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Definition. Let X and Y be sets.
A map (or mapping, or function) f from X to Y

is a rule assigning to each element in X a unique element in Y :

∀ x ∈ X ∃! y ∈ Y y = f(x).

X is called the domain of f , Y is called the codomain of f .

y = f(x) is called the image of x under f (or the value of f at x ).

Notation. f : X → Y

x 7→ y

The range (or image) of f is the set {f(x) | x ∈ X} .
It is denoted by Im f or f(X) : Im f = f(X) = {f(x) | x ∈ X} .

X

Y

Im ff
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Let f : X → Y be a map and A ⊂ X , B ⊂ Y be subsets.

The image of A is the set f(A) = {f(x) | x ∈ A} ⊂ Y .

X Y

A f(A)

f

The preimage of B is the set f−1(B) = {x | f(x) ∈ B} ⊂ X .

X
Y

f−1(B) Bf

Warning: f−1 is not the inverse map!
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Definition.

Two maps f, g : X → Y are equal

if they have the same domain, codomain, and f(x) = g(x) for all x ∈ X .

Example. Let f(x) =
x2 − 1

x+ 1
and g(x) = x− 1 .

If a function is given by a formula, then the domain is, by default,
the set of values of the variable for which the formula makes sense.

By this, the domain of f is Rr {−1} , and the domain of g is R .

Although f(x) =
x2 − 1

x+ 1
=

(x− 1)(x+ 1)

x+ 1
=

︸︷︷︸

x=−1

x− 1 = g(x) ,

the functions f and g are not equal,
since they have different domains.

x

y

-1

y = f(x)

x

y
y = g(x)
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Definition. Let f : X → Y and g : Y → Z be maps.

A composition of f and g is a map g ◦ f : X → Z defined by

g ◦ f(x) = g(f(x)) for any x ∈ X .

X Y Z

x
f(x)

f

g(f(x))

g

g ◦ f



MAT 250

Lecture 5

MapsComposition of maps

5 / 30

Definition.

Let f : X → Y and g : Y → Z be maps.

A composition of f and g is a map g ◦ f : X → Z defined by

g ◦ f(x) = g(f(x)) for any x ∈ X .

X Y Z

x
f(x)

f

g(f(x))

g

g ◦ f



MAT 250

Lecture 5

MapsComposition of maps

5 / 30

Definition. Let f : X → Y and g : Y → Z be maps.

A composition of f and g is a map g ◦ f : X → Z defined by

g ◦ f(x) = g(f(x)) for any x ∈ X .

X Y Z

x
f(x)

f

g(f(x))

g

g ◦ f



MAT 250

Lecture 5

MapsComposition of maps

5 / 30

Definition. Let f : X → Y and g : Y → Z be maps.

A composition of f and g

is a map g ◦ f : X → Z defined by

g ◦ f(x) = g(f(x)) for any x ∈ X .

X Y Z

x
f(x)

f

g(f(x))

g

g ◦ f



MAT 250

Lecture 5

MapsComposition of maps

5 / 30

Definition. Let f : X → Y and g : Y → Z be maps.

A composition of f and g is a map g ◦ f : X → Z

defined by

g ◦ f(x) = g(f(x)) for any x ∈ X .

X Y Z

x
f(x)

f

g(f(x))

g

g ◦ f



MAT 250

Lecture 5

MapsComposition of maps

5 / 30

Definition. Let f : X → Y and g : Y → Z be maps.

A composition of f and g is a map g ◦ f : X → Z defined by

g ◦ f(x) = g(f(x)) for any x ∈ X .

X Y Z

x
f(x)

f

g(f(x))

g

g ◦ f



MAT 250

Lecture 5

MapsComposition of maps

5 / 30

Definition. Let f : X → Y and g : Y → Z be maps.

A composition of f and g is a map g ◦ f : X → Z defined by

g ◦ f(x) = g(f(x)) for any x ∈ X .

X Y Z

x
f(x)

f

g(f(x))

g

g ◦ f



MAT 250

Lecture 5

MapsComposition of maps

5 / 30

Definition. Let f : X → Y and g : Y → Z be maps.

A composition of f and g is a map g ◦ f : X → Z defined by

g ◦ f(x) = g(f(x)) for any x ∈ X .

X

Y Z

x
f(x)

f

g(f(x))

g

g ◦ f



MAT 250

Lecture 5

MapsComposition of maps

5 / 30

Definition. Let f : X → Y and g : Y → Z be maps.

