^{-1} . Let $x = f^{-1}(y)$.

So for any $y \in Y$ there exists $x \in X$, namely $x = f^{-1}(y)$,

such that $f(x) = f(f^{-1}(y))$

Proof. Assume that $f: X \to Y$ is invertible and prove that f is a bijection.

To show **injectivity**, assume that $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X$.

Apply f^{-1} (it exists since f is invertible) to this identity:

$$f^{-1}(f(x_1)) = f^{-1}(f(x_2)) \implies x_1 = x_2$$
.

By this, f is injective.

To show surjectivity, take any $y \in Y$ and apply f^{-1} . Let $x = f^{-1}(y)$.

So for any $y \in Y$ there exists $x \in X$, namely $x = f^{-1}(y)$,

such that $f(x) = f(f^{-1}(y)) = y$.

Proof. Assume that $f: X \to Y$ is invertible and prove that f is a bijection.

To show **injectivity**, assume that $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X$.

Apply f^{-1} (it exists since f is invertible) to this identity:

$$f^{-1}(f(x_1)) = f^{-1}(f(x_2)) \implies x_1 = x_2$$
.

By this, f is injective.

To show **surjectivity**, take any $y \in Y$ and apply f^{-1} . Let $x = f^{-1}(y)$. So for any $y \in Y$ there exists $x \in X$, namely $x = f^{-1}(y)$, such that $f(x) = f(f^{-1}(y)) = y$.

By this, f is surjective.

Proof. Assume that $f: X \to Y$ is invertible and prove that f is a bijection.

To show **injectivity**, assume that $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X$.

Apply f^{-1} (it exists since f is invertible) to this identity:

$$f^{-1}(f(x_1)) = f^{-1}(f(x_2)) \implies x_1 = x_2$$
.

By this, f is injective.

To show surjectivity, take any $y \in Y$ and apply f^{-1} . Let $x = f^{-1}(y)$. So for any $y \in Y$ there exists $x \in X$, namely $x = f^{-1}(y)$,

such that $f(x) = f(f^{-1}(y)) = y$.

By this, f is surjective.

We have proved that f is injective and surjective,

Proof. Assume that $f: X \to Y$ is invertible and prove that f is a bijection.

To show **injectivity**, assume that $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X$.

Apply f^{-1} (it exists since f is invertible) to this identity:

$$f^{-1}(f(x_1)) = f^{-1}(f(x_2)) \implies x_1 = x_2$$
.

By this, f is injective.

To show surjectivity, take any $y \in Y$ and apply f^{-1} . Let $x = f^{-1}(y)$. So for any $y \in Y$ there exists $x \in X$, namely $x = f^{-1}(y)$,

such that
$$f(x) = f(f^{-1}(y)) = y$$
 .

By this, f is surjective.

We have proved that f is injective and surjective, therefore, f is **bijective**.

Proof. Assume that $f: X \to Y$ is invertible and prove that f is a bijection.

To show **injectivity**, assume that $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X$.

Apply f^{-1} (it exists since f is invertible) to this identity:

$$f^{-1}(f(x_1)) = f^{-1}(f(x_2)) \implies x_1 = x_2$$
.

By this, f is injective.

To show surjectivity, take any $y \in Y$ and apply f^{-1} . Let $x = f^{-1}(y)$. So for any $y \in Y$ there exists $x \in X$, namely $x = f^{-1}(y)$,

such that $f(x) = f(f^{-1}(y)) = y$.

By this, f is surjective.

We have proved that f is injective and surjective, therefore, f is **bijective**. The half of the proof is done!

Assume now that f is a **bijection**,

Assume now that f is a **bijection**, and prove that f is invertible.

Assume now that f is a **bijection**, and prove that f is **invertible**. By definition of bijectivity,

Assume now that f is a **bijection**, and prove that f is **invertible**. By definition of bijectivity, $\forall y \in Y \quad \exists ! x \in X \quad y = f(x)$.

Assume now that f is a **bijection**, and prove that f is **invertible**. By definition of bijectivity, $\forall y \in Y \quad \exists ! x \in X \quad y = f(x)$. Define a map $g: Y \to X$

