Lecture 4

Sets

A set and its elements

> In any intellectual activity,
> one of the most profound actions is

In any intellectual activity,
one of the most profound actions is gathering objects in groups.

In any intellectual activity,
one of the most profound actions is gathering objects in groups, performed in mind,

In any intellectual activity,
one of the most profound actions is gathering objects in groups, performed in mind, with no action in the physical world.

In any intellectual activity,
one of the most profound actions is gathering objects in groups, performed in mind, with no action in the physical world.

A group can be a subject of thoughts and arguments,

In any intellectual activity,
one of the most profound actions is gathering objects in groups, performed in mind, with no action in the physical world.

A group can be a subject of thoughts and arguments, and can be included into other groups.

In any intellectual activity,
one of the most profound actions is gathering objects in groups, performed in mind, with no action in the physical world.

A group can be a subject of thoughts and arguments, and can be included into other groups.

In Mathematics, creation those groups and manipulating with them
is organized and regulated by the naive set theory.

In any intellectual activity,
one of the most profound actions is gathering objects in groups, performed in mind, with no action in the physical world.

A group can be a subject of thoughts and arguments, and can be included into other groups.

In Mathematics, creation those groups and manipulating with them
is organized and regulated by the naive set theory.
This is rather a language, than a theory.

In any intellectual activity,
one of the most profound actions is gathering objects in groups, performed in mind, with no action in the physical world.

A group can be a subject of thoughts and arguments, and can be included into other groups.

In Mathematics, creation those groups and manipulating with them
is organized and regulated by the naive set theory.
This is rather a language, than a theory.
The first words in this language are set and element.

In any intellectual activity,
one of the most profound actions is gathering objects in groups, performed in mind, with no action in the physical world.

A group can be a subject of thoughts and arguments, and can be included into other groups.

In Mathematics, creation those groups and manipulating with them
is organized and regulated by the naive set theory.
This is rather a language, than a theory.
The first words in this language are set and element.
A set is a collection of objects which are called elements.

In any intellectual activity,
one of the most profound actions is gathering objects in groups, performed in mind, with no action in the physical world.

A group can be a subject of thoughts and arguments, and can be included into other groups.

In Mathematics, creation those groups and manipulating with them
is organized and regulated by the naive set theory.
This is rather a language, than a theory.
The first words in this language are set and element.
A set is a collection of objects which are called elements.
A set consists of (and is defined by) its elements.

Notations and synonims

Notation:

Notations and synonims

Notation: $x \in S \quad$ " x is an element of a set S "

Notations and synonims

Notation: $x \in S \quad$ " x is an element of a set S "
" x belongs to S "

Notation: | $x \in S \quad$ | $" x$ is an element of a set $S "$ |
| ---: | :--- |
| | $" x$ belongs to $S "$ |
| | $" A$ consists of its elements" |

Notation: $x \in S \quad$ " x is an element of a set S "
" x belongs to S "
" A consists of its elements"
" A is formed by its elements"

Notation: $x \in S \quad$| | $" x$ is an element of a set $S "$ |
| :--- | :--- |
| | " x belongs to $S "$ |
| | " A consists of its elements" |
| | $" A$ is formed by its elements" |

Other notations: $S \ni x$

Notation: $x \in S \quad$| | $" x$ is an element of a set $S "$ |
| ---: | :--- |
| | $" x$ belongs to $S "$ |
| | " A consists of its elements" |
| | $" A$ is formed by its elements" |

Other notations: $S \ni x, \quad S \not \supset x$
Notation: $x \in S \quad$ " x is an element of a set S "

Other notations: $S \ni x, \quad S \not \supset x, \quad x \notin S$.
Notation: $x \in S \quad$ " x is an element of a set S "

" $" A$ belongs to S consists of its elements"

Notation: $x \in S \quad$ " x is an element of a set S "
" x belongs to S "
" A consists of its elements"
" A is formed by its elements"
Other notations: $S \ni x, \quad S \not \supset x, x \notin S$.
Do not confuse " \in " and " ε ".

Standard number sets

$\mathbb{N}=\mathbb{Z}^{+}=$

Standard number sets

$$
\mathbb{N}=\mathbb{Z}^{+}=\{1,2,3,, \ldots\}
$$

Standard number sets

$$
\mathbb{N}=\mathbb{Z}^{+}=\{1,2,3,, \ldots\} \text { natural numbers (or positive integers) }
$$

Standard number sets

$$
\begin{aligned}
& \mathbb{N}=\mathbb{Z}^{+}=\{1,2,3,, \ldots\} \text { natural numbers (or positive integers) } \\
& \mathbb{Z}=
\end{aligned}
$$

Standard number sets

$$
\begin{aligned}
& \mathbb{N}=\mathbb{Z}^{+}=\{1,2,3,, \ldots\} \text { natural numbers (or positive integers) } \\
& \mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
\end{aligned}
$$

$\mathbb{N}=\mathbb{Z}^{+}=\{1,2,3, \ldots\}$ natural numbers (or positive integers)
$\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$ integers

Standard number sets

$$
\begin{aligned}
& \mathbb{N}=\mathbb{Z}^{+}=\{1,2,3, \ldots\} \text { natural numbers (or positive integers) } \\
& \mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \text { integers }
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{N} & =\mathbb{Z}^{+}=\{1,2,3,, \ldots\} \text { natural numbers (or positive integers) } \\
\mathbb{Z} & =\{\ldots,-3,-2,-1,0,1,2,3,, \ldots\} \text { integers } \\
\mathbb{Q} & =\left\{\left.\frac{p}{q} \right\rvert\, p, q \in \mathbb{Z}, q \neq 0\right\}
\end{aligned}
$$

$$
\mathbb{N}=\mathbb{Z}^{+}=\{1,2,3, \ldots\} \text { natural numbers (or positive integers) }
$$

$\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$ integers
$\mathbb{Q}=\left\{\left.\frac{p}{q} \right\rvert\, p, q \in \mathbb{Z}, q \neq 0\right\} \quad$ rational numbers
$\mathbb{N}=\mathbb{Z}^{+}=\{1,2,3, \ldots\}$ natural numbers (or positive integers)
$\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$ integers
$\mathbb{Q}=\left\{\left.\frac{p}{q} \right\rvert\, p, q \in \mathbb{Z}, q \neq 0\right\} \quad$ rational numbers
\mathbb{R}
$\mathbb{N}=\mathbb{Z}^{+}=\{1,2,3, \ldots\}$ natural numbers (or positive integers)
$\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3,, \ldots\}$ integers
$\mathbb{Q}=\left\{\left.\frac{p}{q} \right\rvert\, p, q \in \mathbb{Z}, q \neq 0\right\} \quad$ rational numbers
\mathbb{R} real numbers
$\mathbb{N}=\mathbb{Z}^{+}=\{1,2,3, \ldots\}$ natural numbers (or positive integers)
$\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3,, \ldots\}$ integers
$\mathbb{Q}=\left\{\left.\frac{p}{q} \right\rvert\, p, q \in \mathbb{Z}, q \neq 0\right\} \quad$ rational numbers
\mathbb{R} real numbers
$\mathbb{C}=$
$\mathbb{N}=\mathbb{Z}^{+}=\{1,2,3, \ldots\}$ natural numbers (or positive integers)
$\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$ integers
$\mathbb{Q}=\left\{\left.\frac{p}{q} \right\rvert\, p, q \in \mathbb{Z}, q \neq 0\right\} \quad$ rational numbers
\mathbb{R} real numbers
$\mathbb{C}=\left\{a+i b \mid a, b \in \mathbb{R}, i^{2}=-1\right\}$
$\mathbb{N}=\mathbb{Z}^{+}=\{1,2,3, \ldots\}$ natural numbers (or positive integers)
$\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3,, \ldots\}$ integers
$\mathbb{Q}=\left\{\left.\frac{p}{q} \right\rvert\, p, q \in \mathbb{Z}, q \neq 0\right\} \quad$ rational numbers
\mathbb{R} real numbers
$\mathbb{C}=\left\{a+i b \mid a, b \in \mathbb{R}, i^{2}=-1\right\} \quad$ complex numbers

Equal sets

Equal sets

Definition.

Equal sets

Definition. Two sets are called equal

Equal sets

Definition. Two sets are called equal if they have the same elements.

Equal sets

Definition. Two sets are called equal if they have the same elements.
Notation: $X=Y$.

Definition. Two sets are called equal if they have the same elements.
Notation: $X=Y$.
By definition, $X=Y$

Definition. Two sets are called equal if they have the same elements.
Notation: $X=Y$.
By definition, $X=Y \Longleftrightarrow \forall x$

Definition. Two sets are called equal if they have the same elements.
Notation: $X=Y$.
By definition, $X=Y \Longleftrightarrow \forall x(x \in X \Longleftrightarrow x \in Y)$.

Definition. Two sets are called equal if they have the same elements.
Notation: $X=Y$.
By definition, $X=Y \Longleftrightarrow \forall x(x \in X \Longleftrightarrow x \in Y)$.

Example 1.

Definition. Two sets are called equal if they have the same elements.
Notation: $X=Y$.
By definition, $X=Y \Longleftrightarrow \forall x(x \in X \Longleftrightarrow x \in Y)$.
Example 1. $X=\{1,2\}$

Definition. Two sets are called equal if they have the same elements.
Notation: $X=Y$.
By definition, $X=Y \Longleftrightarrow \forall x(x \in X \Longleftrightarrow x \in Y)$.
Example 1. $X=\{1,2\}$

$$
Y=\{n \in \mathbb{N} \mid n<3\}
$$

Definition. Two sets are called equal if they have the same elements.
Notation: $X=Y$.
By definition, $X=Y \Longleftrightarrow \forall x(x \in X \Longleftrightarrow x \in Y)$.
Example 1. $X=\{1,2\}$

$$
\begin{aligned}
& Y=\{n \in \mathbb{N} \mid n<3\} \\
& Z=\left\{x \in \mathbb{R} \mid x^{2}-3 x+2=0\right\}
\end{aligned}
$$

Definition. Two sets are called equal if they have the same elements.
Notation: $X=Y$.
By definition, $X=Y \Longleftrightarrow \forall x(x \in X \Longleftrightarrow x \in Y)$.
Example 1. $X=\{1,2\}$

$$
\begin{aligned}
& Y=\{n \in \mathbb{N} \mid n<3\} \\
& Z=\left\{x \in \mathbb{R} \mid x^{2}-3 x+2=0\right\}
\end{aligned}
$$

$X=Y=Z$

Definition. Two sets are called equal if they have the same elements.
Notation: $X=Y$.
By definition, $X=Y \Longleftrightarrow \forall x(x \in X \Longleftrightarrow x \in Y)$.
Example 1. $X=\{1,2\}$

$$
\begin{aligned}
& Y=\{n \in \mathbb{N} \mid n<3\} \\
& Z=\left\{x \in \mathbb{R} \mid x^{2}-3 x+2=0\right\}
\end{aligned}
$$

$X=Y=Z$ since they consists of the same elements: 1 and 2 .

Definition. Two sets are called equal if they have the same elements.
Notation: $X=Y$.
By definition, $X=Y \Longleftrightarrow \forall x(x \in X \Longleftrightarrow x \in Y)$.
Example 1. $X=\{1,2\}$

$$
\begin{aligned}
& Y=\{n \in \mathbb{N} \mid n<3\} \\
& Z=\left\{x \in \mathbb{R} \mid x^{2}-3 x+2=0\right\}
\end{aligned}
$$

$X=Y=Z$ since they consists of the same elements: 1 and 2 .

Example 2.

Definition. Two sets are called equal if they have the same elements. Notation: $X=Y$.

By definition, $X=Y \Longleftrightarrow \forall x(x \in X \Longleftrightarrow x \in Y)$.
Example 1. $X=\{1,2\}$

$$
\begin{aligned}
& Y=\{n \in \mathbb{N} \mid n<3\} \\
& Z=\left\{x \in \mathbb{R} \mid x^{2}-3 x+2=0\right\}
\end{aligned}
$$

$X=Y=Z$ since they consists of the same elements: 1 and 2 .
Example 2. $\{1,2,2\}$

Definition. Two sets are called equal if they have the same elements. Notation: $X=Y$.

By definition, $X=Y \Longleftrightarrow \forall x(x \in X \Longleftrightarrow x \in Y)$.
Example 1. $X=\{1,2\}$

$$
\begin{aligned}
& Y=\{n \in \mathbb{N} \mid n<3\} \\
& Z=\left\{x \in \mathbb{R} \mid x^{2}-3 x+2=0\right\}
\end{aligned}
$$

$X=Y=Z$ since they consists of the same elements: 1 and 2 .
Example 2. $\{1,2,2\}=\{1,2\}$

Definition. Two sets are called equal if they have the same elements. Notation: $X=Y$.

By definition, $X=Y \Longleftrightarrow \forall x(x \in X \Longleftrightarrow x \in Y)$.
Example 1. $X=\{1,2\}$

$$
\begin{aligned}
& Y=\{n \in \mathbb{N} \mid n<3\} \\
& Z=\left\{x \in \mathbb{R} \mid x^{2}-3 x+2=0\right\}
\end{aligned}
$$

$X=Y=Z$ since they consists of the same elements: 1 and 2 .
Example 2. $\{1,2,2\}=\{1,2\}$, since a set is defined by its elements.

Definition. Two sets are called equal if they have the same elements. Notation: $X=Y$.

By definition, $X=Y \Longleftrightarrow \forall x(x \in X \Longleftrightarrow x \in Y)$.
Example 1. $X=\{1,2\}$

$$
\begin{aligned}
& Y=\{n \in \mathbb{N} \mid n<3\} \\
& Z=\left\{x \in \mathbb{R} \mid x^{2}-3 x+2=0\right\}
\end{aligned}
$$

$X=Y=Z$ since they consists of the same elements: 1 and 2 .
Example 2. $\{1,2,2\}=\{1,2\}$, since a set is defined by its elements.
Example 3.

Definition. Two sets are called equal if they have the same elements. Notation: $X=Y$.

By definition, $X=Y \Longleftrightarrow \forall x(x \in X \Longleftrightarrow x \in Y)$.
Example 1. $X=\{1,2\}$

$$
\begin{aligned}
& Y=\{n \in \mathbb{N} \mid n<3\} \\
& Z=\left\{x \in \mathbb{R} \mid x^{2}-3 x+2=0\right\}
\end{aligned}
$$

$X=Y=Z$ since they consists of the same elements: 1 and 2 .
Example 2. $\{1,2,2\}=\{1,2\}$, since a set is defined by its elements.
Example 3. $\{1,2,3\}=\{3,2,1\}$

Definition. Two sets are called equal if they have the same elements. Notation: $X=Y$.