A composition of f and g is a map g ◦ f : X → Z defined by

g ◦ f(x) = g(f(x)) for any x ∈ X .

X Y

Z

x
f(x)

f

g(f(x))

g

g ◦ f



MAT 250

Lecture 5

MapsComposition of maps

5 / 30

Definition. Let f : X → Y and g : Y → Z be maps.

A composition of f and g is a map g ◦ f : X → Z defined by

g ◦ f(x) = g(f(x)) for any x ∈ X .

X Y Z

x
f(x)

f

g(f(x))

g

g ◦ f



MAT 250

Lecture 5

MapsComposition of maps

5 / 30

Definition. Let f : X → Y and g : Y → Z be maps.

A composition of f and g is a map g ◦ f : X → Z defined by

g ◦ f(x) = g(f(x)) for any x ∈ X .

X Y Z

x

f(x)

f

g(f(x))

g

g ◦ f



MAT 250

Lecture 5

MapsComposition of maps

5 / 30

Definition. Let f : X → Y and g : Y → Z be maps.

A composition of f and g is a map g ◦ f : X → Z defined by

g ◦ f(x) = g(f(x)) for any x ∈ X .

X Y Z

x
f(x)

f

g(f(x))

g

g ◦ f



MAT 250

Lecture 5

MapsComposition of maps

5 / 30

Definition. Let f : X → Y and g : Y → Z be maps.

A composition of f and g is a map g ◦ f : X → Z defined by

g ◦ f(x) = g(f(x)) for any x ∈ X .

X Y Z

x
f(x)

f

g(f(x))

g

g ◦ f



MAT 250

Lecture 5

MapsComposition of maps

5 / 30

Definition. Let f : X → Y and g : Y → Z be maps.

A composition of f and g is a map g ◦ f : X → Z defined by

g ◦ f(x) = g(f(x)) for any x ∈ X .

X Y Z

x
f(x)

f

g(f(x))

g

g ◦ f



MAT 250

Lecture 5

MapsComposition is associative

6 / 30

Theorem. A composition of maps is associative:

If f : X → Y , g : Y → Z , h : Z → W are maps, then

h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Proof. Take any x ∈ X . Then

(h ◦ (g ◦ f))(x) = h((g ◦ f)(x)) = h(g(f(x))) ,

((h ◦ g) ◦ f)(x) = (h ◦ g)(f(x)) = h(g(f(x)))

Therefore, (h ◦ (g ◦ f))(x) = ((h ◦ g) ◦ f)(x) for any x ∈ X ,
so h ◦ (g ◦ f) = (h ◦ g) ◦ f . �

Due to associativity, one can omit parentheses: h ◦ g ◦ f .

cream and coffee and sugar =

(cream and coffee) and sugar =

cream and (coffee and sugar)
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Warning. A composition is not commutative:

f ◦ g = g ◦ f .

For example, if f(x) = sinx and g(x) =
1

x
, then

(g ◦ f)(x) = g(f(x)) = g(sinx) =
1

sinx
,

(f ◦ g)(x) = f(g(x)) = f

(
1

x

)

= sin
1

x
.

Keep in mind. In the following set up X
f
→ Y

g
→ Z ,

the composition g ◦ f makes sense, while f ◦ g doesn’t.
Open garage door and drive in = drive in and open garage door.
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• A function in one variable y = f(x) is a map f : D → R,

where D ⊂ R is the domain of f .

Domain convention: when a function f is defined without specifying its
domain, we assume that the domain is the maximal set of x -values

for which f(x) is defined.

• A numerical sequence Z
+ → R , n 7→ an is a map.

• A constant map

Let X,Y be sets. Choose any y0 ∈ Y and define a map
f : X → Y by f(x) = y0 for all x ∈ X . This map is called a constant map.

Give a descriptive definition of a constant map.

A map f : X → Y is said to be constant if ∀a, b ∈ X f(a) = f(b) .

Or ∃c ∈ Y ∀a ∈ X f(a) = c.
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The identity map of X is idX : X → X , x 7→ x .

Theorem. The identity map is a unit with respect to the map composition.

That is, for any map f : X → Y , f ◦ idX = f and idY ◦ f = f .

Proof.

X X Y

f◦idX

idX f
, X Y Y

idY ◦f

f idY

Take any x ∈ X . Then

(f ◦ idX)(x) = f(idX(x)) = f(x) , so f ◦ idX = f

(idY ◦ f)(x) = idY (f(x)) = f(x) , so idY ◦ f = f . �
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• Inclusion map A ⊂ X , in : A → X , a 7→ a .