Assume now that f is a **bijection**, and prove that f is **invertible**. By definition of bijectivity, $\forall y \in Y \quad \exists ! x \in X \quad y = f(x)$. Define a map $g: Y \to X$ by the formula g(y) = x, Assume now that f is a **bijection**, and prove that f is **invertible**. By definition of bijectivity, $\forall y \in Y \quad \exists ! x \in X \quad y = f(x)$. Define a map $g: Y \to X$ by the formula g(y) = x, where y = f(x). Assume now that f is a **bijection**, and prove that f is **invertible**. By definition of bijectivity, $\forall y \in Y \quad \exists ! x \in X \quad y = f(x)$. Define a map $g: Y \to X$ by the formula g(y) = x, where y = f(x). Let us prove that g is the inverse for f. Assume now that f is a **bijection**, and prove that f is **invertible**. By definition of bijectivity, $\forall y \in Y \quad \exists ! x \in X \quad y = f(x)$. Define a map $g: Y \to X$ by the formula g(y) = x, where y = f(x). Let us prove that g is the inverse for f. $\forall x \in X$ Assume now that f is a **bijection**, and prove that f is **invertible**. By definition of bijectivity, $\forall y \in Y \quad \exists ! x \in X \quad y = f(x)$. Define a map $g: Y \to X$ by the formula g(y) = x, where y = f(x). Let us prove that g is the inverse for f. $\forall x \in X \quad (g \circ f)(x)$ Assume now that f is a **bijection**, and prove that f is **invertible**. By definition of bijectivity, $\forall y \in Y \quad \exists ! x \in X \quad y = f(x)$. Define a map $g: Y \to X$ by the formula g(y) = x, where y = f(x). Let us prove that g is the inverse for f. $\forall x \in X \quad (g \circ f)(x) = g(f(x))$ Assume now that f is a **bijection**, and prove that f is **invertible**. By definition of bijectivity, $\forall y \in Y \quad \exists ! x \in X \quad y = f(x)$. Define a map $g: Y \to X$ by the formula g(y) = x, where y = f(x). Let us prove that g is the inverse for f. $\forall x \in X \quad (g \circ f)(x) = g(f(x)) = g(y)$ Assume now that f is a **bijection**, and prove that f is **invertible**. By definition of bijectivity, $\forall y \in Y \quad \exists ! x \in X \quad y = f(x)$. Define a map $g: Y \to X$ by the formula g(y) = x, where y = f(x). Let us prove that g is the inverse for f. $\forall x \in X \quad (g \circ f)(x) = g(f(x)) = g(y) = x$. Assume now that f is a **bijection**, and prove that f is **invertible**. By definition of bijectivity, $\forall y \in Y \quad \exists ! x \in X \quad y = f(x)$. Define a map $g: Y \to X$ by the formula g(y) = x, where y = f(x). Let us prove that g is the inverse for f. $\forall x \in X \quad (g \circ f)(x) = g(f(x)) = g(y) = x$. So $g \circ f = \operatorname{id}_X$. Assume now that f is a bijection, and prove that f is invertible. By definition of bijectivity, $\forall y \in Y \quad \exists ! x \in X \quad y = f(x)$. Define a map $g: Y \to X$ by the formula g(y) = x, where y = f(x). Let us prove that g is the inverse for f. $\forall x \in X \quad (g \circ f)(x) = g(f(x)) = g(y) = x$. So $g \circ f = \operatorname{id}_X$. $\forall y \in Y$ Assume now that f is a bijection, and prove that f is invertible. By definition of bijectivity, $\forall y \in Y \quad \exists ! x \in X \quad y = f(x)$. Define a map $g: Y \to X$ by the formula g(y) = x, where y = f(x). Let us prove that g is the inverse for f. $\forall x \in X \quad (g \circ f)(x) = g(f(x)) = g(y) = x$. So $g \circ f = \operatorname{id}_X$. $\forall y \in Y \quad (f \circ g)(y)$ Assume now that f is a bijection, and prove that f is invertible. By definition of bijectivity, $\forall y \in Y \quad \exists ! x \in X \quad y = f(x)$. Define a map $g: Y \to X$ by the formula g(y) = x, where y = f(x). Let us prove that g is the inverse for f. $\forall x \in X \quad (g \circ f)(x) = g(f(x)) = g(y) = x$. So $g \circ f = \operatorname{id}_X$. $\forall y \in Y \quad (f \circ g)(y) = f(g(y))$ Assume now that f is a bijection, and prove that f is invertible. By definition of bijectivity, $\forall y \in Y \quad \exists ! x \in X \quad y = f(x)$. Define a map $g: Y \to X$ by the formula g(y) = x, where y = f(x). Let us prove that g is the inverse for f. $\forall x \in X \quad (g \circ f)(x) = g(f(x)) = g(y) = x$. So $g \circ f = \operatorname{id}_X$. $\forall y \in Y \quad (f \circ g)(y) = f(g(y)) = f(x)$ Assume now that f is a bijection, and prove that f is invertible. By definition of bijectivity, $\forall y \in Y \quad \exists ! x \in X \quad y = f(x)$. Define a map $g: Y \to X$ by the formula g(y) = x, where y = f(x). Let us prove that g is the inverse for f. $\forall x \in X \quad (g \circ f)(x) = g(f(x)) = g(y) = x$. So $g \circ f = \operatorname{id}_X$. $\forall y \in Y \quad (f \circ g)(y) = f(g(y)) = f(x) = y$. Assume now that f is a bijection, and prove that f is invertible. By definition of bijectivity, $\forall y \in Y \quad \exists ! x \in X \quad y = f(x)$. Define a map $g : Y \to X$ by the formula g(y) = x, where y = f(x). Let us prove that g is the inverse for f. $\forall x \in X \quad (g \circ f)(x) = g(f(x)) = g(y) = x$. So $g \circ f = \operatorname{id}_X$. $\forall y \in Y \quad (f \circ g)(y) = f(g(y)) = f(x) = y$. So $f \circ g = \operatorname{id}_Y$. Assume now that f is a bijection, and prove that f is invertible. By definition of bijectivity, $\forall y \in Y \quad \exists ! x \in X \quad y = f(x)$. Define a map $g: Y \to X$ by the formula g(y) = x, where y = f(x). Let us prove that g is the inverse for f. $\forall x \in X \quad (g \circ f)(x) = g(f(x)) = g(y) = x$. So $g \circ f = \operatorname{id}_X$. $\forall y \in Y \quad (f \circ g)(y) = f(g(y)) = f(x) = y$. So $f \circ g = \operatorname{id}_Y$. Therefore, by the definition of the inverse,

Assume now that f is a **bijection**, and prove that f is **invertible**. By definition of bijectivity, $\forall y \in Y \quad \exists ! x \in X \quad y = f(x)$. Define a map $g: Y \to X$ by the formula g(y) = x, where y = f(x). Let us prove that g is the inverse for f. $\forall x \in X \quad (g \circ f)(x) = g(f(x)) = g(y) = x$. So $g \circ f = \operatorname{id}_X$. $\forall y \in Y \quad (f \circ g)(y) = f(g(y)) = f(x) = y$. So $f \circ g = \operatorname{id}_Y$. Therefore, by the definition of the inverse, g is the **inverse** for f, Assume now that f is a bijection, and prove that f is invertible. By definition of bijectivity, $\forall y \in Y \quad \exists ! x \in X \quad y = f(x)$. Define a map $g: Y \to X$ by the formula g(y) = x, where y = f(x). Let us prove that g is the inverse for f. $\forall x \in X \quad (g \circ f)(x) = g(f(x)) = g(y) = x$. So $g \circ f = \operatorname{id}_X$. $\forall y \in Y \quad (f \circ g)(y) = f(g(y)) = f(x) = y$. So $f \circ g = \operatorname{id}_Y$. Therefore, by the definition of the inverse, g is the inverse for f, $g = f^{-1}$. Assume now that f is a bijection, and prove that f is invertible. By definition of bijectivity, $\forall y \in Y \quad \exists ! x \in X \quad y = f(x)$. Define a map $g: Y \to X$ by the formula g(y) = x, where y = f(x). Let us prove that g is the inverse for f. $\forall x \in X \quad (g \circ f)(x) = g(f(x)) = g(y) = x$. So $g \circ f = \operatorname{id}_X$. $\forall y \in Y \quad (f \circ g)(y) = f(g(y)) = f(x) = y$. So $f \circ g = \operatorname{id}_Y$. Therefore, by the definition of the inverse, g is the inverse for f, $g = f^{-1}$. Thus, f is invertible. Assume now that f is a bijection, and prove that f is invertible. By definition of bijectivity, $\forall y \in Y \quad \exists ! x \in X \quad y = f(x)$. Define a map $g: Y \to X$ by the formula g(y) = x, where y = f(x). Let us prove that g is the inverse for f. $\forall x \in X \quad (g \circ f)(x) = g(f(x)) = g(y) = x$. So $g \circ f = \operatorname{id}_X$. $\forall y \in Y \quad (f \circ g)(y) = f(g(y)) = f(x) = y$. So $f \circ g = \operatorname{id}_Y$. Therefore, by the definition of the inverse, g is the inverse for f, $g = f^{-1}$. Thus, f is invertible. And the other half of the proof is done! Assume now that f is a bijection, and prove that f is invertible. By definition of bijectivity, $\forall y \in Y \quad \exists ! x \in X \quad y = f(x)$. Define a map $g: Y \to X$ by the formula g(y) = x, where y = f(x). Let us prove that g is the inverse for f. $\forall x \in X \quad (g \circ f)(x) = g(f(x)) = g(y) = x$. So $g \circ f = \operatorname{id}_X$. $\forall y \in Y \quad (f \circ g)(y) = f(g(y)) = f(x) = y$. So $f \circ g = \operatorname{id}_Y$. Therefore, by the definition of the inverse, g is the inverse for f, $g = f^{-1}$. Thus, f is invertible. And the other half of the proof is done! **Assume** now that f is a **bijection**, and prove that f is **invertible**. By definition of bijectivity, $\forall y \in Y \quad \exists ! x \in X \quad y = f(x)$. Define a map $g: Y \to X$ by the formula g(y) = x, where y = f(x). Let us prove that g is the inverse for f. $\forall x \in X \ (g \circ f)(x) = g(f(x)) = g(y) = x$. So $g \circ f = \operatorname{id}_X$. $\forall y \in Y \ (f \circ g)(y) = f(g(y)) = f(x) = y$. So $f \circ g = \operatorname{id}_Y$. Therefore, by the definition of the inverse, g is the **inverse** for f, $g = f^{-1}$. Thus, f is **invertible**. And the other half of the proof is done! *∧* Warning.