By definition, $X=Y \Longleftrightarrow \forall x(x \in X \Longleftrightarrow x \in Y)$.
Example 1. $X=\{1,2\}$

$$
\begin{aligned}
& Y=\{n \in \mathbb{N} \mid n<3\} \\
& Z=\left\{x \in \mathbb{R} \mid x^{2}-3 x+2=0\right\}
\end{aligned}
$$

$X=Y=Z$ since they consists of the same elements: 1 and 2 .
Example 2. $\{1,2,2\}=\{1,2\}$, since a set is defined by its elements.
Example 3. $\{1,2,3\}=\{3,2,1\}$
Example 4.

Definition. Two sets are called equal if they have the same elements. Notation: $X=Y$.

By definition, $X=Y \Longleftrightarrow \forall x(x \in X \Longleftrightarrow x \in Y)$.
Example 1. $X=\{1,2\}$

$$
\begin{aligned}
& Y=\{n \in \mathbb{N} \mid n<3\} \\
& Z=\left\{x \in \mathbb{R} \mid x^{2}-3 x+2=0\right\}
\end{aligned}
$$

$X=Y=Z$ since they consists of the same elements: 1 and 2 .
Example 2. $\{1,2,2\}=\{1,2\}$, since a set is defined by its elements.
Example 3. $\{1,2,3\}=\{3,2,1\}$
Example 4. $\{1,\{1\}\}$

Definition. Two sets are called equal if they have the same elements.
Notation: $X=Y$.
By definition, $X=Y \Longleftrightarrow \forall x(x \in X \Longleftrightarrow x \in Y)$.
Example 1. $X=\{1,2\}$

$$
\begin{aligned}
& Y=\{n \in \mathbb{N} \mid n<3\} \\
& Z=\left\{x \in \mathbb{R} \mid x^{2}-3 x+2=0\right\}
\end{aligned}
$$

$X=Y=Z$ since they consists of the same elements: 1 and 2 .
Example 2. $\{1,2,2\}=\{1,2\}$, since a set is defined by its elements.
Example 3. $\{1,2,3\}=\{3,2,1\}$
Example 4. $\{1,\{1\}\} \quad\{1\}$

Definition. Two sets are called equal if they have the same elements.
Notation: $X=Y$.
By definition, $X=Y \Longleftrightarrow \forall x(x \in X \Longleftrightarrow x \in Y)$.
Example 1. $X=\{1,2\}$

$$
\begin{aligned}
& Y=\{n \in \mathbb{N} \mid n<3\} \\
& Z=\left\{x \in \mathbb{R} \mid x^{2}-3 x+2=0\right\}
\end{aligned}
$$

$X=Y=Z$ since they consists of the same elements: 1 and 2 .
Example 2. $\{1,2,2\}=\{1,2\}$, since a set is defined by its elements.
Example 3. $\{1,2,3\}=\{3,2,1\}$
Example 4. $\{1,\{1\}\} \neq\{1\}$

Definition. Two sets are called equal if they have the same elements.
Notation: $X=Y$.
By definition, $X=Y \Longleftrightarrow \forall x(x \in X \Longleftrightarrow x \in Y)$.
Example 1. $X=\{1,2\}$

$$
\begin{aligned}
& Y=\{n \in \mathbb{N} \mid n<3\} \\
& Z=\left\{x \in \mathbb{R} \mid x^{2}-3 x+2=0\right\}
\end{aligned}
$$

$X=Y=Z$ since they consists of the same elements: 1 and 2 .
Example 2. $\{1,2,2\}=\{1,2\}$, since a set is defined by its elements.
Example 3. $\{1,2,3\}=\{3,2,1\}$
Example 4. $\{1,\{1\}\} \neq\{1\}$
Example 5.

Definition. Two sets are called equal if they have the same elements.
Notation: $X=Y$.
By definition, $X=Y \Longleftrightarrow \forall x(x \in X \Longleftrightarrow x \in Y)$.
Example 1. $X=\{1,2\}$

$$
\begin{aligned}
& Y=\{n \in \mathbb{N} \mid n<3\} \\
& Z=\left\{x \in \mathbb{R} \mid x^{2}-3 x+2=0\right\}
\end{aligned}
$$

$X=Y=Z$ since they consists of the same elements: 1 and 2 .
Example 2. $\{1,2,2\}=\{1,2\}$, since a set is defined by its elements.
Example 3. $\{1,2,3\}=\{3,2,1\}$
Example 4. $\{1,\{1\}\} \neq\{1\}$
Example 5. $\{1,2,3\}$

Definition. Two sets are called equal if they have the same elements.
Notation: $X=Y$.
By definition, $X=Y \Longleftrightarrow \forall x(x \in X \Longleftrightarrow x \in Y)$.
Example 1. $X=\{1,2\}$

$$
\begin{aligned}
& Y=\{n \in \mathbb{N} \mid n<3\} \\
& Z=\left\{x \in \mathbb{R} \mid x^{2}-3 x+2=0\right\}
\end{aligned}
$$

$X=Y=Z$ since they consists of the same elements: 1 and 2 .
Example 2. $\{1,2,2\}=\{1,2\}$, since a set is defined by its elements.
Example 3. $\{1,2,3\}=\{3,2,1\}$
Example 4. $\{1,\{1\}\} \neq\{1\}$
Example 5. $\{1,2,3\} \quad\{\{1\}, 2,3\}$

Definition. Two sets are called equal if they have the same elements.
Notation: $X=Y$.
By definition, $X=Y \Longleftrightarrow \forall x(x \in X \Longleftrightarrow x \in Y)$.
Example 1. $X=\{1,2\}$

$$
\begin{aligned}
& Y=\{n \in \mathbb{N} \mid n<3\} \\
& Z=\left\{x \in \mathbb{R} \mid x^{2}-3 x+2=0\right\}
\end{aligned}
$$

$X=Y=Z$ since they consists of the same elements: 1 and 2 .
Example 2. $\{1,2,2\}=\{1,2\}$, since a set is defined by its elements.
Example 3. $\{1,2,3\}=\{3,2,1\}$
Example 4. $\{1,\{1\}\} \neq\{1\}$
Example 5. $\{1,2,3\} \neq\{\{1\}, 2,3\}$

Empty set

Definition.

Empty set

Definition. An empty set

Empty set

Definition. An empty set is a set with no elements.

Empty set

Definition. An empty set is a set with no elements.
Notation: \varnothing

Empty set

Definition. An empty set is a set with no elements.
Notation: \varnothing

Empty set

Definition. An empty set is a set with no elements.
Notation: \varnothing

Is $\varnothing=\{\varnothing\} ?$

Empty set

Definition. An empty set is a set with no elements.
Notation: \varnothing

Is $\varnothing=\{\varnothing\}$? No!

Empty set

Definition. An empty set is a set with no elements.

Notation: \varnothing

Is $\varnothing=\{\varnothing\}$? No!
empty box

Empty set

Definition. An empty set is a set with no elements.

Notation: \varnothing

$$
\begin{aligned}
& \text { Is } \varnothing=\{\varnothing\} ? \\
& \text { empty box } \neq
\end{aligned}
$$

Empty set

Definition. An empty set is a set with no elements.

Notation: \varnothing

Is $\varnothing=\{\varnothing\}$? No!
empty box \neq a box containing an empty box.

Definition. A set A is a subset of a set B

Definition. A set A is a subset of a set B

if any element of A

Definition. A set A is a subset of a set B

if any element of A is an element of B.

Definition. A set A is a subset of a set B

if any element of A is an element of B.
Notation: $A \subset B$

Definition. A set A is a subset of a set B
if any element of A is an element of B.
Notation: $A \subset B$, or $A \subseteq B$

Definition. A set A is a subset of a set B
if any element of A is an element of B.
Notation: $A \subset B$, or $A \subseteq B$, or $B \supset A$

Definition. A set A is a subset of a set B
if any element of A is an element of B.
Notation: $A \subset B$, or $A \subseteq B$, or $B \supset A$, or $B \supseteq A$.
The signs " \subset ", " \subseteq ", " \supset " and " \supseteq " are called inclusion symbols.

Definition. A set A is a subset of a set B
if any element of A is an element of B.
Notation: $A \subset B$, or $A \subseteq B$, or $B \supset A$, or $B \supseteq A$.
The signs " \subset ", " \subseteq ", " \supset " and " \supseteq " are called inclusion symbols.
Commonly \subset and \subseteq are used in the same sense.

Definition. A set A is a subset of a set B
if any element of A is an element of B.
Notation: $A \subset B$, or $A \subseteq B$, or $B \supset A$, or $B \supseteq A$.
The signs " \subset ", " \subseteq ", " \supset " and " \supseteq " are called inclusion symbols.
Commonly \subset and \subseteq are used in the same sense.
By definition,

Definition. A set A is a subset of a set B
if any element of A is an element of B.
Notation: $A \subset B$, or $A \subseteq B$, or $B \supset A$, or $B \supseteq A$.
The signs " \subset ", " \subseteq ", " \supset " and " \supseteq " are called inclusion symbols.
Commonly \subset and \subseteq are used in the same sense.
By definition, $A \subset B \Longleftrightarrow \forall x(x \in A \Longrightarrow x \in B)$.

Definition. A set A is a subset of a set B
if any element of A is an element of B.
Notation: $A \subset B$, or $A \subseteq B$, or $B \supset A$, or $B \supseteq A$.
The signs " \subset ", " \subseteq ", " \supset " and " \supseteq " are called inclusion symbols.
Commonly \subset and \subseteq are used in the same sense.
By definition, $A \subset B \Longleftrightarrow \forall x(x \in A \Longrightarrow x \in B)$.
Warning:

Definition. A set A is a subset of a set B
if any element of A is an element of B.
Notation: $A \subset B$, or $A \subseteq B$, or $B \supset A$, or $B \supseteq A$.
The signs " \subset ", " \subseteq ", " \supset " and " \supseteq " are called inclusion symbols.
Commonly \subset and \subseteq are used in the same sense.
By definition, $A \subset B \Longleftrightarrow \forall x(x \in A \Longrightarrow x \in B)$.
Warning: distinguish the signs " \in " and " \subset "

Definition. A set A is a subset of a set B
if any element of A is an element of B.
Notation: $A \subset B$, or $A \subseteq B$, or $B \supset A$, or $B \supseteq A$.
The signs " \subset ", " \subseteq ", " \supset " and " \supseteq " are called inclusion symbols.
Commonly \subset and \subseteq are used in the same sense.
By definition, $A \subset B \Longleftrightarrow \forall x(x \in A \Longrightarrow x \in B)$.
Warning: distinguish the signs " \in " and " \subset "
Example. $A=\{1,2,3\}$.

Definition. A set A is a subset of a set B
if any element of A is an element of B.
Notation: $A \subset B$, or $A \subseteq B$, or $B \supset A$, or $B \supseteq A$.
The signs " \subset ", " \subseteq ", " \supset " and " \supseteq " are called inclusion symbols.
Commonly \subset and \subseteq are used in the same sense.
By definition, $A \subset B \Longleftrightarrow \forall x(x \in A \Longrightarrow x \in B)$.
Warning: distinguish the signs " \in " and " \subset "
Example. $A=\{1,2,3\}$.
correct: $\quad 1 \in A$

$$
\{1\} \in A
$$

Definition. A set A is a subset of a set B
if any element of A is an element of B.
Notation: $A \subset B$, or $A \subseteq B$, or $B \supset A$, or $B \supseteq A$.
The signs " \subset ", " \subseteq ", " \supset " and " \supseteq " are called inclusion symbols.
Commonly \subset and \subseteq are used in the same sense.
By definition, $A \subset B \Longleftrightarrow \forall x(x \in A \Longrightarrow x \in B)$.
Warning: distinguish the signs " \in " and " \subset "
Example. $A=\{1,2,3\}$.
correct: $\quad 1 \in A \quad$ wrong: $\quad\{1\} \in A$

Definition. A set A is a subset of a set B
if any element of A is an element of B.
Notation: $A \subset B$, or $A \subseteq B$, or $B \supset A$, or $B \supseteq A$.
The signs " \subset ", " \subseteq ", " \supset " and " \supseteq " are called inclusion symbols.
Commonly \subset and \subseteq are used in the same sense.
By definition, $A \subset B \Longleftrightarrow \forall x(x \in A \Longrightarrow x \in B)$.
Warning: distinguish the signs " \in " and " \subset "
Example. $A=\{1,2,3\}$.
correct: $\quad 1 \in A \quad$ wrong: $\quad\{1\} \in A$

Definition. A set A is a subset of a set B
if any element of A is an element of B.
Notation: $A \subset B$, or $A \subseteq B$, or $B \supset A$, or $B \supseteq A$.
The signs " \subset ", " \subseteq ", " \supset " and " \supseteq " are called inclusion symbols.
Commonly \subset and \subseteq are used in the same sense.
By definition, $A \subset B \Longleftrightarrow \forall x(x \in A \Longrightarrow x \in B)$.
Warning: distinguish the signs " \in " and " \subset "
Example. $A=\{1,2,3\}$.
correct: $\quad 1 \in A \quad$ wrong: $\quad\{1\} \in A$
wrong: $\quad 1 \subset A$

Definition. A set A is a subset of a set B
if any element of A is an element of B.
Notation: $A \subset B$, or $A \subseteq B$, or $B \supset A$, or $B \supseteq A$.
The signs " \subset ", " \subseteq ", " \supset " and " \supseteq " are called inclusion symbols.
Commonly \subset and \subseteq are used in the same sense.
By definition, $A \subset B \Longleftrightarrow \forall x(x \in A \Longrightarrow x \in B)$.
Warning: distinguish the signs " \in " and " \subset "
Example. $A=\{1,2,3\}$.

correct:	$1 \in A$	wrong:
wrong:	$1 \subset A$	
	$\{1\} \in A$	
	$\{1\} \subset A$	

Definition. A set A is a subset of a set B
if any element of A is an element of B.
Notation: $A \subset B$, or $A \subseteq B$, or $B \supset A$, or $B \supseteq A$.
The signs " \subset ", " \subseteq ", " \supset " and " \supseteq " are called inclusion symbols.
Commonly \subset and \subseteq are used in the same sense.
By definition, $A \subset B \Longleftrightarrow \forall x(x \in A \Longrightarrow x \in B)$.
Warning: distinguish the signs " \in " and " \subset "
Example. $A=\{1,2,3\}$.

correct:	$1 \in A$	wrong:	$\{1\} \in A$
wrong:	$1 \subset A$	correct:	$\{1\} \subset A$

Definition. A set A is a subset of a set B
if any element of A is an element of B.
Notation: $A \subset B$, or $A \subseteq B$, or $B \supset A$, or $B \supseteq A$.
The signs " \subset ", " \subseteq ", " \supset " and " \supseteq " are called inclusion symbols.
Commonly \subset and \subseteq are used in the same sense.
By definition, $A \subset B \Longleftrightarrow \forall x(x \in A \Longrightarrow x \in B)$.
Warning: distinguish the signs " \in " and " \subset "
Example. $A=\{1,2,3\}$.

correct:	$1 \in A$	wrong:	
wrong:	$1 \subset A \in A$		
		correct:	$\{1\} \subset A$

Example.

