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In any intellectual activity,
one of the most profound actions is

gathering objects in groups

performed in mind, with no action in the physical world.
A group can be a subject of thoughts and arguments,

and can be included into other groups.

In Mathematics, creation those groups and manipulating with them
is organized and regulated by the naive set theory.
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In any intellectual activity,
one of the most profound actions is gathering objects in groups,

performed in mind, with no action in the physical world.
A group can be a subject of thoughts and arguments,

and can be included into other groups.

In Mathematics, creation those groups and manipulating with them
is organized and regulated by the naive set theory.

This is rather a language, than a theory.
The first words in this language are set and element.

A set is a collection of objects which are called elements.
A set consists of (and is defined by) its elements.
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Notation:

x ∈ S “x is an element of a set S ”
“x belongs to S ”
“A consists of its elements”
”A is formed by its elements”

Other notations: S ∋ x , S 6∋ x , x 6∈ S .

Do not confuse “∈ ” and “ ε ”.
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N = Z+ = {1, 2, 3, , . . . } natural numbers (or positive integers)

Z = {. . . ,−3, −2, −1, 0, 1, 2, 3, , . . . } integers

Q =
{p

q

∣
∣ p, q ∈ Z, q = 0

}

rational numbers

R real numbers

C = {a+ ib | a, b ∈ R, i2 = −1} complex numbers
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Definition. Two sets are called equal if they have the same elements.

Notation: X = Y .

By definition, X = Y ⇐⇒ ∀x (x ∈ X ⇐⇒ x ∈ Y ) .

Example 1. X = {1, 2}

Y = {n ∈ N | n < 3}

Z = {x ∈ R | x2 − 3x+ 2 = 0}

X = Y = Z since they consists of the same elements: 1 and 2 .

Example 2. {1, 2, 2} = {1, 2} , since a set is defined by its elements.

Example 3. {1, 2, 3} = {3, 2, 1}

Example 4. {1, {1}} = {1}

Example 5. {1, 2, 3} = {{1}, 2, 3}
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Example 4. {1, {1}} = {1}

Example 5. {1, 2, 3} = {{1}, 2, 3}
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Definition. An empty set is a set with no elements.

Notation: ∅

Is ∅ = {∅} ? No!

empty box = a box containing an empty box.
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Definition. A set A is a subset of a set B

if any element of A is an element of B .

Notation: A ⊂ B , or A ⊆ B , or B ⊃ A , or B ⊇ A .

The signs “⊂ ”,“⊆ ”, “⊃ ” and “⊇ ” are called inclusion symbols.
Commonly ⊂ and ⊆ are used in the same sense.

By definition, A ⊂ B ⇐⇒ ∀x (x ∈ A =⇒ x ∈ B) .

Warning: distinguish the signs “∈ ” and “⊂ ”

Example. A = {1, 2, 3} .

correct: 1 ∈ A wrong: {1} ∈ A

wrong: 1 ⊂ A correct: {1} ⊂ A

Example. N ⊂ Z ⊂ Q ⊂ R ⊂ C .
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By definition, A ⊂ B ⇐⇒ ∀x (x ∈ A =⇒ x ∈ B) .

Warning: distinguish the signs “∈ ” and “⊂ ”

Example. A = {1, 2, 3} .

correct: 1 ∈ A wrong: {1} ∈ A

wrong:

1 ⊂ A

correct: {1} ⊂ A

Example. N ⊂ Z ⊂ Q ⊂ R ⊂ C .
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Proposition. For any set A , ∅ ⊂ A and A ⊂ A .

Definition. Let A ⊂ B . A is called a proper subset of B ,
if A = ∅ and A = B .

Theorem. Let A and B be sets. Then

A = B ⇐⇒ A ⊂ B ∧ B ⊂ A

Proof. Write a proof.

Theorem (transitivity of inclusion). Let A , B and C be sets. Then

A ⊂ B ∧ B ⊂ C =⇒ A ⊂ C .

Proof. Write a proof.
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A B

A ∩B

Venn diagram
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A ∪B = {x | x ∈ A ∨ x ∈ B}

A B
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Complement

AC = U
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universe
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U
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Let A be an arbitrary set. Then

A ∩A = A , A ∪A = A , ArA = ∅ ,

A ∩∅ = ∅ , A ∪∅ = A , Ar∅ = A .