Assume now that f is a **bijection**, and prove that f is **invertible**. By definition of bijectivity, $\forall y \in Y \quad \exists ! x \in X \quad y = f(x)$. Define a map $g: Y \to X$ by the formula g(y) = x, where y = f(x). Let us prove that g is the inverse for f. $\forall x \in X \ (g \circ f)(x) = g(f(x)) = g(y) = x$. So $g \circ f = \operatorname{id}_X$. $\forall y \in Y \ (f \circ g)(y) = f(g(y)) = f(x) = y$. So $f \circ g = \operatorname{id}_Y$. Therefore, by the definition of the inverse, g is the **inverse** for f, $g = f^{-1}$. Thus, f is **invertible**. And the other half of the proof is done! \wedge Warning. The symbol f^{-1} is used in two ways.

Assume now that f is a **bijection**, and prove that f is **invertible**. By definition of bijectivity, $\forall y \in Y \quad \exists \, ! \, x \in X \quad y = f(x)$. Define a map $g: Y \to X$ by the formula g(y) = x, where y = f(x). Let us prove that g is the inverse for f. $\forall x \in X \ (g \circ f)(x) = g(f(x)) = g(y) = x$. So $g \circ f = \operatorname{id}_X$. $\forall y \in Y \ (f \circ g)(y) = f(g(y)) = f(x) = y$. So $f \circ g = \operatorname{id}_Y$. Therefore, by the definition of the inverse, g is the **inverse** for f, $g = f^{-1}$. Thus, f is **invertible**. And the other half of the proof is done! \wedge Warning. The symbol f^{-1} is used in two ways.

1. f^{-1} denotes the inverse map for f if f is invertible.

Assume now that f is a **bijection**, and prove that f is **invertible**. By definition of bijectivity, $\forall y \in Y \quad \exists ! x \in X \quad y = f(x)$. Define a map $g: Y \to X$ by the formula g(y) = x, where y = f(x). Let us prove that g is the inverse for f. $\forall x \in X \ (g \circ f)(x) = g(f(x)) = g(y) = x$. So $g \circ f = \operatorname{id}_X$. $\forall y \in Y \ (f \circ g)(y) = f(g(y)) = f(x) = y$. So $f \circ g = \operatorname{id}_Y$. Therefore, by the definition of the inverse, g is the **inverse** for f, $g = f^{-1}$. Thus, f is **invertible**. And the other half of the proof is done! \wedge Warning. The symbol f^{-1} is used in two ways. **1.** f^{-1} denotes the inverse map for f if f is invertible. **2.** $f^{-1}(B)$ denotes the preimage of a set B under under any f

(not necessarily invertible).

Corollary 1.

Corollary 1. For any set X,

Corollary 1. For any set X, the identity map id_X is a bijection.

Corollary 1. For any set X, the identity map id_X is a bijection. **Proof.**

Corollary 1. For any set X, the identity map id_X is a bijection. **Proof.** Since id_X is invertible

Corollary 1. For any set X, the identity map id_X is a bijection. **Proof.** Since id_X is invertible $(id_X^{-1} = id_X)$,

Corollary 2.

Corollary 2. If f is a bijection,

Corollary 2. If f is a bijection, then f^{-1} is also a bijection,

Corollary 2. If f is a bijection, then f^{-1} is also a bijection, and $(f^{-1})^{-1} = f$.

Corollary 2. If f is a bijection, then f^{-1} is also a bijection, and $(f^{-1})^{-1} = f$. **Proof.**

Corollary 2. If f is a bijection, then f^{-1} is also a bijection, and $(f^{-1})^{-1} = f$. **Proof.** Let $f: X \to Y$ be a bijection.

Corollary 2. If f is a bijection, then f^{-1} is also a bijection, and $(f^{-1})^{-1} = f$. **Proof.** Let $f: X \to Y$ be a bijection. Then f is invertible,

Corollary 2. If f is a bijection, then f^{-1} is also a bijection, and $(f^{-1})^{-1} = f$. **Proof.** Let $f: X \to Y$ be a bijection. Then f is invertible, that is there exists $f^{-1}: Y \to X$

Corollary 2. If f is a bijection, then f^{-1} is also a bijection, and $(f^{-1})^{-1} = f$. **Proof.** Let $f: X \to Y$ be a bijection. Then f is invertible, that is there exists $f^{-1}: Y \to X$ such that

Corollary 2. If f is a bijection, then f^{-1} is also a bijection, and $(f^{-1})^{-1} = f$. **Proof.** Let $f: X \to Y$ be a bijection. Then f is invertible, that is there exists $f^{-1}: Y \to X$ such that $f^{-1} \circ f = \operatorname{id}_X$ and $f \circ f^{-1} = \operatorname{id}_Y$

Corollary 2. If f is a bijection, then f^{-1} is also a bijection, and $(f^{-1})^{-1} = f$. **Proof.** Let $f: X \to Y$ be a bijection. Then f is invertible, that is there exists $f^{-1}: Y \to X$ such that $f^{-1} \circ f = \operatorname{id}_X$ and $f \circ f^{-1} = \operatorname{id}_Y$ In these identities, what is f from the point of view of f^{-1} ?