Definition. A set A is a subset of a set B
if any element of A is an element of B.
Notation: $A \subset B$, or $A \subseteq B$, or $B \supset A$, or $B \supseteq A$.
The signs " \subset ", " \subseteq ", " \supset " and " \supseteq " are called inclusion symbols.
Commonly \subset and \subseteq are used in the same sense.
By definition, $A \subset B \Longleftrightarrow \forall x(x \in A \Longrightarrow x \in B)$.
Warning: distinguish the signs " \in " and " \subset "
Example. $A=\{1,2,3\}$.

correct:	$1 \in A$	wrong:	
wrong:	$1 \subset A \in A$		
		correct:	$\{1\} \subset A$

Example. $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$.

Proposition.

Proposition. For any set A,

Subsets

Proposition. For any set $A, \varnothing \subset A$ and $A \subset A$.

Proposition. For any set $A, \varnothing \subset A$ and $A \subset A$.
Definition. Let $A \subset B$.

Proposition. For any set $A, \varnothing \subset A$ and $A \subset A$.
Definition. Let $A \subset B . A$ is called a proper subset of B,

Proposition. For any set $A, \varnothing \subset A$ and $A \subset A$.
Definition. Let $A \subset B . A$ is called a proper subset of B,
if $A \neq \varnothing$ and $A \neq B$.

Proposition. For any set $A, \varnothing \subset A$ and $A \subset A$.
Definition. Let $A \subset B . A$ is called a proper subset of B, if $A \neq \varnothing$ and $A \neq B$.
Theorem.

Proposition. For any set $A, \varnothing \subset A$ and $A \subset A$.
Definition. Let $A \subset B . A$ is called a proper subset of B,
if $A \neq \varnothing$ and $A \neq B$.
Theorem. Let A and B be sets.

Proposition. For any set $A, \varnothing \subset A$ and $A \subset A$.
Definition. Let $A \subset B . A$ is called a proper subset of B,
if $A \neq \varnothing$ and $A \neq B$.
Theorem. Let A and B be sets. Then

Proposition. For any set $A, \varnothing \subset A$ and $A \subset A$.
Definition. Let $A \subset B . A$ is called a proper subset of B,
if $A \neq \varnothing$ and $A \neq B$.
Theorem. Let A and B be sets. Then

$$
A=B
$$

Proposition. For any set $A, \varnothing \subset A$ and $A \subset A$.
Definition. Let $A \subset B . A$ is called a proper subset of B,
if $A \neq \varnothing$ and $A \neq B$.
Theorem. Let A and B be sets. Then

$$
A=B \Longleftrightarrow A \subset B \wedge B \subset A
$$

Proposition. For any set $A, \varnothing \subset A$ and $A \subset A$.
Definition. Let $A \subset B . A$ is called a proper subset of B,
if $A \neq \varnothing$ and $A \neq B$.
Theorem. Let A and B be sets. Then

$$
A=B \Longleftrightarrow A \subset B \wedge B \subset A
$$

Proof. Write a proof.

Proposition. For any set $A, \varnothing \subset A$ and $A \subset A$.
Definition. Let $A \subset B . A$ is called a proper subset of B,

$$
\text { if } A \neq \varnothing \text { and } A \neq B
$$

Theorem. Let A and B be sets. Then

$$
A=B \Longleftrightarrow A \subset B \wedge B \subset A
$$

Proof. Write a proof.
Theorem (transitivity of inclusion).

Proposition. For any set $A, \varnothing \subset A$ and $A \subset A$.
Definition. Let $A \subset B . A$ is called a proper subset of B,

$$
\text { if } A \neq \varnothing \text { and } A \neq B
$$

Theorem. Let A and B be sets. Then

$$
A=B \Longleftrightarrow A \subset B \wedge B \subset A
$$

Proof. Write a proof.
Theorem (transitivity of inclusion). Let A, B and C be sets.

Proposition. For any set $A, \varnothing \subset A$ and $A \subset A$.
Definition. Let $A \subset B . A$ is called a proper subset of B,

$$
\text { if } A \neq \varnothing \text { and } A \neq B
$$

Theorem. Let A and B be sets. Then

$$
A=B \Longleftrightarrow A \subset B \wedge B \subset A
$$

Proof. Write a proof.
Theorem (transitivity of inclusion). Let A, B and C be sets. Then

Proposition. For any set $A, \varnothing \subset A$ and $A \subset A$.
Definition. Let $A \subset B . A$ is called a proper subset of B,

$$
\text { if } A \neq \varnothing \text { and } A \neq B
$$

Theorem. Let A and B be sets. Then

$$
A=B \Longleftrightarrow A \subset B \wedge B \subset A
$$

Proof. Write a proof.
Theorem (transitivity of inclusion). Let A, B and C be sets. Then

$$
A \subset B \wedge B \subset C \Longrightarrow A \subset C
$$

Proposition. For any set $A, \varnothing \subset A$ and $A \subset A$.
Definition. Let $A \subset B . A$ is called a proper subset of B,

$$
\text { if } A \neq \varnothing \text { and } A \neq B
$$

Theorem. Let A and B be sets. Then

$$
A=B \Longleftrightarrow A \subset B \wedge B \subset A
$$

Proof. Write a proof.
Theorem (transitivity of inclusion). Let A, B and C be sets. Then

$$
A \subset B \wedge B \subset C \Longrightarrow A \subset C
$$

Proof. Write a proof.

Intersection and Union

Intersection

Intersection

$A \cap B=$

Intersection

$$
A \cap B=\{x \mid x \in A \wedge x \in B\}
$$

Intersection

$$
A \cap B=\{x \mid x \in A \wedge x \in B\}
$$

Intersection

$$
A \cap B=\{x \mid x \in A \wedge x \in B\}
$$

Intersection
$A \cap B=\{x \mid x \in A \wedge x \in B\}$

Intersection

$$
A \cap B=\{x \mid x \in A \wedge x \in B\}
$$

Venn diagram

Intersection
$A \cap B=\{x \mid x \in A \wedge x \in B\}$

Venn diagram
$A \quad B$

Union

Intersection
$A \cap B=\{x \mid x \in A \wedge x \in B\}$

Union

$A \cup B=$

Venn diagram
$A \quad B$

Intersection
$A \cap B=\{x \mid x \in A \wedge x \in B\}$

Venn diagram
$A \quad B$

Union

$A \cup B=\{x \mid x \in A \vee x \in B\}$

Intersection

$$
A \cap B=\{x \mid x \in A \wedge x \in B\}
$$

Venn diagram
$A \quad B$

Union

$A \cup B=\{x \mid x \in A \vee x \in B\}$

Intersection

$$
A \cap B=\{x \mid x \in A \wedge x \in B\}
$$

Venn diagram

$A \quad B$

Union

$A \cup B=\{x \mid x \in A \vee x \in B\}$

Intersection

$$
A \cap B=\{x \mid x \in A \wedge x \in B\}
$$

Union

$A \cup B=\{x \mid x \in A \vee x \in B\}$

Venn diagram $A \quad B$

Difference

Difference and Complement

Difference and Complement

$A \backslash B=$

Difference and Complement

$$
A \backslash B=\{x \mid x \in A \wedge x \notin B\}
$$

Difference and Complement

$$
A \backslash B=\{x \mid x \in A \wedge x \notin B\}
$$

Difference and Complement

$$
A \backslash B=\{x \mid x \in A \wedge x \notin B\}
$$

Difference and Complement

$$
A \backslash B=\{x \mid x \in A \wedge x \notin B\}
$$

Difference and Complement
 $A \backslash B=\{x \mid x \in A \wedge x \notin B\}$

Difference and Complement
$A \backslash B=\{x \mid x \in A \wedge x \notin B\}$

Complement

Difference and Complement
$A \backslash B=\{x \mid x \in A \wedge x \notin B\}$

Complement A^{C}

Difference and Complement
$A \backslash B=\{x \mid x \in A \wedge x \notin B\}$

Complement

$$
A^{C}=\underbrace{U}_{\text {universe }}>A
$$

Difference and Complement
$A \backslash B=\{x \mid x \in A \wedge x \notin B\}$

Complement

$$
A^{C}=\underbrace{U}_{\text {universe }} \backslash A=\{x \in U \mid x \notin A\}
$$

Difference and Complement $A \backslash B=\{x \mid x \in A \wedge x \notin B\}$

Complement

$$
A^{C}=\underbrace{U}_{\text {universe }} \backslash A=\{x \in U \mid x \notin A\}
$$

Difference and Complement $A \backslash B=\{x \mid x \in A \wedge x \notin B\}$

Complement

$$
A^{C}=\underbrace{U}_{\text {universe }} \backslash A=\{x \in U \mid x \notin A\}
$$

Difference and Complement $A \backslash B=\{x \mid x \in A \wedge x \notin B\}$

Complement

$$
A^{C}=\underbrace{U}_{\text {universe }} \backslash A=\{x \in U \mid x \notin A\}
$$

Simplest set-theoretical identities

Simplest set-theoretical identities

Let A be an arbitrary set.

Simplest set-theoretical identities

Let A be an arbitrary set. Then

Let A be an arbitrary set. Then
$A \cap A=$

Let A be an arbitrary set. Then
$A \cap A=A$,

Let A be an arbitrary set. Then
$A \cap A=A, \quad A \cup A=$

Let A be an arbitrary set. Then
$A \cap A=A, \quad A \cup A=A$,

Let A be an arbitrary set. Then
$A \cap A=A, \quad A \cup A=A, \quad A \backslash A=$

Let A be an arbitrary set. Then
$A \cap A=A, \quad A \cup A=A, \quad A \backslash A=\varnothing$,

Let A be an arbitrary set. Then
$A \cap A=A, \quad A \cup A=A, \quad A \backslash A=\varnothing$,
$A \cap \varnothing=$

Simplest set-theoretical identities

Let A be an arbitrary set. Then
$A \cap A=A, \quad A \cup A=A, \quad A \backslash A=\varnothing$,
$A \cap \varnothing=\varnothing$,

Simplest set-theoretical identities

Let A be an arbitrary set. Then
$A \cap A=A, \quad A \cup A=A, \quad A \backslash A=\varnothing$,
$A \cap \varnothing=\varnothing, \quad A \cup \varnothing=$

Simplest set-theoretical identities

Let A be an arbitrary set. Then
$A \cap A=A, \quad A \cup A=A, \quad A \backslash A=\varnothing$,
$A \cap \varnothing=\varnothing, \quad A \cup \varnothing=A$,

Simplest set-theoretical identities

Let A be an arbitrary set. Then
$A \cap A=A, \quad A \cup A=A, \quad A \backslash A=\varnothing$,
$A \cap \varnothing=\varnothing, \quad A \cup \varnothing=A, \quad A \backslash \varnothing=$

Simplest set-theoretical identities

Let A be an arbitrary set. Then
$A \cap A=A, \quad A \cup A=A, \quad A \backslash A=\varnothing$,
$A \cap \varnothing=\varnothing, \quad A \cup \varnothing=A, \quad A \backslash \varnothing=A$.

Let A be an arbitrary set. Then
$A \cap A=A, \quad A \cup A=A, \quad A \backslash A=\varnothing$,
$A \cap \varnothing=\varnothing, \quad A \cup \varnothing=A, \quad A \backslash \varnothing=A$.

Definition.

Let A be an arbitrary set. Then
$A \cap A=A, \quad A \cup A=A, \quad A \backslash A=\varnothing$,
$A \cap \varnothing=\varnothing, \quad A \cup \varnothing=A, \quad A \backslash \varnothing=A$.
Definition. Sets A and B are called disjoint

Let A be an arbitrary set. Then
$A \cap A=A, \quad A \cup A=A, \quad A \backslash A=\varnothing$,
$A \cap \varnothing=\varnothing, \quad A \cup \varnothing=A, \quad A \backslash \varnothing=A$.
Definition. Sets A and B are called disjoint if $A \cap B=\varnothing$.

The subset of a set A consisting of the elements x that satisfy a condition $P(x)$ is denoted by $\{x \in A \mid P(x)\}$.

The subset of a set A consisting of the elements x that satisfy a condition $P(x)$ is denoted by $\{x \in A \mid P(x)\}$.
For example, $\{x \in \mathbb{N} \mid x<5\}$

The subset of a set A consisting of the elements x that satisfy a condition $P(x)$ is denoted by $\{x \in A \mid P(x)\}$. For example, $\{x \in \mathbb{N} \mid x<5\}=\{1,2,3,4\}$.

The subset of a set A consisting of the elements x that satisfy a condition $P(x)$ is denoted by $\{x \in A \mid P(x)\}$.
For example, $\{x \in \mathbb{N} \mid x<5\}=\{1,2,3,4\}$.
This set-builder notation unveils a close relation between predicates and sets:

The subset of a set A consisting of the elements x
that satisfy a condition $P(x)$ is denoted by $\{x \in A \mid P(x)\}$.
For example, $\{x \in \mathbb{N} \mid x<5\}=\{1,2,3,4\}$.
This set-builder notation unveils a close relation between predicates and sets:
Every predicate $P(x)$ defines a subset $\{x \in A \mid P(x)\}$ of A.

The subset of a set A consisting of the elements x
that satisfy a condition $P(x)$ is denoted by $\{x \in A \mid P(x)\}$.
For example, $\{x \in \mathbb{N} \mid x<5\}=\{1,2,3,4\}$.
This set-builder notation unveils a close relation between predicates and sets:
Every predicate $P(x)$ defines a subset $\{x \in A \mid P(x)\}$ of A.
Vice versa, every subset $B \subset A$ gives rise to a predicate $x \in B$.