Definition. Sets A and B are called disjoint if A ∩B = ∅ .
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For example, {x ∈ N | x < 5} = {1, 2, 3, 4} .
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Let P (x) be a predicate (proposition depending on variable x ),
where x ∈ U
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universe

Then A = {x | P (x)} be a set.

Logic Sets

P (x) A = {x | P (x)}

∃x P (x) A = ∅

∀x P (x) A = U

¬¬P ⇐⇒ P (Ac)c = A

P ∧ ¬P is a contradiction A ∩Ac = ∅

P ∨ ¬P is a tautology A ∪Ac = U

¬(P ∧Q) ⇐⇒ ¬P ∨ ¬Q (A ∩B)c = Ac ∪Bc De Morgan’s law
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• Commutativity of ∩ and ∪ : for any sets A and B ,

A ∩B = B ∩A and A ∪B = B ∪A .

• Associativity of ∩ and ∪ : for any sets A,B and C ,

(A ∩B) ∩ C = A ∩ (B ∩ C) and (A ∪B) ∪ C = A ∪ (B ∪ C) .

• Distributivities: for any sets A,B and C ,

(A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C) and (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C) .

• De Morgans’ laws: for any sets A and B ,

(A ∩B)c = Ac ∪Bc and (A ∪B)c = Ac ∩Bc .
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Example 1. Prove De Morgan’s law: (A ∩B)c = Ac ∪Bc

Proof. Let us prove first that (A ∩B)c ⊂ Ac ∪Bc .

Let x ∈ (A ∩B)c Then x 6∈ A ∩B =⇒ ¬(x ∈ A ∧ x ∈ B)

=⇒ x 6∈ A ∨ x 6∈ B =⇒ x ∈ Ac ∨ x ∈ Bc =⇒ x ∈ Ac ∪Bc .

So ∀x ∈ (A ∩B)c , we have x ∈ Ac ∪Bc .

Therefore, (A ∩B)c ⊂ Ac ∪Bc (∗) .

Prove now that Ac ∪Bc ⊂ (A ∩B)c .

x ∈ Ac ∪Bc =⇒
x ∈ Ac ∨ x ∈ Bc =⇒ x 6∈ A ∨ x 6∈ B =⇒ ¬(x ∈ A ∧ x ∈ B)

=⇒ x 6∈ A ∩B =⇒ x ∈ (A ∩B)c

Therefore, Ac ∪Bc ⊂ (A ∩B)c (∗∗)

Combining (∗) and (∗∗), we get (A ∩B)c = Ac ∪Bc. �
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Yes, all our arguments are biderectional.

Indeed, x ∈ (A ∩B)c ⇐⇒ x 6∈ A ∩B ⇐⇒ ¬(x ∈ A ∧ x ∈ B)

⇐⇒ x 6∈ A ∨ x 6∈ B ⇐⇒ x ∈ Ac ∨ x ∈ Bc ⇐⇒ x ∈ Ac ∪Bc .
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Example 2. Prove that ArB = A ∩Bc for any sets A, B .

Illustration (not a proof!):

A B

A rB

A B

B
c

A ∩B
c

Proof. Alternative 1 (element-wise)

ArB = {x | x ∈ A ∧ x 6∈ B} = {x | x ∈ A ∧ x ∈ Bc} = A ∩Bc
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Alternative 2

(two sets are equal iff each of them is a subset of the other)

To prove ArB = A ∩Bc , we prove that
ArB ⊂ A ∩Bc and
ArB ⊃ A ∩Bc

Indeed,

ArB ⊂ A

ArB ⊂ UrB = Bc
=⇒ ArB ⊂ A ∩Bc

A ∩Bc ⊂ A

A ∩ Bc ⊂ Bc = U r

B
=⇒ A∩Bc ⊂ A∩(UrB) = (A∩U)rB

= ArB

We have got that ArB ⊂ A ∩Bc and ArB ⊇ A ∩Bc .

Therefore, ArB = A ∩Bc . �
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Alternative 3

(by truth table)

x ∈ A x ∈ B x 6∈ B x ∈ A ∧ x 6∈ B
︸ ︷︷ ︸

x∈ArB

x ∈ A ∧ x ∈ Bc

︸ ︷︷ ︸

x∈A∩Bc

1 T T F F F

2 T F T T T

3 F T F F F

4 F F T F F

Since the last two columns of the truth table are identical, ArB = A ∩Bc .