• Restriction of a map f : X → Y , A ⊂ X

f
∣
∣
A
: A → Y , a 7→ f(a)

The restriction is a composition of in : A → X and f : X → Y :

f
∣
∣
A
= f ◦ in : A

in
→ X

f
→ Y

• Submap

f : X → Y , A ⊂ X , B ⊂ Y , f(A) ⊂ B f
∣
∣
A,B

: A → B , a 7→ f(a)

X Y

A B

f

inA

f

∣

∣

∣

A,B

inB

This diagram is commutative, that is

inB ◦ f
∣
∣
A,B

= f ◦ inA
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Definition. A map f : X → Y is called injective (or injection or one-to-one) if

∀ x1, x2 ∈ X x1 = x2 =⇒ f(x1) = f(x2)

(that is, different elements have different images)

or, equivalently,

∀ x1, x2 ∈ X f(x1) = f(x2) =⇒ x1 = x2

(that is, if two elements have the same image, then the elements coincide)

or, equivalently,

∀ y ∈ Im f ∃ ! x ∈ X y = f(x)

(that is, each element in the range is the image of exactly one element).

or, equivalently,

∀ y ∈ Im f the equation y = f(x) has at most one solution.
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Theorem. A linear map f : R → R defined by f(x) = ax+ b with a = 0
is injective.

Proof. Take any x1, x2 ∈ R . If f(x1) = f(x2) , then

ax1 + b = ax2 + b =⇒ a(x1 − x2) = 0 =⇒
↑

x1 = x2.

a = 0

Therefore, ∀ x1, x2 ∈ R f(x1) = f(x2) =⇒ x1 = x2 ,
which means that f is injective. �

Remark. If a = 0 , then the map f(x) = b is a constant map,
it is not injective.
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it is not injective.
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The map f : R → R defined by f(x) = x2 is not injective.

x

y y = x2

y

x1 x2

There are different x1 and x2 for which f(x1) = f(x2) .

For example, 1 = −1 but f(1) = f(−1) = 1 .

Therefore, f is not injective.

Remark: The restriction f
∣
∣
∣
R+

is injective.
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Definition. Let f : X → Y be a map.

f is called surjective (or surjection,or onto) if

∀ y ∈ Y ∃ x ∈ X y = f(x)

(that is, all elements in Y are images of some elements in X )

or, equivalently, Y = Im f

(that is, the range of the map is the whole Y )

or, equivalently, ∀ y ∈ Y the equation f(x) = y has a solution.
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Example 1. A linear map f : R → R defined by f(x) = ax+ b with a = 0
is surjective.

Indeed, for any y ∈ R there exists x , namely x =
y − b

a
, such that

f(x) = f

(
y − b

a

)

= a ·
y − b

a
+ b = y − b+ b = y .

Therefore, ∀ y ∈ R ∃ x ∈ R y = f(x) , that is, f is surjective.

Example 2. A map f : R → R defined by f(x) = x2 is not surjective.

Indeed, Im f = [0,∞) = R
↑

codomain
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Any map can be converted to a surjection
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Definition. Let f : X → Y be a map.

f is called bijective (or bijection, or one-to-one correspondence) if

f is injective and surjective: ∀ y ∈ Y ∃ ! x ∈ X y = f(x) ,

or, equivalently, ∀ y ∈ Y the equation f(x) = y has a unique solution.
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X Y
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f is not bijective
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X Y
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A linear map f : R → R defined by f(x) = ax+ b with a = 0 is bijective,
since it is injective and surjective.
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MAT 250

Lecture 5

MapsLinear function is bijective

20 / 30

A linear map f : R → R

defined by f(x) = ax+ b with a = 0 is bijective,
since it is injective and surjective.

x

y
y = ax+ b

y ∀ y ∈ R

x

∃ ! x ∈ R y = ax+ b



MAT 250

Lecture 5

MapsLinear function is bijective

20 / 30

A linear map f : R → R defined by f(x) = ax+ b with a 6= 0

is bijective,
since it is injective and surjective.

x

y
y = ax+ b

y ∀ y ∈ R

x

∃ ! x ∈ R y = ax+ b



MAT 250

Lecture 5

MapsLinear function is bijective

20 / 30

A linear map f : R → R defined by f(x) = ax+ b with a 6= 0 is bijective,

since it is injective and surjective.