Logic vs. set theory

Logic	pred. P	$\neg P$	\wedge	\vee	\Longrightarrow	\Longleftrightarrow	contradiction	tautology

Logic	pred. P	$\neg P$	\wedge	\vee	\Longrightarrow	\Longleftrightarrow	contradiction	tautology
Sets								

Logic	pred. P	$\neg P$	\wedge	\vee	\Longrightarrow	\Longleftrightarrow	contradiction	tautology
Sets	$\operatorname{set} A$							

Logic	pred. P	$\neg P$	\wedge	\vee	\Longrightarrow	\Longleftrightarrow	contradiction	tautology
Sets	$\operatorname{set} A$	A^{c}						

Logic	pred. P	$\neg P$	\wedge	\vee	\Longrightarrow	\Longleftrightarrow	contradiction	tautology
Sets	$\operatorname{set} A$	A^{c}	\cap					

Logic	pred. P	$\neg P$	\wedge	\vee	\Longrightarrow	\Longleftrightarrow	contradiction	tautology
Sets	$\operatorname{set} A$	A^{c}	\cap	\cup				

Logic	pred. P	$\neg P$	\wedge	\vee	\Longrightarrow	\Longleftrightarrow	contradiction	tautology
Sets	set A	A^{c}	\cap	\cup	\subset			

Logic	pred. P	$\neg P$	\wedge	\vee	\Longrightarrow	\Longleftrightarrow	contradiction	tautology
Sets	set A	A^{c}	\cap	\cup	\subset	$=$		

Logic	pred. P	$\neg P$	\wedge	\vee	\Longrightarrow	\Longleftrightarrow	contradiction	tautology
Sets	set A	A^{c}	\cap	\cup	\subset	$=$	\varnothing	

Logic	pred. P	$\neg P$	\wedge	\vee	\Longrightarrow	\Longleftrightarrow	contradiction	tautology
Sets	set A	A^{c}	\cap	\cup	\subset	$=$	\varnothing	universe

Logic	pred. P	$\neg P$	\wedge	\vee	\Longrightarrow	\Longleftrightarrow	contradiction	tautology
Sets	set A	A^{c}	\cap	\cup	\subset	$=$	\varnothing	universe

Warning:

Logic	pred. P	$\neg P$	\wedge	\vee	\Longrightarrow	\Longleftrightarrow	contradiction	tautology
Sets	set A	A^{c}	\cap	\cup	\subset	$=$	\varnothing	universe

Warning: Use correct signs!

Logic	pred. P	$\neg P$	\wedge	\vee	\Longrightarrow	\Longleftrightarrow	contradiction	tautology
Sets	set A	A^{c}	\cap	\cup	\subset	$=$	\varnothing	universe

Warning: Use correct signs!
Let P, Q be propositions,

Logic	pred. P	$\neg P$	\wedge	\vee	\Longrightarrow	\Longleftrightarrow	contradiction	tautology
Sets	set A	A^{c}	\cap	\cup	\subset	$=$	\varnothing	universe

Warning: Use correct signs!
Let P, Q be propositions, and A, B be sets.

Logic	pred. P	$\neg P$	\wedge	\vee	\Longrightarrow	\Longleftrightarrow	contradiction	tautology
Sets	set A	A^{c}	\cap	\cup	\subset	$=$	\varnothing	universe

Warning: Use correct signs!
Let P, Q be propositions, and A, B be sets.
correct:

Logic	pred. P	$\neg P$	\wedge	\vee	\Longrightarrow	\Longleftrightarrow	contradiction	tautology
Sets	set A	A^{c}	\cap	\cup	\subset	$=$	\varnothing	universe

Warning: Use correct signs!
Let P, Q be propositions, and A, B be sets.
correct: $P \wedge Q$,

Logic	pred. P	$\neg P$	\wedge	\vee	\Longrightarrow	\Longleftrightarrow	contradiction	tautology
Sets	set A	A^{c}	\cap	\cup	\subset	$=$	\varnothing	universe

Warning: Use correct signs!
Let P, Q be propositions, and A, B be sets.
correct: $\quad P \wedge Q, A \cap B$

Logic	pred. P	$\neg P$	\wedge	\vee	\Longrightarrow	\Longleftrightarrow	contradiction	tautology
Sets	set A	A^{c}	\cap	\cup	\subset	$=$	\varnothing	universe

Warning: Use correct signs!
Let P, Q be propositions, and A, B be sets.
correct: $\quad P \wedge Q, A \cap B$

Logic	pred. P	$\neg P$	\wedge	\vee	\Longrightarrow	\Longleftrightarrow	contradiction	tautology
Sets	set A	A^{c}	\cap	\cup	\subset	$=$	\varnothing	universe

Warning: Use correct signs!
Let P, Q be propositions, and A, B be sets.
correct: $\quad P \wedge Q, A \cap B \quad$
incorrect:

Logic	pred. P	$\neg P$	\wedge	\vee	\Longrightarrow	\Longleftrightarrow	contradiction	tautology
Sets	set A	A^{c}	\cap	\cup	\subset	$=$	\varnothing	universe

Warning: Use correct signs!
Let P, Q be propositions, and A, B be sets.
correct: $\quad P \wedge Q, A \cap B \quad$
incorrect: $P \cap Q$,

Logic	pred. P	$\neg P$	\wedge	\vee	\Longrightarrow	\Longleftrightarrow	contradiction	tautology
Sets	set A	A^{c}	\cap	\cup	\subset	$=$	\varnothing	universe

Warning: Use correct signs!
Let P, Q be propositions, and A, B be sets.
correct: $\quad P \wedge Q, A \cap B \quad$
incorrect: $P \cap Q, A \wedge B$

Logic	pred. P	$\neg P$	\wedge	\vee	\Longrightarrow	\Longleftrightarrow	contradiction	tautology
Sets	set A	A^{c}	\cap	\cup	\subset	$=$	\varnothing	universe

Warning: Use correct signs!
Let P, Q be propositions, and A, B be sets.
correct: $\quad P \wedge Q, A \cap B$
incorrect: $P \cap Q, A \wedge B \subset$

Propositions and sets

MAT 250
Lecture 4
Sets

Propositions and sets

Let $P(x)$ be a predicate

Let $P(x)$ be a predicate (proposition depending on variable x),

Propositions and sets

Let $P(x)$ be a predicate (proposition depending on variable x), where $x \in \underbrace{U}_{\text {universe }}$

Propositions and sets

Let $P(x)$ be a predicate (proposition depending on variable x), where $x \in \underbrace{U}_{\text {universe }}$
Then $A=\{x \mid P(x)\}$ be a set.

Propositions and sets

Let $P(x)$ be a predicate (proposition depending on variable x), where $x \in \underbrace{U}_{\text {universe }}$
Then $A=\{x \mid P(x)\}$ be a set.

Logic	Sets

Propositions and sets

Let $P(x)$ be a predicate (proposition depending on variable x), where $x \in \underbrace{U}_{\text {universe }}$
Then $A=\{x \mid P(x)\}$ be a set.

Logic	Sets
$P(x)$	

Propositions and sets

Let $P(x)$ be a predicate (proposition depending on variable x), where $x \in \underbrace{U}_{\text {universe }}$
Then $A=\{x \mid P(x)\}$ be a set.

Logic	Sets
$P(x)$	$A=\{x \mid P(x)\}$

Propositions and sets

Let $P(x)$ be a predicate (proposition depending on variable x), where $x \in \underbrace{U}_{\text {universe }}$
Then $A=\{x \mid P(x)\}$ be a set.

Logic	Sets
$P(x)$	$A=\{x \mid P(x)\}$
$\exists x P(x)$	

Propositions and sets

Let $P(x)$ be a predicate (proposition depending on variable x), where $x \in \underbrace{U}_{\text {universe }}$
Then $A=\{x \mid P(x)\}$ be a set.

Logic	Sets
$P(x)$	$A=\{x \mid P(x)\}$
$\exists x P(x)$	$A \neq \varnothing$

Propositions and sets

Let $P(x)$ be a predicate (proposition depending on variable x), where $x \in \underbrace{U}_{\text {universe }}$
Then $A=\{x \mid P(x)\}$ be a set.

Logic	Sets
$P(x)$	$A=\{x \mid P(x)\}$
$\exists x P(x)$	$A \neq \varnothing$
$\forall x P(x)$	

Propositions and sets

Let $P(x)$ be a predicate (proposition depending on variable x), where $x \in \underbrace{U}_{\text {universe }}$
Then $A=\{x \mid P(x)\}$ be a set.

Logic	Sets
$P(x)$	$A=\{x \mid P(x)\}$
$\exists x P(x)$	$A \neq \varnothing$
$\forall x P(x)$	$A=U$

Propositions and sets

Let $P(x)$ be a predicate (proposition depending on variable x), where $x \in \underbrace{U}_{\text {universe }}$
Then $A=\{x \mid P(x)\}$ be a set.

Logic	Sets
$P(x)$	$A=\{x \mid P(x)\}$
$\exists x P(x)$	$A \neq \varnothing$
$\forall x P(x)$	$A=U$
$\neg \neg P \Longleftrightarrow P$	

Propositions and sets

Let $P(x)$ be a predicate (proposition depending on variable x), where $x \in \underbrace{U}_{\text {universe }}$
Then $A=\{x \mid P(x)\}$ be a set.

Logic	Sets
$P(x)$	$A=\{x \mid P(x)\}$
$\exists x P(x)$	$A \neq \varnothing$
$\forall x P(x)$	$A=U$
$\neg \neg P \Longleftrightarrow P$	$\left(A^{c}\right)^{c}=A$

Propositions and sets

Let $P(x)$ be a predicate (proposition depending on variable x), where $x \in \underbrace{U}_{\text {universe }}$
Then $A=\{x \mid P(x)\}$ be a set.

Logic	Sets
$P(x)$	$A=\{x \mid P(x)\}$
$\exists x P(x)$	$A \neq \varnothing$
$\forall x P(x)$	$A=U$
$\neg \neg P \Longleftrightarrow P$	$\left(A^{c}\right)^{c}=A$
$P \wedge \neg P$ is a contradiction	

Propositions and sets

Let $P(x)$ be a predicate (proposition depending on variable x), where $x \in \underbrace{U}_{\text {universe }}$
Then $A=\{x \mid P(x)\}$ be a set.

Logic	Sets
$P(x)$	$A=\{x \mid P(x)\}$
$\exists x P(x)$	$A \neq \varnothing$
$\forall x P(x)$	$A=U$
$\neg \neg P \Longleftrightarrow P$	$\left(A^{c}\right)^{c}=A$
$P \wedge \neg P$ is a contradiction	$A \cap A^{c}=\varnothing$

Propositions and sets

Let $P(x)$ be a predicate (proposition depending on variable x), where $x \in \underbrace{U}_{\text {universe }}$
Then $A=\{x \mid P(x)\}$ be a set.

Logic	Sets
$P(x)$	$A=\{x \mid P(x)\}$
$\exists x P(x)$	$A \neq \varnothing$
$\forall x P(x)$	$A=U$
$\neg \neg P \Longleftrightarrow P$	$\left(A^{c}\right)^{c}=A$
$P \wedge \neg P$ is a contradiction	$A \cap A^{c}=\varnothing$
$P \vee \neg P$ is a tautology	

Propositions and sets

Let $P(x)$ be a predicate (proposition depending on variable x), where $x \in \underbrace{U}_{\text {universe }}$
Then $A=\{x \mid P(x)\}$ be a set.

Logic	Sets
$P(x)$	$A=\{x \mid P(x)\}$
$\exists x P(x)$	$A \neq \varnothing$
$\forall x P(x)$	$A=U$
$\neg \neg P \Longleftrightarrow P$	$\left(A^{c}\right)^{c}=A$
$P \wedge \neg P$ is a contradiction	$A \cap A^{c}=\varnothing$
$P \vee \neg P$ is a tautology	$A \cup A^{c}=U$

Propositions and sets

Let $P(x)$ be a predicate (proposition depending on variable x), where $x \in \underbrace{U}_{\text {universe }}$
Then $A=\{x \mid P(x)\}$ be a set.

Logic	Sets
$P(x)$	$A=\{x \mid P(x)\}$
$\exists x P(x)$	$A \neq \varnothing$
$\forall x P(x)$	$A=U$
$\neg \neg P \Longleftrightarrow P$	$\left(A^{c}\right)^{c}=A$
$P \wedge \neg P$ is a contradiction	$A \cap A^{c}=\varnothing$
$P \vee \neg P$ is a tautology	$A \cup A^{c}=U$
$\neg(P \wedge Q) \Longleftrightarrow \neg P \vee \neg Q$	

Propositions and sets

Let $P(x)$ be a predicate (proposition depending on variable x), where $x \in \underbrace{U}_{\text {universe }}$
Then $A=\{x \mid P(x)\}$ be a set.

Logic	Sets
$P(x)$	$A=\{x \mid P(x)\}$
$\exists x P(x)$	$A \neq \varnothing$
$\forall x P(x)$	$A=U$
$\neg \neg P \Longleftrightarrow P$	$\left(A^{c}\right)^{c}=A$
$P \wedge \neg P$ is a contradiction	$A \cap A^{c}=\varnothing$
$P \vee \neg P$ is a tautology	$A \cup A^{c}=U$
$\neg(P \wedge Q) \Longleftrightarrow \neg P \vee \neg Q$	$(A \cap B)^{c}=A^{c} \cup B^{c}$

Propositions and sets

Let $P(x)$ be a predicate (proposition depending on variable x), where $x \in \underbrace{U}_{\text {universe }}$
Then $A=\{x \mid P(x)\}$ be a set.

Logic	Sets	
$P(x)$	$A=\{x \mid P(x)\}$	
$\exists x P(x)$	$A \neq \varnothing$	
$\forall x P(x)$	$A=U$	
$\neg \neg P \Longleftrightarrow P$	$\left(A^{c}\right)^{c}=A$	
$P \wedge \neg P$ is a contradiction	$A \cap A^{c}=\varnothing$	
$P \vee \neg P$ is a tautology	$A \cup A^{c}=U$	
$\neg(P \wedge Q) \Longleftrightarrow \neg P \vee \neg Q$	$(A \cap B)^{c}=A^{c} \cup B^{c} \quad$ De Morgan's law	

Basic set-theoretic identities

- Commutativity of \cap and \cup :

Basic set-theoretic identities

- Commutativity of \cap and \cup : for any sets A and B,
- Commutativity of \cap and \cup : for any sets A and B,
$A \cap B=B \cap A$ and $A \cup B=B \cup A$.
- Commutativity of \cap and \cup : for any sets A and B,
$A \cap B=B \cap A$ and $A \cup B=B \cup A$.
- Associativity of \cap and \cup :
- Commutativity of \cap and \cup : for any sets A and B, $A \cap B=B \cap A$ and $A \cup B=B \cup A$.
- Associativity of \cap and \cup : for any sets A, B and C,
- Commutativity of \cap and \cup : for any sets A and B,
$A \cap B=B \cap A$ and $A \cup B=B \cup A$.
- Associativity of \cap and \cup : for any sets A, B and C, $(A \cap B) \cap C=A \cap(B \cap C)$ and $(A \cup B) \cup C=A \cup(B \cup C)$.
- Commutativity of \cap and \cup : for any sets A and B,
$A \cap B=B \cap A$ and $A \cup B=B \cup A$.
- Associativity of \cap and \cup : for any sets A, B and C, $(A \cap B) \cap C=A \cap(B \cap C)$ and $(A \cup B) \cup C=A \cup(B \cup C)$.
- Distributivities:
- Commutativity of \cap and \cup : for any sets A and B,
$A \cap B=B \cap A$ and $A \cup B=B \cup A$.
- Associativity of \cap and \cup : for any sets A, B and C, $(A \cap B) \cap C=A \cap(B \cap C)$ and $(A \cup B) \cup C=A \cup(B \cup C)$.
- Distributivities: for any sets A, B and C,
- Commutativity of \cap and \cup : for any sets A and B,

$$
A \cap B=B \cap A \text { and } A \cup B=B \cup A
$$

- Associativity of \cap and \cup : for any sets A, B and C,

$$
(A \cap B) \cap C=A \cap(B \cap C) \text { and }(A \cup B) \cup C=A \cup(B \cup C) .
$$