Corollary 2. If f is a bijection, then f^{-1} is also a bijection, and $(f^{-1})^{-1} = f$. **Proof.** Let $f: X \to Y$ be a bijection. Then f is invertible, that is there exists $f^{-1}: Y \to X$ such that $f^{-1} \circ f = \operatorname{id}_X$ and $f \circ f^{-1} = \operatorname{id}_Y$ In these identities, what is f from the point of view of f^{-1} ? f is the inverse for f^{-1} !

Corollary 2. If f is a bijection, then f^{-1} is also a bijection, and $(f^{-1})^{-1} = f$. **Proof.** Let $f: X \to Y$ be a bijection. Then f is invertible, that is there exists $f^{-1}: Y \to X$ such that $f^{-1} \circ f = \operatorname{id}_X$ and $f \circ f^{-1} = \operatorname{id}_Y$ In these identities, what is f from the point of view of f^{-1} ? f is the inverse for f^{-1} !

Therefore, f^{-1} is invertible (and by this, is a bijection) and $(f^{-1})^{-1} = f$.

Corollary 3.

Corollary 3. A composition of bijections is a bijection,

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \to Y$ and $g: Y \to Z$ are bijections, **Corollary 3.** A composition of bijections is a bijection, that is, if $f: X \to Y$ and $g: Y \to Z$ are bijections, then

 $g \circ f : X \to Z$ is a bijection and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \to Y$ and $g: Y \to Z$ are bijections, then $g \circ f: X \to Z$ is a bijection and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof.

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \to Y$ and $g: Y \to Z$ are bijections, then

 $g \circ f : X \to Z$ is a bijection and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof. Let $f: X \to Y$ and $g: Y \to Z$ be bijections.

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \to Y$ and $g: Y \to Z$ are bijections, then $g \circ f: X \to Z$ is a bijection and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof. Let $f: X \to Y$ and $g: Y \to Z$ be bijections.

Then there exist $f^{-1}: Y \to X$ and $g^{-1}: Z \to Y$:

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \to Y$ and $g: Y \to Z$ are bijections, then $g \circ f: X \to Z$ is a bijection and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. **Proof.** Let $f: X \to Y$ and $g: Y \to Z$ be bijections.

Then there exist $f^{-1}: Y \to X$ and $g^{-1}: Z \to Y$:

$$X \stackrel{f}{\rightleftharpoons} Y \stackrel{g}{\rightleftharpoons} Z_{f^{-1}} Y \stackrel{g}{\rightleftharpoons} Z$$

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \to Y$ and $g: Y \to Z$ are bijections, then $g \circ f: X \to Z$ is a bijection and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. **Proof.** Let $f: X \to Y$ and $g: Y \to Z$ be bijections.

Then there exist $f^{-1}: Y \to X$ and $g^{-1}: Z \to Y$:

$$X \stackrel{f}{\rightleftharpoons} Y \stackrel{g}{\rightleftharpoons} Z_{f^{-1}} g^{-1}$$

and

 $(f^{-1}\circ g^{-1})\circ (g\circ f)$

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \to Y$ and $g: Y \to Z$ are bijections, then $g \circ f: X \to Z$ is a bijection and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. **Proof.** Let $f: X \to Y$ and $g: Y \to Z$ be bijections.

Then there exist $f^{-1}: Y \to X$ and $g^{-1}: Z \to Y$:

$$X \underset{f^{-1}}{\overset{f}{\rightleftharpoons}} Y \underset{g^{-1}}{\overset{g}{\rightleftharpoons}} Z$$

$$(f^{-1}\circ g^{-1})\circ (g\circ f)=f^{-1}\circ (g^{-1}\circ g)\circ f$$

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \to Y$ and $g: Y \to Z$ are bijections, then $g \circ f: X \to Z$ is a bijection and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. **Proof.** Let $f: X \to Y$ and $g: Y \to Z$ be bijections.

Then there exist $f^{-1}: Y \to X$ and $g^{-1}: Z \to Y$:

$$X \underset{f^{-1}}{\overset{f}{\rightleftharpoons}} Y \underset{g^{-1}}{\overset{g}{\rightleftharpoons}} Z$$

$$(f^{-1}\circ g^{-1})\circ (g\circ f)=f^{-1}\circ (g^{-1}\circ g)\circ f=f^{-1}\circ {\rm id}_Y\circ f$$

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \to Y$ and $g: Y \to Z$ are bijections, then $g \circ f: X \to Z$ is a bijection and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. **Proof.** Let $f: X \to Y$ and $g: Y \to Z$ be bijections.

Then there exist $f^{-1}: Y \to X$ and $g^{-1}: Z \to Y$:

$$X \underset{f^{-1}}{\overset{f}{\rightleftharpoons}} Y \underset{g^{-1}}{\overset{g}{\rightleftharpoons}} Z$$

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f = f^{-1} \circ \operatorname{id}_Y \circ f = f^{-1} \circ f$$

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \to Y$ and $g: Y \to Z$ are bijections, then $g \circ f: X \to Z$ is a bijection and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. **Proof.** Let $f: X \to Y$ and $g: Y \to Z$ be bijections.

Then there exist $f^{-1}: Y \to X$ and $g^{-1}: Z \to Y$:

$$X \underset{f^{-1}}{\overset{f}{\rightleftharpoons}} Y \underset{g^{-1}}{\overset{g}{\rightleftharpoons}} Z$$

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f = f^{-1} \circ \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X \operatorname{id}_Y \circ f = f^{-1} \circ f = f^{-1} \circ f = \operatorname{id}_Y \circ f = f^{-1} \circ f = f^{-1}$$

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \to Y$ and $g: Y \to Z$ are bijections, then $g \circ f: X \to Z$ is a bijection and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. **Proof.** Let $f: X \to Y$ and $g: Y \to Z$ be bijections.