Remark. The universe can be presented as a disjoint union

U = (A ∩B) ∪ (ArB) ∪ (B rA) ∪ (A ∪B)c
12 3

4

What does this formula remind you? Is it related to disjunctive normal form?



MAT 250

Lecture 4

Sets
How to prove set-theoretic identities

20 / 22

Alternative 3 (by truth table)

x ∈ A x ∈ B x 6∈ B x ∈ A ∧ x 6∈ B
︸ ︷︷ ︸

x∈ArB

x ∈ A ∧ x ∈ Bc

︸ ︷︷ ︸

x∈A∩Bc

1 T T F F F

2 T F T T T

3 F T F F F

4 F F T F F

Since the last two columns of the truth table are identical, ArB = A ∩Bc .

Remark. The universe can be presented as a disjoint union

U = (A ∩B) ∪ (ArB) ∪ (B rA) ∪ (A ∪B)c
12 3

4

What does this formula remind you? Is it related to disjunctive normal form?



MAT 250

Lecture 4

Sets
How to prove set-theoretic identities

20 / 22

Alternative 3 (by truth table)

x ∈ A x ∈ B x 6∈ B x ∈ A ∧ x 6∈ B
︸ ︷︷ ︸

x∈ArB

x ∈ A ∧ x ∈ Bc

︸ ︷︷ ︸

x∈A∩Bc

1 T T F F F

2 T F T T T

3 F T F F F

4 F F T F F

Since the last two columns of the truth table are identical, ArB = A ∩Bc .

Remark. The universe can be presented as a disjoint union

U = (A ∩B) ∪ (ArB) ∪ (B rA) ∪ (A ∪B)c
12 3

4

What does this formula remind you? Is it related to disjunctive normal form?



MAT 250

Lecture 4

Sets
How to prove set-theoretic identities

20 / 22

Alternative 3 (by truth table)

x ∈ A x ∈ B x 6∈ B x ∈ A ∧ x 6∈ B
︸ ︷︷ ︸

x∈ArB

x ∈ A ∧ x ∈ Bc

︸ ︷︷ ︸

x∈A∩Bc

1 T T F F F

2 T F T T T

3 F T F F F

4 F F T F F

Since the last two columns of the truth table are identical,

ArB = A ∩Bc .

Remark. The universe can be presented as a disjoint union

U = (A ∩B) ∪ (ArB) ∪ (B rA) ∪ (A ∪B)c
12 3

4

What does this formula remind you? Is it related to disjunctive normal form?



MAT 250

Lecture 4

Sets
How to prove set-theoretic identities

20 / 22

Alternative 3 (by truth table)

x ∈ A x ∈ B x 6∈ B x ∈ A ∧ x 6∈ B
︸ ︷︷ ︸

x∈ArB

x ∈ A ∧ x ∈ Bc

︸ ︷︷ ︸

x∈A∩Bc

1 T T F F F

2 T F T T T

3 F T F F F

4 F F T F F

Since the last two columns of the truth table are identical, ArB = A ∩Bc .

Remark. The universe can be presented as a disjoint union

U = (A ∩B) ∪ (ArB) ∪ (B rA) ∪ (A ∪B)c
12 3

4

What does this formula remind you? Is it related to disjunctive normal form?



MAT 250

Lecture 4

Sets
How to prove set-theoretic identities

20 / 22

Alternative 3 (by truth table)

x ∈ A x ∈ B x 6∈ B x ∈ A ∧ x 6∈ B
︸ ︷︷ ︸

x∈ArB

x ∈ A ∧ x ∈ Bc

︸ ︷︷ ︸

x∈A∩Bc

1 T T F F F

2 T F T T T

3 F T F F F

4 F F T F F

Since the last two columns of the truth table are identical, ArB = A ∩Bc .

Remark.

The universe can be presented as a disjoint union

U = (A ∩B) ∪ (ArB) ∪ (B rA) ∪ (A ∪B)c
12 3

4

What does this formula remind you? Is it related to disjunctive normal form?