- Distributivities: for any sets A, B and C,
$(A \cap B) \cup C=(A \cup C) \cap(B \cup C)$ and $(A \cup B) \cap C=(A \cap C) \cup(B \cap C)$.
- Commutativity of \cap and \cup : for any sets A and B,
$A \cap B=B \cap A$ and $A \cup B=B \cup A$.
- Associativity of \cap and \cup : for any sets A, B and C, $(A \cap B) \cap C=A \cap(B \cap C)$ and $(A \cup B) \cup C=A \cup(B \cup C)$.
- Distributivities: for any sets A, B and C, $(A \cap B) \cup C=(A \cup C) \cap(B \cup C)$ and $(A \cup B) \cap C=(A \cap C) \cup(B \cap C)$.
- De Morgans' laws:
- Commutativity of \cap and \cup : for any sets A and B,
$A \cap B=B \cap A$ and $A \cup B=B \cup A$.
- Associativity of \cap and \cup : for any sets A, B and C, $(A \cap B) \cap C=A \cap(B \cap C)$ and $(A \cup B) \cup C=A \cup(B \cup C)$.
- Distributivities: for any sets A, B and C, $(A \cap B) \cup C=(A \cup C) \cap(B \cup C)$ and $(A \cup B) \cap C=(A \cap C) \cup(B \cap C)$.
- De Morgans' laws: for any sets A and B,
- Commutativity of \cap and \cup : for any sets A and B,

$$
A \cap B=B \cap A \text { and } A \cup B=B \cup A
$$

- Associativity of \cap and \cup : for any sets A, B and C,

$$
(A \cap B) \cap C=A \cap(B \cap C) \text { and }(A \cup B) \cup C=A \cup(B \cup C) .
$$

- Distributivities: for any sets A, B and C, $(A \cap B) \cup C=(A \cup C) \cap(B \cup C)$ and $(A \cup B) \cap C=(A \cap C) \cup(B \cap C)$.
- De Morgans' laws: for any sets A and B, $(A \cap B)^{c}=A^{c} \cup B^{c}$ and $(A \cup B)^{c}=A^{c} \cap B^{c}$.

Example 1.

Example 1. Prove De Morgan's law:

Example 1. Prove De Morgan's law: $(A \cap B)^{c}=A^{c} \cup B^{c}$

Example 1. Prove De Morgan's law: $(A \cap B)^{c}=A^{c} \cup B^{c}$

Proof. Let us prove first

[^0]Example 1. Prove De Morgan's law: $(A \cap B)^{c}=A^{c} \cup B^{c}$
Proof. Let us prove first that $(A \cap B)^{c} \subset A^{c} \cup B^{c}$.
Let $x \in(A \cap B)^{c}$

Example 1. Prove De Morgan's law: $(A \cap B)^{c}=A^{c} \cup B^{c}$
Proof. Let us prove first that $(A \cap B)^{c} \subset A^{c} \cup B^{c}$.
Let $x \in(A \cap B)^{c}$ Then $x \notin A \cap B$

Example 1. Prove De Morgan's law: $(A \cap B)^{c}=A^{c} \cup B^{c}$
Proof. Let us prove first that $(A \cap B)^{c} \subset A^{c} \cup B^{c}$.
Let $x \in(A \cap B)^{c}$ Then $x \notin A \cap B \Longrightarrow \neg(x \in A \wedge x \in B)$

Example 1. Prove De Morgan's law: $(A \cap B)^{c}=A^{c} \cup B^{c}$

Proof. Let us prove first that $(A \cap B)^{c} \subset A^{c} \cup B^{c}$.
Let $x \in(A \cap B)^{c}$ Then $x \notin A \cap B \Longrightarrow \neg(x \in A \wedge x \in B)$
$\Longrightarrow x \notin A \vee x \notin B$

Example 1. Prove De Morgan's law: $(A \cap B)^{c}=A^{c} \cup B^{c}$
Proof. Let us prove first that $(A \cap B)^{c} \subset A^{c} \cup B^{c}$.
Let $x \in(A \cap B)^{c}$ Then $x \notin A \cap B \Longrightarrow \neg(x \in A \wedge x \in B)$
$\Longrightarrow x \notin A \vee x \notin B \Longrightarrow x \in A^{c} \vee x \in B^{c}$

Example 1. Prove De Morgan's law: $(A \cap B)^{c}=A^{c} \cup B^{c}$
Proof. Let us prove first that $(A \cap B)^{c} \subset A^{c} \cup B^{c}$.
Let $x \in(A \cap B)^{c}$ Then $x \notin A \cap B \Longrightarrow \neg(x \in A \wedge x \in B)$
$\Longrightarrow x \notin A \vee x \notin B \Longrightarrow x \in A^{c} \vee x \in B^{c} \Longrightarrow x \in A^{c} \cup B^{c}$.

Example 1. Prove De Morgan's law: $(A \cap B)^{c}=A^{c} \cup B^{c}$
Proof. Let us prove first that $(A \cap B)^{c} \subset A^{c} \cup B^{c}$.
Let $x \in(A \cap B)^{c}$ Then $x \notin A \cap B \Longrightarrow \neg(x \in A \wedge x \in B)$
$\Longrightarrow x \notin A \vee x \notin B \Longrightarrow x \in A^{c} \vee x \in B^{c} \Longrightarrow x \in A^{c} \cup B^{c}$.
So $\forall x \in(A \cap B)^{c}$, we have $x \in A^{c} \cup B^{c}$.

Example 1. Prove De Morgan's law: $(A \cap B)^{c}=A^{c} \cup B^{c}$
Proof. Let us prove first that $(A \cap B)^{c} \subset A^{c} \cup B^{c}$.
Let $x \in(A \cap B)^{c}$ Then $x \notin A \cap B \Longrightarrow \neg(x \in A \wedge x \in B)$
$\Longrightarrow x \notin A \vee x \notin B \Longrightarrow x \in A^{c} \vee x \in B^{c} \Longrightarrow x \in A^{c} \cup B^{c}$.
So $\forall x \in(A \cap B)^{c}$, we have $x \in A^{c} \cup B^{c}$.
Therefore, $(A \cap B)^{c} \subset A^{c} \cup B^{c} \quad(*)$.

Example 1. Prove De Morgan's law: $(A \cap B)^{c}=A^{c} \cup B^{c}$
Proof. Let us prove first that $(A \cap B)^{c} \subset A^{c} \cup B^{c}$.
Let $x \in(A \cap B)^{c}$ Then $x \notin A \cap B \Longrightarrow \neg(x \in A \wedge x \in B)$
$\Longrightarrow x \notin A \vee x \notin B \Longrightarrow x \in A^{c} \vee x \in B^{c} \Longrightarrow x \in A^{c} \cup B^{c}$.
So $\forall x \in(A \cap B)^{c}$, we have $x \in A^{c} \cup B^{c}$.
Therefore, $(A \cap B)^{c} \subset A^{c} \cup B^{c} \quad(*)$.
Prove now that $A^{c} \cup B^{c} \subset(A \cap B)^{c}$.

Example 1. Prove De Morgan's law: $(A \cap B)^{c}=A^{c} \cup B^{c}$
Proof. Let us prove first that $(A \cap B)^{c} \subset A^{c} \cup B^{c}$.
Let $x \in(A \cap B)^{c}$ Then $x \notin A \cap B \Longrightarrow \neg(x \in A \wedge x \in B)$
$\Longrightarrow x \notin A \vee x \notin B \Longrightarrow x \in A^{c} \vee x \in B^{c} \Longrightarrow x \in A^{c} \cup B^{c}$.
So $\forall x \in(A \cap B)^{c}$, we have $x \in A^{c} \cup B^{c}$.
Therefore, $(A \cap B)^{c} \subset A^{c} \cup B^{c} \quad(*)$.
Prove now that $A^{c} \cup B^{c} \subset(A \cap B)^{c}$.
$x \in A^{c} \cup B^{c}$

Example 1. Prove De Morgan's law: $(A \cap B)^{c}=A^{c} \cup B^{c}$
Proof. Let us prove first that $(A \cap B)^{c} \subset A^{c} \cup B^{c}$.
Let $x \in(A \cap B)^{c}$ Then $x \notin A \cap B \Longrightarrow \neg(x \in A \wedge x \in B)$
$\Longrightarrow x \notin A \vee x \notin B \Longrightarrow x \in A^{c} \vee x \in B^{c} \Longrightarrow x \in A^{c} \cup B^{c}$.
So $\forall x \in(A \cap B)^{c}$, we have $x \in A^{c} \cup B^{c}$.
Therefore, $(A \cap B)^{c} \subset A^{c} \cup B^{c} \quad(*)$.
Prove now that $A^{c} \cup B^{c} \subset(A \cap B)^{c}$.
$x \in A^{c} \cup B^{c} \Longrightarrow$
$x \in A^{c} \vee x \in B^{c}$

Example 1. Prove De Morgan's law: $(A \cap B)^{c}=A^{c} \cup B^{c}$
Proof. Let us prove first that $(A \cap B)^{c} \subset A^{c} \cup B^{c}$.
Let $x \in(A \cap B)^{c}$ Then $x \notin A \cap B \Longrightarrow \neg(x \in A \wedge x \in B)$
$\Longrightarrow x \notin A \vee x \notin B \Longrightarrow x \in A^{c} \vee x \in B^{c} \Longrightarrow x \in A^{c} \cup B^{c}$.
So $\forall x \in(A \cap B)^{c}$, we have $x \in A^{c} \cup B^{c}$.
Therefore, $(A \cap B)^{c} \subset A^{c} \cup B^{c} \quad(*)$.
Prove now that $A^{c} \cup B^{c} \subset(A \cap B)^{c}$.
$x \in A^{c} \cup B^{c} \Longrightarrow$
$x \in A^{c} \vee x \in B^{c} \Longrightarrow x \notin A \vee x \notin B$

Example 1. Prove De Morgan's law: $(A \cap B)^{c}=A^{c} \cup B^{c}$
Proof. Let us prove first that $(A \cap B)^{c} \subset A^{c} \cup B^{c}$.
Let $x \in(A \cap B)^{c}$ Then $x \notin A \cap B \Longrightarrow \neg(x \in A \wedge x \in B)$
$\Longrightarrow x \notin A \vee x \notin B \Longrightarrow x \in A^{c} \vee x \in B^{c} \Longrightarrow x \in A^{c} \cup B^{c}$.
So $\forall x \in(A \cap B)^{c}$, we have $x \in A^{c} \cup B^{c}$.
Therefore, $(A \cap B)^{c} \subset A^{c} \cup B^{c} \quad(*)$.
Prove now that $A^{c} \cup B^{c} \subset(A \cap B)^{c}$.
$x \in A^{c} \cup B^{c} \Longrightarrow$
$x \in A^{c} \vee x \in B^{c} \Longrightarrow x \notin A \vee x \notin B \Longrightarrow \neg(x \in A \wedge x \in B)$

Example 1. Prove De Morgan's law: $(A \cap B)^{c}=A^{c} \cup B^{c}$
Proof. Let us prove first that $(A \cap B)^{c} \subset A^{c} \cup B^{c}$.
Let $x \in(A \cap B)^{c}$ Then $x \notin A \cap B \Longrightarrow \neg(x \in A \wedge x \in B)$
$\Longrightarrow x \notin A \vee x \notin B \Longrightarrow x \in A^{c} \vee x \in B^{c} \Longrightarrow x \in A^{c} \cup B^{c}$.
So $\forall x \in(A \cap B)^{c}$, we have $x \in A^{c} \cup B^{c}$.
Therefore, $(A \cap B)^{c} \subset A^{c} \cup B^{c} \quad(*)$.
Prove now that $A^{c} \cup B^{c} \subset(A \cap B)^{c}$.

$$
\begin{aligned}
x \in A^{c} \cup B^{c} \Longrightarrow & \\
x \in A^{c} \vee x \in B^{c} & \Longrightarrow x \notin A \vee x \notin B
\end{aligned} \begin{array}{|c|c|c|}
& \Longrightarrow x \notin A \cap B
\end{array}
$$

Example 1. Prove De Morgan's law: $(A \cap B)^{c}=A^{c} \cup B^{c}$
Proof. Let us prove first that $(A \cap B)^{c} \subset A^{c} \cup B^{c}$.
Let $x \in(A \cap B)^{c}$ Then $x \notin A \cap B \Longrightarrow \neg(x \in A \wedge x \in B)$
$\Longrightarrow x \notin A \vee x \notin B \Longrightarrow x \in A^{c} \vee x \in B^{c} \Longrightarrow x \in A^{c} \cup B^{c}$.
So $\forall x \in(A \cap B)^{c}$, we have $x \in A^{c} \cup B^{c}$.
Therefore, $(A \cap B)^{c} \subset A^{c} \cup B^{c} \quad(*)$.
Prove now that $A^{c} \cup B^{c} \subset(A \cap B)^{c}$.

$$
\begin{aligned}
x \in A^{c} \cup B^{c} \Longrightarrow & \\
x \in A^{c} \vee x \in B^{c} \Longrightarrow x \neq A \vee x \notin B & \Longrightarrow \neg(x \in A \wedge x \in B) \\
& \Longrightarrow x \notin A \cap B \Longrightarrow x \in(A \cap B)^{c}
\end{aligned}
$$

Example 1. Prove De Morgan's law: $(A \cap B)^{c}=A^{c} \cup B^{c}$
Proof. Let us prove first that $(A \cap B)^{c} \subset A^{c} \cup B^{c}$.
Let $x \in(A \cap B)^{c}$ Then $x \notin A \cap B \Longrightarrow \neg(x \in A \wedge x \in B)$
$\Longrightarrow x \notin A \vee x \notin B \Longrightarrow x \in A^{c} \vee x \in B^{c} \Longrightarrow x \in A^{c} \cup B^{c}$.
So $\forall x \in(A \cap B)^{c}$, we have $x \in A^{c} \cup B^{c}$.
Therefore, $(A \cap B)^{c} \subset A^{c} \cup B^{c} \quad(*)$.
Prove now that $A^{c} \cup B^{c} \subset(A \cap B)^{c}$.
$x \in A^{c} \cup B^{c} \Longrightarrow$
$x \in A^{c} \vee x \in B^{c} \Longrightarrow x \notin A \vee x \notin B \Longrightarrow \neg(x \in A \wedge x \in B)$

$$
\Longrightarrow x \notin A \cap B \Longrightarrow x \in(A \cap B)^{c}
$$

Therefore, $A^{c} \cup B^{c} \subset(A \cap B)^{c} \quad(* *)$

Example 1. Prove De Morgan's law: $(A \cap B)^{c}=A^{c} \cup B^{c}$
Proof. Let us prove first that $(A \cap B)^{c} \subset A^{c} \cup B^{c}$.
Let $x \in(A \cap B)^{c}$ Then $x \notin A \cap B \Longrightarrow \neg(x \in A \wedge x \in B)$
$\Longrightarrow x \notin A \vee x \notin B \Longrightarrow x \in A^{c} \vee x \in B^{c} \Longrightarrow x \in A^{c} \cup B^{c}$.
So $\forall x \in(A \cap B)^{c}$, we have $x \in A^{c} \cup B^{c}$.
Therefore, $(A \cap B)^{c} \subset A^{c} \cup B^{c} \quad(*)$.
Prove now that $A^{c} \cup B^{c} \subset(A \cap B)^{c}$.
$x \in A^{c} \cup B^{c} \Longrightarrow$
$x \in A^{c} \vee x \in B^{c} \Longrightarrow x \notin A \vee x \notin B \Longrightarrow \neg(x \in A \wedge x \in B)$

$$
\Longrightarrow x \notin A \cap B \Longrightarrow x \in(A \cap B)^{c}
$$

Therefore, $A^{c} \cup B^{c} \subset(A \cap B)^{c} \quad(* *)$
Combining ($*$) and ($* *$),