Then there exist $f^{-1}: Y \to X$ and $g^{-1}: Z \to Y$:

$$X \underset{f^{-1}}{\overset{f}{\rightleftharpoons}} Y \underset{g^{-1}}{\overset{g}{\rightleftharpoons}} Z$$

$$\begin{split} (f^{-1}\circ g^{-1})\circ(g\circ f)&=f^{-1}\circ(g^{-1}\circ g)\circ f=f^{-1}\circ\mathrm{id}_Y\circ f=f^{-1}\circ f=\mathrm{id}_X\,,\\ (g\circ f)\circ(f^{-1}\circ g^{-1}) \end{split}$$

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \to Y$ and $g: Y \to Z$ are bijections, then $g \circ f: X \to Z$ is a bijection and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. **Proof.** Let $f: X \to Y$ and $g: Y \to Z$ be bijections.

Then there exist $f^{-1}: Y \to X$ and $g^{-1}: Z \to Y$:

$$X \underset{f^{-1}}{\overset{f}{\rightleftharpoons}} Y \underset{g^{-1}}{\overset{g}{\rightleftharpoons}} Z$$

$$\begin{split} (f^{-1} \circ g^{-1}) \circ (g \circ f) &= f^{-1} \circ (g^{-1} \circ g) \circ f = f^{-1} \circ \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X, \\ (g \circ f) \circ (f^{-1} \circ g^{-1}) &= g \circ (f \circ f^{-1}) \circ g^{-1} \end{split}$$

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \to Y$ and $g: Y \to Z$ are bijections, then $g \circ f: X \to Z$ is a bijection and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. **Proof.** Let $f: X \to Y$ and $g: Y \to Z$ be bijections.

Then there exist $f^{-1}: Y \to X$ and $g^{-1}: Z \to Y$:

$$X \underset{f^{-1}}{\overset{f}{\rightleftharpoons}} Y \underset{g^{-1}}{\overset{g}{\rightleftharpoons}} Z$$

$$\begin{split} (f^{-1} \circ g^{-1}) \circ (g \circ f) &= f^{-1} \circ (g^{-1} \circ g) \circ f = f^{-1} \circ \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X, \\ (g \circ f) \circ (f^{-1} \circ g^{-1}) &= g \circ (f \circ f^{-1}) \circ g^{-1} = g \circ \operatorname{id}_Y \circ g^{-1} \end{split}$$

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \to Y$ and $g: Y \to Z$ are bijections, then $g \circ f: X \to Z$ is a bijection and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. **Proof.** Let $f: X \to Y$ and $g: Y \to Z$ be bijections.

Then there exist $f^{-1}: Y \to X$ and $g^{-1}: Z \to Y$:

$$X \underset{f^{-1}}{\overset{f}{\rightleftharpoons}} Y \underset{g^{-1}}{\overset{g}{\rightleftharpoons}} Z$$

$$\begin{split} (f^{-1} \circ g^{-1}) \circ (g \circ f) &= f^{-1} \circ (g^{-1} \circ g) \circ f = f^{-1} \circ \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X, \\ (g \circ f) \circ (f^{-1} \circ g^{-1}) &= g \circ (f \circ f^{-1}) \circ g^{-1} = g \circ \operatorname{id}_Y \circ g^{-1} = g \circ g^{-1} \end{split}$$

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \to Y$ and $g: Y \to Z$ are bijections, then $g \circ f: X \to Z$ is a bijection and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. **Proof.** Let $f: X \to Y$ and $g: Y \to Z$ be bijections.

Then there exist $f^{-1}: Y \to X$ and $g^{-1}: Z \to Y$:

$$X \underset{f^{-1}}{\overset{f}{\rightleftharpoons}} Y \underset{g^{-1}}{\overset{g}{\rightleftharpoons}} Z$$

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f = f^{-1} \circ \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X,$$

$$(g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ (f \circ f^{-1}) \circ g^{-1} = g \circ \operatorname{id}_Y \circ g^{-1} = g \circ g^{-1} = \operatorname{id}_Z.$$

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \to Y$ and $g: Y \to Z$ are bijections, then $g \circ f: X \to Z$ is a bijection and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. **Proof.** Let $f: X \to Y$ and $g: Y \to Z$ be bijections.

Then there exist $f^{-1}: Y \to X$ and $g^{-1}: Z \to Y$:

$$X \stackrel{f}{\underset{f^{-1}}{\rightleftharpoons}} Y \stackrel{g}{\underset{g^{-1}}{\rightleftharpoons}} Z$$

and

$$\begin{split} (f^{-1} \circ g^{-1}) \circ (g \circ f) &= f^{-1} \circ (g^{-1} \circ g) \circ f = f^{-1} \circ \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X, \\ (g \circ f) \circ (f^{-1} \circ g^{-1}) &= g \circ (f \circ f^{-1}) \circ g^{-1} = g \circ \operatorname{id}_Y \circ g^{-1} = g \circ g^{-1} = \operatorname{id}_Z. \\ \end{split}$$
Therefore, $f^{-1} \circ g^{-1} : Z \to X \text{ is the inverse for } g \circ f : X \to Z, \end{split}$

Corollary 3. A composition of bijections is a bijection, that is, if $f: X \to Y$ and $g: Y \to Z$ are bijections, then $g \circ f: X \to Z$ is a bijection and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. **Proof.** Let $f: X \to Y$ and $g: Y \to Z$ be bijections. Then there exist $f^{-1}: Y \to X$ and $g^{-1}: Z \to Y$:

$$X \stackrel{f}{\underset{f^{-1}}{\rightleftharpoons}} Y \stackrel{g}{\underset{g^{-1}}{\rightleftharpoons}} Z$$

and

$$\begin{split} (f^{-1}\circ g^{-1})\circ (g\circ f) &= f^{-1}\circ (g^{-1}\circ g)\circ f = f^{-1}\circ \operatorname{id}_Y\circ f = f^{-1}\circ f = \operatorname{id}_X, \\ (g\circ f)\circ (f^{-1}\circ g^{-1}) &= g\circ (f\circ f^{-1})\circ g^{-1} = g\circ \operatorname{id}_Y\circ g^{-1} = g\circ g^{-1} = \operatorname{id}_Z. \\ \end{split}$$
Therefore, $f^{-1}\circ g^{-1}: Z \to X$ is the **inverse** for $g\circ f: X \to Z$, and $g\circ f: X \to Z$ is a bijection. **Corollary 3.** A composition of bijections is a bijection, that is, if $f: X \to Y$ and $g: Y \to Z$ are bijections, then $g \circ f: X \to Z$ is a bijection and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. **Proof.** Let $f: X \to Y$ and $g: Y \to Z$ be bijections. Then there exist $f^{-1}: Y \to X$ and $g^{-1}: Z \to Y$: $X \stackrel{f}{\underset{f=1}{\leftrightarrow}} Y \stackrel{g}{\underset{g=1}{\leftrightarrow}} Z$

and

 $(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f = f^{-1} \circ \operatorname{id}_Y \circ f = f^{-1} \circ f = \operatorname{id}_X,$ $(g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ (f \circ f^{-1}) \circ g^{-1} = g \circ \operatorname{id}_Y \circ g^{-1} = g \circ g^{-1} = \operatorname{id}_Z.$ Therefore, $f^{-1} \circ g^{-1} : Z \to X$ is the **inverse** for $g \circ f : X \to Z$, and

 $g \circ f : X \to Z$ is a bijection.