x

y
y = ax+ b

y ∀ y ∈ R

x

∃ ! x ∈ R y = ax+ b



MAT 250

Lecture 5

MapsLinear function is bijective

20 / 30

A linear map f : R → R defined by f(x) = ax+ b with a 6= 0 is bijective,
since it is injective and surjective.

x

y
y = ax+ b

y ∀ y ∈ R

x

∃ ! x ∈ R y = ax+ b



MAT 250

Lecture 5

MapsLinear function is bijective

20 / 30

A linear map f : R → R defined by f(x) = ax+ b with a 6= 0 is bijective,
since it is injective and surjective.

x

y

y = ax+ b

y ∀ y ∈ R

x

∃ ! x ∈ R y = ax+ b



MAT 250

Lecture 5

MapsLinear function is bijective

20 / 30

A linear map f : R → R defined by f(x) = ax+ b with a 6= 0 is bijective,
since it is injective and surjective.

x

y
y = ax+ b

y ∀ y ∈ R

x

∃ ! x ∈ R y = ax+ b



MAT 250

Lecture 5

MapsLinear function is bijective

20 / 30

A linear map f : R → R defined by f(x) = ax+ b with a 6= 0 is bijective,
since it is injective and surjective.

x

y
y = ax+ b

y ∀ y ∈ R

x

∃ ! x ∈ R y = ax+ b



MAT 250

Lecture 5

MapsLinear function is bijective

20 / 30

A linear map f : R → R defined by f(x) = ax+ b with a 6= 0 is bijective,
since it is injective and surjective.

x

y
y = ax+ b

y ∀ y ∈ R

x

∃ ! x ∈ R y = ax+ b



MAT 250

Lecture 5

MapsLinear function is bijective

20 / 30

A linear map f : R → R defined by f(x) = ax+ b with a 6= 0 is bijective,
since it is injective and surjective.

x

y
y = ax+ b

y ∀ y ∈ R

x

∃ ! x ∈ R

y = ax+ b



MAT 250

Lecture 5

MapsLinear function is bijective

20 / 30

A linear map f : R → R defined by f(x) = ax+ b with a 6= 0 is bijective,
since it is injective and surjective.

x

y
y = ax+ b

y ∀ y ∈ R

x

∃ ! x ∈ R y = ax+ b



MAT 250

Lecture 5

MapsInverse map

21 / 30

Definition. A map g : Y → X is called inverse for f : X → Y if

g ◦ f = idX and f ◦ g = idY , that is
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Theorem. If an inverse map exists, then it is unique.

Proof. Let f : X → Y has two inverse maps, g and h . g, h : Y → X

Since g is an inverse for f , we have

g ◦ f = idX and f ◦ g = idY .

Since h is an inverse for f , we have

h ◦ f = idX and f ◦ h = idY .

g = g ◦ idY = g ◦ (f ◦ h) = g ◦ f ◦ h = (g ◦ f) ◦ h = idX ◦ h = h

Therefore, g = h and the inverse map is unique. �

Since the inverse map is unique, it deserves a functional notation.

The inverse for f is denoted by f−1 . By the definition of the inverse,

f−1 ◦ f = idX and f ◦ f−1 = idY
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Theorem. A map is invertible iff it is a bijection.

Proof. Assume that f : X → Y is invertible and prove that f is a bijection.

To show injectivity, assume that f(x1) = f(x2) for some x1, x2 ∈ X .

Apply f−1 (it exists since f is invertible) to this identity:

f−1(f(x1)) = f−1(f(x2)) =⇒ x1 = x2 .

By this, f is injective.

To show surjectivity, take any y ∈ Y and apply f−1 . Let x = f−1(y) .

So for any y ∈ Y there exists x ∈ X , namely x = f−1(y) ,

such that f(x) = f(f−1(y)) = y .
By this, f is surjective.

We have proved that f is injective and surjective, therefore, f is bijective.

The half of the proof is done!
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Assume now that f is a bijection,

and prove that f is invertible.

By definition of bijectivity, ∀ y ∈ Y ∃ ! x ∈ X y = f(x) .

Define a map g : Y → X by the formula g(y) = x , where y = f(x) .

Let us prove that g is the inverse for f .

∀ x ∈ X (g ◦ f)(x) = g(f(x)) = g(y) = x . So g ◦ f = idX .

∀ y ∈ Y (f ◦ g)(y) = f(g(y)) = f(x) = y . So f ◦ g = idY .

Therefore, by the definition of the inverse, g is the inverse for f , g = f−1 .