Example 1. Prove De Morgan's law: $(A \cap B)^{c}=A^{c} \cup B^{c}$
Proof. Let us prove first that $(A \cap B)^{c} \subset A^{c} \cup B^{c}$.
Let $x \in(A \cap B)^{c}$ Then $x \notin A \cap B \Longrightarrow \neg(x \in A \wedge x \in B)$
$\Longrightarrow x \notin A \vee x \notin B \Longrightarrow x \in A^{c} \vee x \in B^{c} \Longrightarrow x \in A^{c} \cup B^{c}$.
So $\forall x \in(A \cap B)^{c}$, we have $x \in A^{c} \cup B^{c}$.
Therefore, $(A \cap B)^{c} \subset A^{c} \cup B^{c} \quad(*)$.
Prove now that $A^{c} \cup B^{c} \subset(A \cap B)^{c}$.
$x \in A^{c} \cup B^{c} \Longrightarrow$
$x \in A^{c} \vee x \in B^{c} \Longrightarrow x \notin A \vee x \notin B \Longrightarrow \neg(x \in A \wedge x \in B)$

$$
\Longrightarrow x \notin A \cap B \Longrightarrow x \in(A \cap B)^{c}
$$

Therefore, $A^{c} \cup B^{c} \subset(A \cap B)^{c} \quad(* *)$
Combining ($*$) and $(* *)$, we get $(A \cap B)^{c}=A^{c} \cup B^{c}$.

Could it be done faster?

Could it be done faster?

Yes, all our arguments are biderectional.

Could it be done faster?

Yes, all our arguments are biderectional.
Indeed, $x \in(A \cap B)^{c}$

Could it be done faster?

Yes, all our arguments are biderectional.
Indeed, $x \in(A \cap B)^{c} \Longleftrightarrow x \notin A \cap B$

Could it be done faster?

Yes, all our arguments are biderectional.
Indeed, $x \in(A \cap B)^{c} \Longleftrightarrow x \notin A \cap B \Longleftrightarrow \neg(x \in A \wedge x \in B)$

Could it be done faster?

Yes, all our arguments are biderectional.
Indeed, $x \in(A \cap B)^{c} \Longleftrightarrow x \notin A \cap B \Longleftrightarrow \neg(x \in A \wedge x \in B)$
$\Longleftrightarrow x \notin A \vee x \notin B$

Could it be done faster?

Yes, all our arguments are biderectional.
Indeed, $x \in(A \cap B)^{c} \Longleftrightarrow x \notin A \cap B \Longleftrightarrow \neg(x \in A \wedge x \in B)$
$\Longleftrightarrow x \notin A \vee x \notin B \Longleftrightarrow x \in A^{c} \vee x \in B^{c}$

Could it be done faster?

Yes, all our arguments are biderectional.

$$
\begin{aligned}
& \text { Indeed, } x \in(A \cap B)^{c} \Longleftrightarrow x \notin A \cap B \Longleftrightarrow \neg(x \in A \wedge x \in B) \\
& \Longleftrightarrow x \notin A \vee x \notin B \Longleftrightarrow x \in A^{c} \vee x \in B^{c} \Longleftrightarrow x \in A^{c} \cup B^{c} .
\end{aligned}
$$

Yes, all our arguments are biderectional.

$$
\begin{aligned}
\text { Indeed, } x \in(A \cap B)^{c} & \Longleftrightarrow x \notin A \cap B \Longleftrightarrow \neg(x \in A \wedge x \in B) \\
\Longleftrightarrow x \notin A \vee x \notin B & \Longleftrightarrow x \in A^{c} \vee x \in B^{c} \Longleftrightarrow x \in A^{c} \cup B^{c} . \\
\text { So } \forall x x \in(A \cap B)^{c} & \Longleftrightarrow x \in A^{c} \cup B^{c} .
\end{aligned}
$$

Yes, all our arguments are biderectional.
Indeed, $x \in(A \cap B)^{c} \Longleftrightarrow x \notin A \cap B \Longleftrightarrow \neg(x \in A \wedge x \in B)$ $\Longleftrightarrow x \notin A \vee x \notin B \Longleftrightarrow x \in A^{c} \vee x \in B^{c} \Longleftrightarrow x \in A^{c} \cup B^{c}$. So $\forall x \quad x \in(A \cap B)^{c} \Longleftrightarrow x \in A^{c} \cup B^{c}$.

Therefore, $(A \cap B)^{c}=A^{c} \cup B^{c}$

How to prove set-theoretic identities

Example 2.

Example 2. Prove that $A \backslash B=A \cap B^{c}$

Example 2. Prove that $A \backslash B=A \cap B^{c}$ for any sets A, B.

Example 2. Prove that $A \backslash B=A \cap B^{c}$ for any sets A, B.

Illustration

Example 2. Prove that $A \backslash B=A \cap B^{c}$ for any sets A, B.
Illustration (not a proof!):

How to prove set-theoretic identities

Example 2. Prove that $A \backslash B=A \cap B^{c}$ for any sets A, B.
Illustration (not a proof!):

Example 2. Prove that $A \backslash B=A \cap B^{c}$ for any sets A, B.
Illustration (not a proof!):

How to prove set-theoretic identities

Example 2. Prove that $A \backslash B=A \cap B^{c}$ for any sets A, B.
Illustration (not a proof!):

How to prove set-theoretic identities

Example 2. Prove that $A \backslash B=A \cap B^{c}$ for any sets A, B.
Illustration (not a proof!):

How to prove set-theoretic identities

Example 2. Prove that $A \backslash B=A \cap B^{c}$ for any sets A, B.
Illustration (not a proof!):

Example 2. Prove that $A \backslash B=A \cap B^{c}$ for any sets A, B.
Illustration (not a proof!):

Example 2. Prove that $A \backslash B=A \cap B^{c}$ for any sets A, B.
Illustration (not a proof!):

How to prove set-theoretic identities

Example 2. Prove that $A \backslash B=A \cap B^{c}$ for any sets A, B.
Illustration (not a proof!):

Example 2. Prove that $A \backslash B=A \cap B^{c}$ for any sets A, B.
Illustration (not a proof!):

Example 2. Prove that $A \backslash B=A \cap B^{c}$ for any sets A, B.
Illustration (not a proof!):

Example 2. Prove that $A \backslash B=A \cap B^{c}$ for any sets A, B.
Illustration (not a proof!):

Proof.

Example 2. Prove that $A \backslash B=A \cap B^{c}$ for any sets A, B.
Illustration (not a proof!):

Proof. Alternative 1

Example 2. Prove that $A \backslash B=A \cap B^{c}$ for any sets A, B.
Illustration (not a proof!):

Proof. Alternative 1 (element-wise)

Example 2. Prove that $A \backslash B=A \cap B^{c}$ for any sets A, B.
Illustration (not a proof!):

Proof. Alternative 1 (element-wise)
$A \backslash B=$

Example 2. Prove that $A \backslash B=A \cap B^{c}$ for any sets A, B.
Illustration (not a proof!):

Proof. Alternative 1 (element-wise)
$A \backslash B=\{x \mid x \in A \wedge x \notin B\}=$

Example 2. Prove that $A \backslash B=A \cap B^{c}$ for any sets A, B.
Illustration (not a proof!):

Proof. Alternative 1 (element-wise)
$A \backslash B=\{x \mid x \in A \wedge x \notin B\}=\left\{x \mid x \in A \wedge x \in B^{c}\right\}=$

Example 2. Prove that $A \backslash B=A \cap B^{c}$ for any sets A, B.
Illustration (not a proof!):

Proof. Alternative 1 (element-wise)
$A \backslash B=\{x \mid x \in A \wedge x \notin B\}=\left\{x \mid x \in A \wedge x \in B^{c}\right\}=A \cap B^{c}$

Example 2. Prove that $A \backslash B=A \cap B^{c}$ for any sets A, B.
Illustration (not a proof!):

Proof. Alternative 1 (element-wise)
$A \backslash B=\{x \mid x \in A \wedge x \notin B\}=\left\{x \mid x \in A \wedge x \in B^{c}\right\}=A \cap B^{c}$

Alternative 2

How to prove set-theoretic identities

Alternative 2 (two sets are equal iff each of them is a subset of the other)

How to prove set-theoretic identities

Alternative 2 (two sets are equal iff each of them is a subset of the other)
To prove $A \backslash B=A \cap B^{c}$,

How to prove set-theoretic identities

Alternative 2 (two sets are equal iff each of them is a subset of the other)
To prove $A \backslash B=A \cap B^{c}$, we prove that $A \backslash B \subset A \cap B^{c}$

How to prove set-theoretic identities

Alternative 2 (two sets are equal iff each of them is a subset of the other)
To prove $A \backslash B=A \cap B^{c}$, we prove that
$A \backslash B \subset A \cap B^{c}$ and
$A \backslash B \supset A \cap B^{c}$

Alternative 2 (two sets are equal iff each of them is a subset of the other)
To prove $A \backslash B=A \cap B^{c}$, we prove that
$A \backslash B \subset A \cap B^{c} \quad$ and $A \backslash B \supset A \cap B^{c}$
Indeed,

Alternative 2 (two sets are equal iff each of them is a subset of the other)
To prove $A \backslash B=A \cap B^{c}$, we prove that
$A \backslash B \subset A \cap B^{c} \quad$ and $A \backslash B \supset A \cap B^{c}$

Indeed,
$A \backslash B$

Alternative 2 (two sets are equal iff each of them is a subset of the other)
To prove $A \backslash B=A \cap B^{c}$, we prove that
$A \backslash B \subset A \cap B^{c} \quad$ and $A \backslash B \supset A \cap B^{c}$

Indeed,
$A \backslash B \subset A$

Alternative 2 (two sets are equal iff each of them is a subset of the other)
To prove $A \backslash B=A \cap B^{c}$, we prove that
$A \backslash B \subset A \cap B^{c} \quad$ and $A \backslash B \supset A \cap B^{c}$

Indeed,
$A \backslash B \subset A$
$A \backslash B$

Alternative 2 (two sets are equal iff each of them is a subset of the other)
To prove $A \backslash B=A \cap B^{c}$, we prove that
$A \backslash B \subset A \cap B^{c} \quad$ and $A \backslash B \supset A \cap B^{c}$

Indeed,
$A \backslash B \subset A$
$A \backslash B \subset U \backslash B$

Alternative 2 (two sets are equal iff each of them is a subset of the other)
To prove $A \backslash B=A \cap B^{c}$, we prove that
$A \backslash B \subset A \cap B^{c} \quad$ and $A \backslash B \supset A \cap B^{c}$

Indeed,
$A \backslash B \subset A$
$A \backslash B \subset U \backslash B=B^{c}$

Alternative 2 (two sets are equal iff each of them is a subset of the other)
To prove $A \backslash B=A \cap B^{c}$, we prove that
$A \backslash B \subset A \cap B^{c} \quad$ and $A \backslash B \supset A \cap B^{c}$

Indeed,
$\left.\begin{array}{l}A \backslash B \subset A \\ A \backslash B \subset U \backslash B=B^{c}\end{array}\right\}$

Alternative 2 (two sets are equal iff each of them is a subset of the other)
To prove $A \backslash B=A \cap B^{c}$, we prove that
$A \backslash B \subset A \cap B^{c} \quad$ and $A \backslash B \supset A \cap B^{c}$

Indeed,
$\left.\begin{array}{l}A \backslash B \subset A \\ A \backslash B \subset U \backslash B=B^{c}\end{array}\right\} \Longrightarrow$

Alternative 2 (two sets are equal iff each of them is a subset of the other)
To prove $A \backslash B=A \cap B^{c}$, we prove that
$A \backslash B \subset A \cap B^{c} \quad$ and $A \backslash B \supset A \cap B^{c}$

Indeed,
$\left.\begin{array}{l}A \backslash B \subset A \\ A \backslash B \subset U \backslash B=B^{c}\end{array}\right\} \Longrightarrow A \backslash B \subset A \cap B^{c}$

Alternative 2 (two sets are equal iff each of them is a subset of the other)
To prove $A \backslash B=A \cap B^{c}$, we prove that
$A \backslash B \subset A \cap B^{c} \quad$ and $A \backslash B \supset A \cap B^{c}$

Indeed,
$\left.\begin{array}{l}A \backslash B \subset A \\ A \backslash B \subset U \backslash B=B^{c}\end{array}\right\} \Longrightarrow A \backslash B \subset A \cap B^{c}$
$A \cap B^{c} \subset A$

Alternative 2 (two sets are equal iff each of them is a subset of the other)
To prove $A \backslash B=A \cap B^{c}$, we prove that
$A \backslash B \subset A \cap B^{c} \quad$ and $A \backslash B \supset A \cap B^{c}$

Indeed,
$\left.\begin{array}{l}A \backslash B \subset A \\ A \backslash B \subset U \backslash B=B^{c}\end{array}\right\} \Longrightarrow A \backslash B \subset A \cap B^{c}$
$A \cap B^{c} \subset A$
$A \cap B^{c} \subset B^{c}$

Alternative 2 (two sets are equal iff each of them is a subset of the other)
To prove $A \backslash B=A \cap B^{c}$, we prove that
$A \backslash B \subset A \cap B^{c} \quad$ and $A \backslash B \supset A \cap B^{c}$

Indeed,
$\left.\begin{array}{l}A \backslash B \subset A \\ A \backslash B \subset U \backslash B=B^{c}\end{array}\right\} \Longrightarrow A \backslash B \subset A \cap B^{c}$
$A \cap B^{c} \subset A$
$A \cap B^{c} \subset B^{c}=U \backslash B$