Definition.

Definition. Let $X, Y \subset \mathbb{R}$ and $f : X \to Y$ be a function.

Definition. Let $X, Y \subset \mathbb{R}$ and $f : X \to Y$ be a function.

If f is strictly increasing or strictly decreasing on X,

Definition. Let $X, Y \subset \mathbb{R}$ and $f: X \to Y$ be a function.

If f is strictly increasing or strictly decreasing on X,

then it is called (strictly) monotonic.

Definition. Let $X, Y \subset \mathbb{R}$ and $f : X \to Y$ be a function.

If f is strictly increasing or strictly decreasing on X,

then it is called (strictly) monotonic.

Theorem.

Definition. Let $X, Y \subset \mathbb{R}$ and $f : X \to Y$ be a function.

If f is strictly increasing or strictly decreasing on X,

then it is called (strictly) monotonic.

Theorem. A monotonic function is injective.

Definition. Let $X, Y \subset \mathbb{R}$ and $f : X \to Y$ be a function.

If f is strictly increasing or strictly decreasing on X,

then it is called (strictly) monotonic.

Theorem. A monotonic function is injective.

Proof.

If f is strictly increasing or strictly decreasing on X,

then it is called (strictly) monotonic.

Theorem. A monotonic function is injective.

Proof. Let $X, Y \subset \mathbb{R}$ and $f: X \to Y$, $x \mapsto f(x)$ be a function.

If f is strictly increasing or strictly decreasing on X,

then it is called (strictly) monotonic.

Theorem. A monotonic function is injective.

Proof. Let $X, Y \subset \mathbb{R}$ and $f: X \to Y$, $x \mapsto f(x)$ be a function.

Assume that f is strictly increasing.

If f is strictly increasing or strictly decreasing on X,

then it is called (strictly) monotonic.

Theorem. A monotonic function is injective.

Proof. Let $X, Y \subset \mathbb{R}$ and $f: X \to Y$, $x \mapsto f(x)$ be a function.

Assume that f is strictly increasing.

(For a strictly decreasing function the reasoning is similar.)

If f is strictly increasing or strictly decreasing on X,

then it is called (strictly) monotonic.

Theorem. A monotonic function is injective.

Proof. Let $X, Y \subset \mathbb{R}$ and $f: X \to Y$, $x \mapsto f(x)$ be a function.

Assume that f is strictly increasing.

(For a strictly decreasing function the reasoning is similar.)

Take any $x_1, x_2 \in X$.

If f is strictly increasing or strictly decreasing on X ,

then it is called (strictly) monotonic.

Theorem. A monotonic function is injective.

Proof. Let $X, Y \subset \mathbb{R}$ and $f: X \to Y$, $x \mapsto f(x)$ be a function.

Assume that f is strictly increasing.

(For a strictly decreasing function the reasoning is similar.)

Take any $x_1, x_2 \in X$. If $x_1 \neq x_2$,

If f is strictly increasing or strictly decreasing on X,

then it is called (strictly) monotonic.

Theorem. A monotonic function is injective.

Proof. Let $X, Y \subset \mathbb{R}$ and $f: X \to Y$, $x \mapsto f(x)$ be a function.

Assume that f is strictly increasing.

(For a strictly decreasing function the reasoning is similar.)

Take any $x_1, x_2 \in X$. If $x_1 \neq x_2$, then $x_1 < x_2$ or $x_1 > x_2$.

If f is strictly increasing or strictly decreasing on X,

then it is called (strictly) monotonic.

Theorem. A monotonic function is injective.

Proof. Let $X, Y \subset \mathbb{R}$ and $f: X \to Y$, $x \mapsto f(x)$ be a function.

Assume that f is strictly increasing. (For a strictly decreasing function the reasoning is similar.) Take any $x_1, x_2 \in X$. If $x_1 \neq x_2$, then $x_1 < x_2$ or $x_1 > x_2$. In the case when $x_1 < x_2$, we have $f(x_1) < f(x_2)$.

If f is strictly increasing or strictly decreasing on X,

then it is called (strictly) monotonic.

Theorem. A monotonic function is injective.

Proof. Let $X, Y \subset \mathbb{R}$ and $f: X \to Y$, $x \mapsto f(x)$ be a function.

Assume that f is strictly increasing. (For a strictly decreasing function the reasoning is similar.) Take any $x_1, x_2 \in X$. If $x_1 \neq x_2$, then $x_1 < x_2$ or $x_1 > x_2$. In the case when $x_1 < x_2$, we have $f(x_1) < f(x_2)$. In the case when $x_1 > x_2$, we have $f(x_1) > f(x_2)$.

If f is strictly increasing or strictly decreasing on X,

then it is called (strictly) monotonic.

Theorem. A monotonic function is injective.

Proof. Let $X, Y \subset \mathbb{R}$ and $f: X \to Y$, $x \mapsto f(x)$ be a function.

Assume that f is strictly increasing. (For a strictly decreasing function the reasoning is similar.) Take any $x_1, x_2 \in X$. If $x_1 \neq x_2$, then $x_1 < x_2$ or $x_1 > x_2$. In the case when $x_1 < x_2$, we have $f(x_1) < f(x_2)$. In the case when $x_1 > x_2$, we have $f(x_1) > f(x_2)$. In either case, $f(x_1) \neq f(x_2)$.

If f is strictly increasing or strictly decreasing on X,

then it is called (strictly) monotonic.

Theorem. A monotonic function is injective.

Proof. Let $X, Y \subset \mathbb{R}$ and $f: X \to Y$, $x \mapsto f(x)$ be a function.

Assume that f is strictly increasing. (For a strictly decreasing function the reasoning is similar.) Take any $x_1, x_2 \in X$. If $x_1 \neq x_2$, then $x_1 < x_2$ or $x_1 > x_2$. In the case when $x_1 < x_2$, we have $f(x_1) < f(x_2)$. In the case when $x_1 > x_2$, we have $f(x_1) > f(x_2)$. In either case, $f(x_1) \neq f(x_2)$. Therefore $\forall x_1, x_2 \in X$ $x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$.