Thus, f is invertible. And the other half of the proof is done! �

" Warning. The symbol f−1 is used in two ways.

1. f−1 denotes the inverse map for f if f is invertible.

2. f−1(B) denotes the preimage of a set B under under any f

(not necessarily invertible).
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Corollary 1. For any set X , the identity map idX is a bijection.

Proof. Since idX is invertible ( id−1

X = idX ), it is a bijection. �

Corollary 2. If f is a bijection, then f−1 is also a bijection, and (f−1)−1 = f .

Proof. Let f : X → Y be a bijection. Then f is invertible, that is

there exists f−1 : Y → X such that f−1 ◦ f = idX and f ◦ f−1 = idY

In these identities, what is f from the point of view of f−1 ?

f is the inverse for f−1 !

Therefore, f−1 is invertible (and by this, is a bijection) and (f−1)−1 = f .
�
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Corollary 3.

A composition of bijections is a bijection, that is,
if f : X → Y and g : Y → Z are bijections, then

g ◦ f : X → Z is a bijection and (g ◦ f)−1 = f−1 ◦ g−1 .

Proof. Let f : X → Y and g : Y → Z be bijections.

Then there exist f−1 : Y → X and g−1 : Z → Y :

X
f

⇄

f−1

Y
g

⇄

g−1

Z

and

(f−1 ◦ g−1) ◦ (g ◦ f) = f−1 ◦ (g−1 ◦ g) ◦ f = f−1 ◦ idY ◦ f = f−1 ◦ f = idX ,

(g ◦ f) ◦ (f−1 ◦ g−1) = g ◦ (f ◦ f−1) ◦ g−1 = g ◦ idY ◦ g−1 = g ◦ g−1 = idZ .

Therefore, f−1 ◦ g−1 : Z → X is the inverse for g ◦ f : X → Z , and

g ◦ f : X → Z is a bijection.
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Definition. Let X, Y ⊂ R and f : X → Y be a function.

If f is strictly increasing or strictly decreasing on X ,
then it is called (strictly) monotonic.

Theorem. A monotonic function is injective.

Proof. Let X, Y ⊂ R and f : X → Y , x 7→ f(x) be a function.

Assume that f is strictly increasing.
(For a strictly decreasing function the reasoning is similar.)

Take any x1, x2 ∈ X . If x1 = x2 , then x1 < x2 or x1 > x2 .

In the case when x1 < x2 , we have f(x1) < f(x2) .

In the case when x1 > x2 , we have f(x1) > f(x2) .

In either case, f(x1) = f(x2) . Therefore
∀x1, x2 ∈ X x1 = x2 =⇒ f(x1) = f(x2) .

Therefore, f is injective. �
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Example 1. Let exp : R → R>0, x 7→ ex be the exponential function.

It is monotonic and surjective, therefore invertible.

Its inverse is ln : R>0 → R, y 7→ ln y .

By the definition of the inverse, f−1 ◦ f = idX and f ◦ f−1 = idY .

In our case, these identities turn to

ln(exp(x)) = x for all x ∈ R and exp(ln(y)) = y for all y ∈ R>0 .

We get used to see these identities in the form

ln ex = x for all x and elnx = x for all x > 0 .

These identities are used as
the definition of logarithmic function as the inverse for exponential function,

or the other way around:
as the definition of the exponential function as the inverse for logarithmic function.
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Example 2. Let tan :
(

−
π

2
,
π

2

)

→ R, x 7→ tanx

be the tangent function restricted on
(

−
π

2
,
π

2

)

.

It is monotonic and surjective, therefore invertible.

Its inverse is arctan : R →
(

−
π

2
,
π

2

)

, y 7→ arctan y .

By the definition of the inverse,

arctan(tanx) = x for all x ∈
(

−
π

2
,
π

2

)

and

tan(arctan y) = y for all y ∈ R .

" Warning. Using the symbol tan−1 for the inverse for tan is ambiguous.

It may be understood as tan−1 x =
1

tanx
= cotx .

To avoid this ambiguity, always use arctanx
as a notation for the inverse function for tanx .
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Example 3. What function is inverse to sinx ?
Is the function x 7→ sinx bijective?

How to make it bijective? What is the standard way?

Invertible subfunction:
[

−
π

2
,
π

2

]

→ [−1, 1] .

The inverse function arcsin : [−1, 1] →
[

−
π

2
,
π

2

]

.

Example 4. What is arccos ?
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