Alternative 2 (two sets are equal iff each of them is a subset of the other)
To prove $A \backslash B=A \cap B^{c}$, we prove that
$A \backslash B \subset A \cap B^{c} \quad$ and $A \backslash B \supset A \cap B^{c}$

Indeed,
$\left.\begin{array}{l}A \backslash B \subset A \\ A \backslash B \subset U \backslash B=B^{c}\end{array}\right\} \Longrightarrow A \backslash B \subset A \cap B^{c}$
$\left.\begin{array}{l}A \cap B^{c} \subset A \\ A \cap B^{c} \subset B^{c}=U \backslash B\end{array}\right\}$

Alternative 2 (two sets are equal iff each of them is a subset of the other)
To prove $A \backslash B=A \cap B^{c}$, we prove that
$A \backslash B \subset A \cap B^{c} \quad$ and $A \backslash B \supset A \cap B^{c}$

Indeed,
$\left.\begin{array}{l}A \backslash B \subset A \\ A \backslash B \subset U \backslash B=B^{c}\end{array}\right\} \Longrightarrow A \backslash B \subset A \cap B^{c}$
$\left.\begin{array}{l}A \cap B^{c} \subset A \\ A \cap B^{c} \subset B^{c}=U \backslash B\end{array}\right\} \Longrightarrow$

Alternative 2 (two sets are equal iff each of them is a subset of the other)
To prove $A \backslash B=A \cap B^{c}$, we prove that
$A \backslash B \subset A \cap B^{c} \quad$ and $A \backslash B \supset A \cap B^{c}$

Indeed,
$\left.\begin{array}{l}A \backslash B \subset A \\ A \backslash B \subset U \backslash B=B^{c}\end{array}\right\} \Longrightarrow A \backslash B \subset A \cap B^{c}$
$\left.\begin{array}{l}A \cap B^{c} \subset A \\ A \cap B^{c} \subset B^{c}=U \backslash B\end{array}\right\} \Longrightarrow \quad A \cap B^{c} \subset A \cap(U \backslash B)$

Alternative 2 (two sets are equal iff each of them is a subset of the other)
To prove $A \backslash B=A \cap B^{c}$, we prove that
$A \backslash B \subset A \cap B^{c} \quad$ and $A \backslash B \supset A \cap B^{c}$

Indeed,
$\left.\begin{array}{l}A \backslash B \subset A \\ A \backslash B \subset U \backslash B=B^{c}\end{array}\right\} \Longrightarrow A \backslash B \subset A \cap B^{c}$
$\left.\begin{array}{l}A \cap B^{c} \subset A \\ A \cap B^{c} \subset B^{c}=U \backslash B\end{array}\right\} \Longrightarrow A \cap B^{c} \subset A \cap(U \backslash B)=(A \cap U) \backslash B$

Alternative 2 (two sets are equal iff each of them is a subset of the other)
To prove $A \backslash B=A \cap B^{c}$, we prove that
$A \backslash B \subset A \cap B^{c} \quad$ and $A \backslash B \supset A \cap B^{c}$

Indeed,
$\left.\begin{array}{l}A \backslash B \subset A \\ A \backslash B \subset U \backslash B=B^{c}\end{array}\right\} \Longrightarrow A \backslash B \subset A \cap B^{c}$
$\left.\begin{array}{l}A \cap B^{c} \subset A \\ A \cap B^{c} \subset B^{c}=U \backslash B\end{array}\right\} \Longrightarrow \quad A \cap B^{c} \subset A \cap(U \backslash B)=(A \cap U) \backslash B$

Alternative 2 (two sets are equal iff each of them is a subset of the other)
To prove $A \backslash B=A \cap B^{c}$, we prove that
$A \backslash B \subset A \cap B^{c} \quad$ and $A \backslash B \supset A \cap B^{c}$

Indeed,
$\left.\begin{array}{l}A \backslash B \subset A \\ A \backslash B \subset U \backslash B=B^{c}\end{array}\right\} \Longrightarrow A \backslash B \subset A \cap B^{c}$
$\left.\begin{array}{rl}A \cap B^{c} \subset A \\ A \cap B^{c} \subset B^{c}=U \backslash B\end{array}\right\} \Longrightarrow \quad A \cap B^{c} \subset A \cap(U \backslash B)=(A \cap U) \backslash B$
We have got that

Alternative 2 (two sets are equal iff each of them is a subset of the other)
To prove $A \backslash B=A \cap B^{c}$, we prove that
$A \backslash B \subset A \cap B^{c} \quad$ and $A \backslash B \supset A \cap B^{c}$

Indeed,
$\left.\begin{array}{l}A \backslash B \subset A \\ A \backslash B \subset U \backslash B=B^{c}\end{array}\right\} \Longrightarrow A \backslash B \subset A \cap B^{c}$
$\left.\begin{array}{rl}A \cap B^{c} \subset A \\ A \cap B^{c} \subset B^{c}=U \backslash B\end{array}\right\} \Longrightarrow \quad A \cap B^{c} \subset A \cap(U \backslash B)=(A \cap U) \backslash B$
We have got that $A \backslash B \subset A \cap B^{c}$

Alternative 2 (two sets are equal iff each of them is a subset of the other)
To prove $A \backslash B=A \cap B^{c}$, we prove that
$A \backslash B \subset A \cap B^{c} \quad$ and $A \backslash B \supset A \cap B^{c}$

Indeed,
$\left.\begin{array}{l}A \backslash B \subset A \\ A \backslash B \subset U \backslash B=B^{c}\end{array}\right\} \Longrightarrow A \backslash B \subset A \cap B^{c}$
$\left.\begin{array}{rl}A \cap B^{c} \subset A \\ A \cap B^{c} \subset B^{c}=U \backslash B\end{array}\right\} \Longrightarrow \quad A \cap B^{c} \subset A \cap(U \backslash B)=(A \cap U) \backslash B$
We have got that $A \backslash B \subset A \cap B^{c}$ and $A \backslash B \supseteq A \cap B^{c}$.

Alternative 2 (two sets are equal iff each of them is a subset of the other)
To prove $A \backslash B=A \cap B^{c}$, we prove that
$A \backslash B \subset A \cap B^{c} \quad$ and $A \backslash B \supset A \cap B^{c}$

Indeed,
$\left.\begin{array}{l}A \backslash B \subset A \\ A \backslash B \subset U \backslash B=B^{c}\end{array}\right\} \Longrightarrow A \backslash B \subset A \cap B^{c}$
$\left.\begin{array}{l}A \cap B^{c} \subset A \\ A \cap B^{c} \subset B^{c}=U \backslash B\end{array}\right\} \Longrightarrow \quad A \cap B^{c} \subset A \cap(U \backslash B)=(A \cap U) \backslash B$
We have got that $A \backslash B \subset A \cap B^{c}$ and $A \backslash B \supseteq A \cap B^{c}$.
Therefore, $A \backslash B=A \cap B^{c}$.

Alternative 3

Alternative 3 (by truth table)

Alternative 3 (by truth table)

	$x \in A$	$x \in B$	$x \notin B$	$\underbrace{x \in A \wedge x \notin B}_{x \in A \backslash B}$	$\underbrace{x \in A \wedge x \in B^{c}}_{x \in A \cap B^{c}}$
1	T	T	F	F	F
2	T	F	T	T	T
3	F	T	F	F	F
4	F	F	T	F	F

Alternative 3 (by truth table)

	$x \in A$	$x \in B$	$x \notin B$	$\underbrace{x \in A \wedge x \notin B}_{x \in A \backslash B}$	$\underbrace{x \in A \wedge x \in B^{c}}_{x \in A \cap B^{c}}$
1	T	T	F	F	F
2	T	F	T	T	T
3	F	T	F	F	F
4	F	F	T	F	F

Since the last two columns of the truth table are identical,

Alternative 3 (by truth table)

	$x \in A$	$x \in B$	$x \notin B$	$\underbrace{x \in A \wedge x \notin B}_{x \in A \backslash B}$	$\underbrace{x \in A \wedge x \in B^{c}}_{x \in A \cap B^{c}}$
1	T	T	F	F	F
2	T	F	T	T	T
3	F	T	F	F	F
4	F	F	T	F	F

Since the last two columns of the truth table are identical, $A \backslash B=A \cap B^{c}$.

Alternative 3 (by truth table)

	$x \in A$	$x \in B$	$x \notin B$	$\underbrace{x \in A \wedge x \notin B}_{x \in A \backslash B}$	$\underbrace{x \in A \wedge x \in B^{c}}_{x \in A \cap B^{c}}$
1	T	T	F	F	F
2	T	F	T	T	T
3	F	T	F	F	F
4	F	F	T	F	F

Since the last two columns of the truth table are identical, $A \backslash B=A \cap B^{c}$. Remark.

Alternative 3 (by truth table)

	$x \in A$	$x \in B$	$x \notin B$	$\underbrace{x \in A \wedge x \notin B}_{x \in A \backslash B}$	$\underbrace{x \in A \wedge x \in B^{c}}_{x \in A \cap B^{c}}$
1	T	T	F	F	F
2	T	F	T	T	T
3	F	T	F	F	F
4	F	F	T	F	F

Since the last two columns of the truth table are identical, $A \backslash B=A \cap B^{c}$.
Remark. The universe can be presented as a disjoint union

Alternative 3 (by truth table)

	$x \in A$	$x \in B$	$x \notin B$	$\underbrace{x \in A \wedge x \notin B}_{x \in A \backslash B}$	$\underbrace{x \in A \wedge x \in B^{c}}_{x \in A \cap B^{c}}$
1	T	T	F	F	F
2	T	F	T	T	T
3	F	T	F	F	F
4	F	F	T	F	F

Since the last two columns of the truth table are identical, $A \backslash B=A \cap B^{c}$.
Remark. The universe can be presented as a disjoint union
$U=(A \cap B) \cup(A \backslash B) \cup(B \backslash A) \cup(A \cup B)^{c}$

Alternative 3 (by truth table)

	$x \in A$	$x \in B$	$x \notin B$	$\underbrace{x \in A \wedge x \notin B}_{x \in A \backslash B}$	$\underbrace{x \in A \wedge x \in B^{c}}_{x \in A \cap B^{c}}$
1	T	T	F	F	F
2	T	F	T	T	T
3	F	T	F	F	F
4	F	F	T	F	F

Since the last two columns of the truth table are identical, $A \backslash B=A \cap B^{c}$.
Remark. The universe can be presented as a disjoint union
$U=(A \cap B) \cup(A \backslash B) \cup(B \backslash A) \cup(A \cup B)^{c}$

What does this formula remind you?

Alternative 3 (by truth table)

	$x \in A$	$x \in B$	$x \notin B$	$\underbrace{x \in A \wedge x \notin B}_{x \in A \backslash B}$	$\underbrace{x \in A \wedge x \in B^{c}}_{x \in A \cap B^{c}}$
1	T	T	F	F	F
2	T	F	T	T	T
3	F	T	F	F	F
4	F	F	T	F	F

Since the last two columns of the truth table are identical, $A \backslash B=A \cap B^{c}$.
Remark. The universe can be presented as a disjoint union
$U=(A \cap B) \cup(A \backslash B) \cup(B \backslash A) \cup(A \cup B)^{c}$

What does this formula remind you? Is it related to disjunctive normal form?

How to prove set-theoretic identities

Example 3.

Example 3. Prove that $A \subset B \Longleftrightarrow A \backslash B=\varnothing$

Example 3. Prove that $A \subset B \Longleftrightarrow A \backslash B=\varnothing$ for any sets A, B.

Example 3. Prove that $A \subset B \Longleftrightarrow A \backslash B=\varnothing$ for any sets A, B. Proof.

Example 3. Prove that $A \subset B \Longleftrightarrow A \backslash B=\varnothing$ for any sets A, B. Proof. Let $A \subset B$.

Example 3. Prove that $A \subset B \Longleftrightarrow A \backslash B=\varnothing$ for any sets A, B. Proof. Let $A \subset B$. Then

Example 3. Prove that $A \subset B \Longleftrightarrow A \backslash B=\varnothing$ for any sets A, B. Proof. Let $A \subset B$. Then
$\forall x \in A$

Example 3. Prove that $A \subset B \Longleftrightarrow A \backslash B=\varnothing$ for any sets A, B. Proof. Let $A \subset B$. Then
$\forall x \in A \quad x \in A \Longrightarrow x \in B$

Example 3. Prove that $A \subset B \Longleftrightarrow A \backslash B=\varnothing$ for any sets A, B. Proof. Let $A \subset B$. Then
$\forall x \in A \quad x \in A \Longrightarrow x \in B \Longrightarrow x \notin B^{c}$.

Example 3. Prove that $A \subset B \Longleftrightarrow A \backslash B=\varnothing$ for any sets A, B. Proof. Let $A \subset B$. Then
$\forall x \in A \quad x \in A \Longrightarrow x \in B \Longrightarrow x \notin B^{c}$.
So any x in A doesn't belong to B^{c}.

Example 3. Prove that $A \subset B \Longleftrightarrow A \backslash B=\varnothing$ for any sets A, B. Proof. Let $A \subset B$. Then
$\forall x \in A \quad x \in A \Longrightarrow x \in B \Longrightarrow x \notin B^{c}$.
So any x in A doesn't belong to B^{c}. Therefore,

Example 3. Prove that $A \subset B \Longleftrightarrow A \backslash B=\varnothing$ for any sets A, B. Proof. Let $A \subset B$. Then
$\forall x \in A \quad x \in A \Longrightarrow x \in B \Longrightarrow x \notin B^{c}$.
So any x in A doesn't belong to B^{c}. Therefore, $A \cap B^{c}=\varnothing$.