If f is strictly increasing or strictly decreasing on X,

then it is called (strictly) monotonic.

Theorem. A monotonic function is injective.

Proof. Let $X, Y \subset \mathbb{R}$ and $f: X \to Y$, $x \mapsto f(x)$ be a function.

Assume that f is strictly increasing. (For a strictly decreasing function the reasoning is similar.) Take any $x_1, x_2 \in X$. If $x_1 \neq x_2$, then $x_1 < x_2$ or $x_1 > x_2$. In the case when $x_1 < x_2$, we have $f(x_1) < f(x_2)$. In the case when $x_1 > x_2$, we have $f(x_1) > f(x_2)$. In either case, $f(x_1) \neq f(x_2)$. Therefore $\forall x_1, x_2 \in X$ $x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$. Therefore, f is injective.

Example 1.

Example 1. Let $exp : \mathbb{R} \to \mathbb{R}_{>0}, x \mapsto e^x$ be the exponential function.

Example 1. Let $exp : \mathbb{R} \to \mathbb{R}_{>0}, x \mapsto e^x$ be the exponential function.

It is monotonic and surjective, therefore invertible.

Example 1. Let $exp : \mathbb{R} \to \mathbb{R}_{>0}, x \mapsto e^x$ be the exponential function.

It is monotonic and surjective, therefore invertible.

Its inverse is

Example 1. Let $exp : \mathbb{R} \to \mathbb{R}_{>0}, x \mapsto e^x$ be the exponential function.

It is monotonic and surjective, therefore invertible.

Its inverse is $\ln : \mathbb{R}_{>0} \to \mathbb{R}, \ y \mapsto \ln y$.

Example 1. Let $exp : \mathbb{R} \to \mathbb{R}_{>0}, x \mapsto e^x$ be the exponential function.

It is monotonic and surjective, therefore invertible.

Its inverse is $\ln: \mathbb{R}_{>0} \to \mathbb{R}, \ y \mapsto \ln y$.

By the definition of the inverse,

Example 1. Let $\exp : \mathbb{R} \to \mathbb{R}_{>0}, x \mapsto e^x$ be the exponential function.

It is monotonic and surjective, therefore invertible.

Its inverse is $\ln: \mathbb{R}_{>0} \to \mathbb{R}, \ y \mapsto \ln y$.

By the definition of the inverse, $f^{-1} \circ f = \operatorname{id}_X$ and $f \circ f^{-1} = \operatorname{id}_Y$.

Example 1. Let $exp : \mathbb{R} \to \mathbb{R}_{>0}, x \mapsto e^x$ be the exponential function.

It is monotonic and surjective, therefore invertible.

Its inverse is $\ln: \mathbb{R}_{>0} \to \mathbb{R}, \ y \mapsto \ln y$.

By the definition of the inverse, $f^{-1} \circ f = \operatorname{id}_X$ and $f \circ f^{-1} = \operatorname{id}_Y$.

In our case, these identities turn to

Example 1. Let $\exp : \mathbb{R} \to \mathbb{R}_{>0}, x \mapsto e^x$ be the exponential function.

It is monotonic and surjective, therefore invertible.

Its inverse is $\ln: \mathbb{R}_{>0} \to \mathbb{R}, \ y \mapsto \ln y$.

By the definition of the inverse, $f^{-1} \circ f = \operatorname{id}_X$ and $f \circ f^{-1} = \operatorname{id}_Y$.

In our case, these identities turn to

 $\ln(\exp(x)) = x$ for all $x \in \mathbb{R}$ and $\exp(\ln(y)) = y$ for all $y \in \mathbb{R}_{>0}$.

Example 1. Let $exp : \mathbb{R} \to \mathbb{R}_{>0}, x \mapsto e^x$ be the exponential function.

It is monotonic and surjective, therefore invertible.

Its inverse is $\ln: \mathbb{R}_{>0} \to \mathbb{R}, \ y \mapsto \ln y$.

By the definition of the inverse, $f^{-1} \circ f = \operatorname{id}_X$ and $f \circ f^{-1} = \operatorname{id}_Y$.

In our case, these identities turn to

 $\ln(\exp(x)) = x$ for all $x \in \mathbb{R}$ and $\exp(\ln(y)) = y$ for all $y \in \mathbb{R}_{>0}$.

We get used to see these identities in the form

Example 1. Let $\exp : \mathbb{R} \to \mathbb{R}_{>0}$, $x \mapsto e^x$ be the exponential function. It is monotonic and surjective, therefore invertible. Its inverse is $\ln : \mathbb{R}_{>0} \to \mathbb{R}$, $y \mapsto \ln y$. By the definition of the inverse, $f^{-1} \circ f = \operatorname{id}_X$ and $f \circ f^{-1} = \operatorname{id}_Y$. In our case, these identities turn to $\ln(\exp(x)) = x$ for all $x \in \mathbb{R}$ and $\exp(\ln(y)) = y$ for all $y \in \mathbb{R}_{>0}$. We get used to see these identities in the form $\ln e^x = x$ for all x and $e^{\ln x} = x$ for all x > 0.

Example 1. Let $\exp : \mathbb{R} \to \mathbb{R}_{>0}, x \mapsto e^x$ be the exponential function. It is monotonic and surjective, therefore invertible. Its inverse is $\ln : \mathbb{R}_{>0} \to \mathbb{R}, y \mapsto \ln y$. By the definition of the inverse, $f^{-1} \circ f = \operatorname{id}_X$ and $f \circ f^{-1} = \operatorname{id}_Y$. In our case, these identities turn to $\ln(\exp(x)) = x$ for all $x \in \mathbb{R}$ and $\exp(\ln(y)) = y$ for all $y \in \mathbb{R}_{>0}$. We get used to see these identities in the form $\ln e^x = x$ for all x and $e^{\ln x} = x$ for all x > 0. These identities are used as

Example 1. Let $\exp : \mathbb{R} \to \mathbb{R}_{>0}, x \mapsto e^x$ be the exponential function. It is monotonic and surjective, therefore invertible. Its inverse is $\ln: \mathbb{R}_{>0} \to \mathbb{R}, \ y \mapsto \ln y$. By the definition of the inverse, $f^{-1} \circ f = \operatorname{id}_X$ and $f \circ f^{-1} = \operatorname{id}_Y$. In our case, these identities turn to $\ln(\exp(x)) = x$ for all $x \in \mathbb{R}$ and $\exp(\ln(y)) = y$ for all $y \in \mathbb{R}_{>0}$. We get used to see these identities in the form $\ln e^x = x$ for all x and $e^{\ln x} = x$ for all x > 0.