MAT 250

Lecture 4

Sets
How to prove set-theoretic identities

20 / 22

Alternative 3 (by truth table)

x ∈ A x ∈ B x 6∈ B x ∈ A ∧ x 6∈ B
︸ ︷︷ ︸

x∈ArB

x ∈ A ∧ x ∈ Bc

︸ ︷︷ ︸

x∈A∩Bc

1 T T F F F

2 T F T T T

3 F T F F F

4 F F T F F

Since the last two columns of the truth table are identical, ArB = A ∩Bc .

Remark. The universe can be presented as a disjoint union

U = (A ∩B) ∪ (ArB) ∪ (B rA) ∪ (A ∪B)c
12 3

4

What does this formula remind you? Is it related to disjunctive normal form?



MAT 250

Lecture 4

Sets
How to prove set-theoretic identities

20 / 22

Alternative 3 (by truth table)

x ∈ A x ∈ B x 6∈ B x ∈ A ∧ x 6∈ B
︸ ︷︷ ︸

x∈ArB

x ∈ A ∧ x ∈ Bc

︸ ︷︷ ︸

x∈A∩Bc

1 T T F F F

2 T F T T T

3 F T F F F

4 F F T F F

Since the last two columns of the truth table are identical, ArB = A ∩Bc .

Remark. The universe can be presented as a disjoint union

U = (A ∩B) ∪ (ArB) ∪ (B rA) ∪ (A ∪B)c
12 3

4

What does this formula remind you? Is it related to disjunctive normal form?



MAT 250

Lecture 4

Sets
How to prove set-theoretic identities

20 / 22

Alternative 3 (by truth table)

x ∈ A x ∈ B x 6∈ B x ∈ A ∧ x 6∈ B
︸ ︷︷ ︸

x∈ArB

x ∈ A ∧ x ∈ Bc

︸ ︷︷ ︸

x∈A∩Bc

1 T T F F F

2 T F T T T

3 F T F F F

4 F F T F F

Since the last two columns of the truth table are identical, ArB = A ∩Bc .

Remark. The universe can be presented as a disjoint union

U = (A ∩B) ∪ (ArB) ∪ (B rA) ∪ (A ∪B)c
12 3

4

What does this formula remind you?

Is it related to disjunctive normal form?



MAT 250

Lecture 4

Sets
How to prove set-theoretic identities

20 / 22

Alternative 3 (by truth table)

x ∈ A x ∈ B x 6∈ B x ∈ A ∧ x 6∈ B
︸ ︷︷ ︸

x∈ArB

x ∈ A ∧ x ∈ Bc

︸ ︷︷ ︸

x∈A∩Bc

1 T T F F F

2 T F T T T

3 F T F F F

4 F F T F F

Since the last two columns of the truth table are identical, ArB = A ∩Bc .

Remark. The universe can be presented as a disjoint union

U = (A ∩B) ∪ (ArB) ∪ (B rA) ∪ (A ∪B)c
12 3

4

What does this formula remind you? Is it related to disjunctive normal form?



MAT 250

Lecture 4

Sets
How to prove set-theoretic identities

21 / 22

Example 3. Prove that A ⊂ B ⇐⇒ ArB = ∅ for any sets A, B .

Proof. Let A ⊂ B . Then
∀x ∈ A x ∈ A =⇒ x ∈ B =⇒ x 6∈ Bc .
So any x in A doesn’t belong to Bc . Therefore, A ∩Bc = ∅ .

But A ∩Bc = ArB ,

hence ArB = ∅

We have proven that A ⊂ B =⇒ ArB = ∅ (∗)

Prove now the opposite implication.

Let ArB = ∅ . Then A ∩Bc = ∅ . Therefore,

∀x ∈ A x ∈ A =⇒ x 6∈ Bc =⇒ x ∈ B . By this, A ⊂ B .

Therefore, ArB = ∅ =⇒ A ⊂ B (∗∗)

Combining (∗) and (∗∗), we get A ⊂ B ⇐⇒ ArB = ∅ . �
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Despite obvious similarity between the symbols ∈ and ⊂ ,
the concepts are quite different.

: (a ∈ B) ∧ (B ∈ C) ; a ∈ C

while inclusion is: (A ⊂ B) ∧ (B ⊂ C) =⇒ A ⊂ C .
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