Example 3. Prove that $A \subset B \Longleftrightarrow A \backslash B=\varnothing$ for any sets A, B.
Proof. Let $A \subset B$. Then
$\forall x \in A \quad x \in A \Longrightarrow x \in B \Longrightarrow x \notin B^{c}$.
So any x in A doesn't belong to B^{c}. Therefore, $A \cap B^{c}=\varnothing$.

$$
\text { But } A \cap B^{c}=A \backslash B \text {, }
$$

Example 3. Prove that $A \subset B \Longleftrightarrow A \backslash B=\varnothing$ for any sets A, B.
Proof. Let $A \subset B$. Then
$\forall x \in A \quad x \in A \Longrightarrow x \in B \Longrightarrow x \notin B^{c}$.
So any x in A doesn't belong to B^{c}. Therefore, $A \cap B^{c}=\varnothing$.

$$
\text { But } A \cap B^{c}=A \backslash B \text {, }
$$

hence $A \backslash B=\varnothing$
We have proven that

Example 3. Prove that $A \subset B \Longleftrightarrow A \backslash B=\varnothing$ for any sets A, B.
Proof. Let $A \subset B$. Then
$\forall x \in A \quad x \in A \Longrightarrow x \in B \Longrightarrow x \notin B^{c}$.
So any x in A doesn't belong to B^{c}. Therefore, $A \cap B^{c}=\varnothing$.

$$
\text { But } A \cap B^{c}=A \backslash B \text {, }
$$

hence $A \backslash B=\varnothing$
We have proven that $A \subset B \Longrightarrow A \backslash B=\varnothing$

Example 3. Prove that $A \subset B \Longleftrightarrow A \backslash B=\varnothing$ for any sets A, B.
Proof. Let $A \subset B$. Then
$\forall x \in A \quad x \in A \Longrightarrow x \in B \Longrightarrow x \notin B^{c}$.
So any x in A doesn't belong to B^{c}. Therefore, $A \cap B^{c}=\varnothing$.

$$
\text { But } A \cap B^{c}=A \backslash B \text {, }
$$

hence $A \backslash B=\varnothing$
We have proven that $A \subset B \Longrightarrow A \backslash B=\varnothing \quad(*)$

Example 3. Prove that $A \subset B \Longleftrightarrow A \backslash B=\varnothing$ for any sets A, B.
Proof. Let $A \subset B$. Then
$\forall x \in A \quad x \in A \Longrightarrow x \in B \Longrightarrow x \notin B^{c}$.
So any x in A doesn't belong to B^{c}. Therefore, $A \cap B^{c}=\varnothing$.

$$
\text { But } A \cap B^{c}=A \backslash B \text {, }
$$

hence $A \backslash B=\varnothing$
We have proven that $A \subset B \Longrightarrow A \backslash B=\varnothing \quad(*)$
Prove now the opposite implication.

Example 3. Prove that $A \subset B \Longleftrightarrow A \backslash B=\varnothing$ for any sets A, B.
Proof. Let $A \subset B$. Then
$\forall x \in A \quad x \in A \Longrightarrow x \in B \Longrightarrow x \notin B^{c}$.
So any x in A doesn't belong to B^{c}. Therefore, $A \cap B^{c}=\varnothing$.

$$
\text { But } A \cap B^{c}=A \backslash B \text {, }
$$

hence $A \backslash B=\varnothing$
We have proven that $A \subset B \Longrightarrow A \backslash B=\varnothing \quad(*)$
Prove now the opposite implication.
Let $A \backslash B=\varnothing$.

Example 3. Prove that $A \subset B \Longleftrightarrow A \backslash B=\varnothing$ for any sets A, B.
Proof. Let $A \subset B$. Then
$\forall x \in A \quad x \in A \Longrightarrow x \in B \Longrightarrow x \notin B^{c}$.
So any x in A doesn't belong to B^{c}. Therefore, $A \cap B^{c}=\varnothing$.

$$
\text { But } A \cap B^{c}=A \backslash B \text {, }
$$

hence $A \backslash B=\varnothing$
We have proven that $A \subset B \Longrightarrow A \backslash B=\varnothing \quad(*)$
Prove now the opposite implication.
Let $A \backslash B=\varnothing$. Then

Example 3. Prove that $A \subset B \Longleftrightarrow A \backslash B=\varnothing$ for any sets A, B.
Proof. Let $A \subset B$. Then
$\forall x \in A \quad x \in A \Longrightarrow x \in B \Longrightarrow x \notin B^{c}$.
So any x in A doesn't belong to B^{c}. Therefore, $A \cap B^{c}=\varnothing$.

$$
\text { But } A \cap B^{c}=A \backslash B \text {, }
$$

hence $A \backslash B=\varnothing$
We have proven that $A \subset B \Longrightarrow A \backslash B=\varnothing \quad(*)$
Prove now the opposite implication.
Let $A \backslash B=\varnothing$. Then $A \cap B^{c}=\varnothing$. Therefore,

Example 3. Prove that $A \subset B \Longleftrightarrow A \backslash B=\varnothing$ for any sets A, B.
Proof. Let $A \subset B$. Then
$\forall x \in A \quad x \in A \Longrightarrow x \in B \Longrightarrow x \notin B^{c}$.
So any x in A doesn't belong to B^{c}. Therefore, $A \cap B^{c}=\varnothing$.

$$
\text { But } A \cap B^{c}=A \backslash B \text {, }
$$

hence $A \backslash B=\varnothing$
We have proven that $A \subset B \Longrightarrow A \backslash B=\varnothing \quad(*)$
Prove now the opposite implication.
Let $A \backslash B=\varnothing$. Then $A \cap B^{c}=\varnothing$. Therefore,
$\forall x \in A$

Example 3. Prove that $A \subset B \Longleftrightarrow A \backslash B=\varnothing$ for any sets A, B.
Proof. Let $A \subset B$. Then
$\forall x \in A \quad x \in A \Longrightarrow x \in B \Longrightarrow x \notin B^{c}$.
So any x in A doesn't belong to B^{c}. Therefore, $A \cap B^{c}=\varnothing$.

$$
\text { But } A \cap B^{c}=A \backslash B \text {, }
$$

hence $A \backslash B=\varnothing$
We have proven that $A \subset B \Longrightarrow A \backslash B=\varnothing \quad(*)$
Prove now the opposite implication.
Let $A \backslash B=\varnothing$. Then $A \cap B^{c}=\varnothing$. Therefore,
$\forall x \in A \quad x \in A \Longrightarrow x \notin B^{c}$

Example 3. Prove that $A \subset B \Longleftrightarrow A \backslash B=\varnothing$ for any sets A, B.
Proof. Let $A \subset B$. Then
$\forall x \in A \quad x \in A \Longrightarrow x \in B \Longrightarrow x \notin B^{c}$.
So any x in A doesn't belong to B^{c}. Therefore, $A \cap B^{c}=\varnothing$.

$$
\text { But } A \cap B^{c}=A \backslash B \text {, }
$$

hence $A \backslash B=\varnothing$
We have proven that $A \subset B \Longrightarrow A \backslash B=\varnothing \quad(*)$
Prove now the opposite implication.
Let $A \backslash B=\varnothing$. Then $A \cap B^{c}=\varnothing$. Therefore,
$\forall x \in A \quad x \in A \Longrightarrow x \notin B^{c} \Longrightarrow x \in B$.

Example 3. Prove that $A \subset B \Longleftrightarrow A \backslash B=\varnothing$ for any sets A, B.
Proof. Let $A \subset B$. Then
$\forall x \in A \quad x \in A \Longrightarrow x \in B \Longrightarrow x \notin B^{c}$.
So any x in A doesn't belong to B^{c}. Therefore, $A \cap B^{c}=\varnothing$.

$$
\text { But } A \cap B^{c}=A \backslash B \text {, }
$$

hence $A \backslash B=\varnothing$
We have proven that $A \subset B \Longrightarrow A \backslash B=\varnothing \quad(*)$
Prove now the opposite implication.
Let $A \backslash B=\varnothing$. Then $A \cap B^{c}=\varnothing$. Therefore,
$\forall x \in A \quad x \in A \Longrightarrow x \notin B^{c} \Longrightarrow x \in B$. By this,

Example 3. Prove that $A \subset B \Longleftrightarrow A \backslash B=\varnothing$ for any sets A, B.
Proof. Let $A \subset B$. Then
$\forall x \in A \quad x \in A \Longrightarrow x \in B \Longrightarrow x \notin B^{c}$.
So any x in A doesn't belong to B^{c}. Therefore, $A \cap B^{c}=\varnothing$.

$$
\text { But } A \cap B^{c}=A \backslash B \text {, }
$$

hence $A \backslash B=\varnothing$
We have proven that $A \subset B \Longrightarrow A \backslash B=\varnothing \quad(*)$
Prove now the opposite implication.
Let $A \backslash B=\varnothing$. Then $A \cap B^{c}=\varnothing$. Therefore,
$\forall x \in A \quad x \in A \Longrightarrow x \notin B^{c} \Longrightarrow x \in B$. By this, $A \subset B$.

Example 3. Prove that $A \subset B \Longleftrightarrow A \backslash B=\varnothing$ for any sets A, B.
Proof. Let $A \subset B$. Then
$\forall x \in A \quad x \in A \Longrightarrow x \in B \Longrightarrow x \notin B^{c}$.
So any x in A doesn't belong to B^{c}. Therefore, $A \cap B^{c}=\varnothing$.

$$
\text { But } A \cap B^{c}=A \backslash B \text {, }
$$

hence $A \backslash B=\varnothing$
We have proven that $A \subset B \Longrightarrow A \backslash B=\varnothing \quad(*)$
Prove now the opposite implication.
Let $A \backslash B=\varnothing$. Then $A \cap B^{c}=\varnothing$. Therefore,
$\forall x \in A \quad x \in A \Longrightarrow x \notin B^{c} \Longrightarrow x \in B$. By this, $A \subset B$.
Therefore,

Example 3. Prove that $A \subset B \Longleftrightarrow A \backslash B=\varnothing$ for any sets A, B.
Proof. Let $A \subset B$. Then
$\forall x \in A \quad x \in A \Longrightarrow x \in B \Longrightarrow x \notin B^{c}$.
So any x in A doesn't belong to B^{c}. Therefore, $A \cap B^{c}=\varnothing$.

$$
\text { But } A \cap B^{c}=A \backslash B \text {, }
$$

hence $A \backslash B=\varnothing$
We have proven that $A \subset B \Longrightarrow A \backslash B=\varnothing \quad(*)$
Prove now the opposite implication.
Let $A \backslash B=\varnothing$. Then $A \cap B^{c}=\varnothing$. Therefore,
$\forall x \in A \quad x \in A \Longrightarrow x \notin B^{c} \Longrightarrow x \in B$. By this, $A \subset B$.
Therefore, $A \backslash B=\varnothing \Longrightarrow A \subset B$

Example 3. Prove that $A \subset B \Longleftrightarrow A \backslash B=\varnothing$ for any sets A, B.
Proof. Let $A \subset B$. Then
$\forall x \in A \quad x \in A \Longrightarrow x \in B \Longrightarrow x \notin B^{c}$.
So any x in A doesn't belong to B^{c}. Therefore, $A \cap B^{c}=\varnothing$.

$$
\text { But } A \cap B^{c}=A \backslash B \text {, }
$$

hence $A \backslash B=\varnothing$
We have proven that $A \subset B \Longrightarrow A \backslash B=\varnothing \quad(*)$
Prove now the opposite implication.
Let $A \backslash B=\varnothing$. Then $A \cap B^{c}=\varnothing$. Therefore,
$\forall x \in A \quad x \in A \Longrightarrow x \notin B^{c} \Longrightarrow x \in B$. By this, $A \subset B$.
Therefore, $A \backslash B=\varnothing \Longrightarrow A \subset B \quad(* *)$

Example 3. Prove that $A \subset B \Longleftrightarrow A \backslash B=\varnothing$ for any sets A, B.
Proof. Let $A \subset B$. Then
$\forall x \in A \quad x \in A \Longrightarrow x \in B \Longrightarrow x \notin B^{c}$.
So any x in A doesn't belong to B^{c}. Therefore, $A \cap B^{c}=\varnothing$.

$$
\text { But } A \cap B^{c}=A \backslash B \text {, }
$$

hence $A \backslash B=\varnothing$
We have proven that $A \subset B \Longrightarrow A \backslash B=\varnothing \quad(*)$
Prove now the opposite implication.
Let $A \backslash B=\varnothing$. Then $A \cap B^{c}=\varnothing$. Therefore,
$\forall x \in A \quad x \in A \Longrightarrow x \notin B^{c} \Longrightarrow x \in B$. By this, $A \subset B$.
Therefore, $A \backslash B=\varnothing \Longrightarrow A \subset B \quad(* *)$
Combining ($*$) and ($* *$),

Example 3. Prove that $A \subset B \Longleftrightarrow A \backslash B=\varnothing$ for any sets A, B.
Proof. Let $A \subset B$. Then
$\forall x \in A \quad x \in A \Longrightarrow x \in B \Longrightarrow x \notin B^{c}$.
So any x in A doesn't belong to B^{c}. Therefore, $A \cap B^{c}=\varnothing$.

$$
\text { But } A \cap B^{c}=A \backslash B \text {, }
$$

hence $A \backslash B=\varnothing$
We have proven that $A \subset B \Longrightarrow A \backslash B=\varnothing \quad(*)$
Prove now the opposite implication.
Let $A \backslash B=\varnothing$. Then $A \cap B^{c}=\varnothing$. Therefore,
$\forall x \in A \quad x \in A \Longrightarrow x \notin B^{c} \Longrightarrow x \in B$. By this, $A \subset B$.
Therefore, $A \backslash B=\varnothing \Longrightarrow A \subset B \quad(* *)$
Combining $(*)$ and $(* *)$, we get $A \subset B \Longleftrightarrow A \backslash B=\varnothing$.

Despite obvious similarity between the symbols \in and \subset, the concepts are quite different.

Despite obvious similarity between the symbols \in and \subset, the concepts are quite different.

$$
x \in A \Longleftrightarrow\{x\} \subset A
$$

Despite obvious similarity between the symbols \in and \subset, the concepts are quite different.

$$
x \in A \Longleftrightarrow\{x\} \subset A
$$

$A \subset A$ for any A

Despite obvious similarity between the symbols \in and \subset, the concepts are quite different.

$$
x \in A \Longleftrightarrow\{x\} \subset A
$$

$A \subset A$ for any A, but $A \notin A$ for any reasonable A.

Despite obvious similarity between the symbols \in and \subset, the concepts are quite different.

$$
x \in A \Longleftrightarrow\{x\} \subset A
$$

$A \subset A$ for any A, but $A \notin A$ for any reasonable A.
Belonging is not transitive

Despite obvious similarity between the symbols \in and \subset, the concepts are quite different.

$$
x \in A \Longleftrightarrow\{x\} \subset A
$$

$A \subset A$ for any A, but $A \notin A$ for any reasonable A.
Belonging is not transitive: $(a \in B) \wedge(B \in C) \nRightarrow a \in C$

Despite obvious similarity between the symbols \in and \subset, the concepts are quite different.

$$
x \in A \Longleftrightarrow\{x\} \subset A
$$

$A \subset A$ for any A, but $A \notin A$ for any reasonable A.
Belonging is not transitive: $(a \in B) \wedge(B \in C) \nRightarrow a \in C$ while inclusion is

Despite obvious similarity between the symbols \in and \subset, the concepts are quite different.

$$
x \in A \Longleftrightarrow\{x\} \subset A
$$

$A \subset A$ for any A, but $A \notin A$ for any reasonable A.
Belonging is not transitive: $(a \in B) \wedge(B \in C) \nRightarrow a \in C$ while inclusion is: $(A \subset B) \wedge(B \subset C) \Longrightarrow A \subset C$.

[^0]: Example 1. Prove De Morgan's law: $(A \cap B)^{c}=A^{c} \cup B^{c}$
 Proof. Let us prove first that $(A \cap B)^{c} \subset A^{c} \cup B^{c}$.