These identities are used as

the definition of logarithmic function as the inverse for exponential function,

Example 1. Let $\exp : \mathbb{R} \to \mathbb{R}_{>0}, x \mapsto e^x$ be the exponential function. It is monotonic and surjective, therefore invertible. Its inverse is $\ln : \mathbb{R}_{>0} \to \mathbb{R}, \ y \mapsto \ln y$. By the definition of the inverse, $f^{-1} \circ f = \operatorname{id}_X$ and $f \circ f^{-1} = \operatorname{id}_Y$. In our case, these identities turn to $\ln(\exp(x)) = x$ for all $x \in \mathbb{R}$ and $\exp(\ln(y)) = y$ for all $y \in \mathbb{R}_{>0}$. We get used to see these identities in the form $\ln e^x = x$ for all x and $e^{\ln x} = x$ for all x > 0. These identities are used as

the **definition** of logarithmic function as the inverse for exponential function, or the other way around:

as the definition of the exponential function as the inverse for logarithmic function.

Example 2.

Example 2. Let
$$\tan: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}, x \mapsto \tan x$$

Example 2. Let
$$\tan: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}, x \mapsto \tan x$$

be the tangent function restricted on $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$.

Example 2. Let
$$\tan: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}, x \mapsto \tan x$$

be the tangent function restricted on $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$.

It is monotonic and surjective, therefore invertible.

Example 2. Let
$$\tan: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}, \ x \mapsto \tan x$$

be the tangent function restricted on $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$.

It is monotonic and surjective, therefore invertible.

Its inverse is

Example 2. Let
$$\tan: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}, x \mapsto \tan x$$

be the tangent function restricted on $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$.

It is monotonic and surjective, therefore invertible.

Its inverse is $\arctan : \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \ y \mapsto \arctan y$.

Example 2. Let
$$\tan: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}, \ x \mapsto \tan x$$

be the tangent function restricted on $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$.

It is monotonic and surjective, therefore invertible.

Its inverse is $\arctan : \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \ y \mapsto \arctan y$.

By the definition of the inverse,

Example 2. Let
$$\tan: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}, x \mapsto \tan x$$

be the tangent function restricted on $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$.

It is monotonic and surjective, therefore invertible.

Its inverse is $\arctan : \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \ y \mapsto \arctan y$.

By the definition of the inverse,

 $\arctan(\tan x) = x$ for all $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Example 2. Let
$$\tan: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}, x \mapsto \tan x$$

be the tangent function restricted on $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$.

It is monotonic and surjective, therefore invertible.

Its inverse is $\arctan : \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \ y \mapsto \arctan y$.

By the definition of the inverse,

 $\arctan(\tan x) = x$ for all $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\tan(\arctan y) = y$ for all $y \in \mathbb{R}$.

Example 2. Let
$$\tan: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}, \ x \mapsto \tan x$$

be the tangent function restricted on $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$.

It is monotonic and surjective, therefore invertible.

Its inverse is $\arctan : \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \ y \mapsto \arctan y$.

By the definition of the inverse,

 $\arctan(\tan x) = x$ for all $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\tan(\arctan y) = y$ for all $y \in \mathbb{R}$.

<u> Marning</u>.

Example 2. Let
$$\tan: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}, x \mapsto \tan x$$

be the tangent function restricted on $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$.

It is monotonic and surjective, therefore invertible.

Its inverse is $\arctan : \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \ y \mapsto \arctan y$.

By the definition of the inverse,

 $\arctan(\tan x) = x$ for all $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and

 $\tan(\arctan y) = y$ for all $y \in \mathbb{R}$.

 \wedge Warning. Using the symbol \tan^{-1} for the inverse for \tan is ambiguous.

Example 2. Let
$$\tan: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}, x \mapsto \tan x$$

be the tangent function restricted on $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$.

It is monotonic and surjective, therefore invertible.

Its inverse is $\arctan : \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \ y \mapsto \arctan y$.

By the definition of the inverse,

 $\arctan(\tan x) = x$ for all $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\tan(\arctan y) = y$ for all $y \in \mathbb{R}$.

 \bigwedge Warning. Using the symbol \tan^{-1} for the inverse for \tan is ambiguous. It may be understood as $\tan^{-1} x = \frac{1}{\tan x} = \cot x$.

Example 2. Let
$$\tan: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}, x \mapsto \tan x$$

be the tangent function restricted on $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$.

It is monotonic and surjective, therefore invertible.

Its inverse is $\arctan : \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \ y \mapsto \arctan y$.

By the definition of the inverse,

 $\arctan(\tan x) = x$ for all $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\tan(\arctan y) = y$ for all $y \in \mathbb{R}$.

 \bigwedge Warning. Using the symbol \tan^{-1} for the inverse for \tan is ambiguous. It may be understood as $\tan^{-1} x = \frac{1}{\tan x} = \cot x$.

To avoid this ambiguity, always use $\arctan x$

as a notation for the inverse function for $\tan x$.

Example 3. What function is inverse to $\sin x$?

Example 3. What function is inverse to $\sin x$?

Is the function $x \mapsto \sin x$ bijective?

Example 3. What function is inverse to $\sin x$?

Is the function $x \mapsto \sin x$ bijective?

How to make it bijective?

Example 3. What function is inverse to $\sin x$?

Is the function $x \mapsto \sin x$ bijective?

How to make it bijective? What is the standard way?

Example 3. What function is inverse to $\sin x$?

Is the function $x \mapsto \sin x$ bijective?

How to make it bijective? What is the standard way?

Invertible subfunction:

Example 3. What function is inverse to $\sin x$?

Is the function $x \mapsto \sin x$ bijective?

How to make it bijective? What is the standard way?

Invertible subfunction: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \left[-1, 1\right]$.

Example 3. What function is inverse to $\sin x$?

Is the function $x \mapsto \sin x$ bijective?

How to make it bijective? What is the standard way?

Invertible subfunction: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \left[-1, 1\right]$. The inverse function $\arcsin: \left[-1, 1\right] \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Example 3. What function is inverse to $\sin x$?

Is the function $x \mapsto \sin x$ bijective?

How to make it bijective? What is the standard way?

Invertible subfunction: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \left[-1, 1\right]$. The inverse function $\arcsin: \left[-1, 1\right] \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Example 4. What is arccos?