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Definition. A (binary) relation R on a set X is a subset of X ×X :

R ⊂X ×X ⇐⇒ R ∈ P(X ×X) .

A binary relation corresponds
to a statement about an ordered pair of arguments taken from X .

More generally:
a statement about an ordered n -tuple of arguments is called an n-ary relation.

Furthermore, the arguments may belong to different sets.

The notion of binary relation generalizes the notion of mapping:
any map f ∶X → Y can be considered as a relation y = f(x)

between elements of X and Y .

Example. Orthogonality of a line and a plane in R
3 .

We will deal mostly with binary relations on a single set.
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Let a set X have 3 elements.

How many relations are there on X ?
Answer: 512 . How come?

The number of relations of a finite set X

is equal to the number of elements in P(X ×X) .
If X has n elements, then X ×X has n2 elements,

and P(X ×X) has 2
n2

elements.

So the number of relations on a set of 3 elements is 2
3
2

= 29 = 512 .

P(X ×X) is a huge set!
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Notation. Let R be a relation on X , and x, y ∈X .

If (x, y) ∈ R then we say that “x is related to y ” and write xRy .

Example 1. Let X = R . The inequality ≤ is a relation R≤ on R :
(x, y) ∈ R≤ ⇐⇒ x ≤ y .

Is it true that 1 is related to 2 ? That is, (1, 2) ∈ R≤ ? Yes, since
(1, 2) ∈ R≤ ⇐⇒ 1 ≤ 2 , which is true.

Is it true that 2 is related to 1 ? That is, (2, 1) ∈ R≤ ? No, since
(2, 1) ∈ R≤ ⇐⇒ 2 ≤ 1 , which is false.

The relation R≤ is a subset of the plane: R≤ = {(x, y) ∈ R
2 ∣ x ≤ y} ⊂ R2 ,

so we may draw the graph of R≤ .

x

y

R≤ ∀x, y ∈ R (x, y) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x≤y

or (y, x) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y≤x

.



MAT 250
Lecture 7
Definitions in mathematics

Relation “≤”

4 / 36

Notation.

Let R be a relation on X , and x, y ∈X .

If (x, y) ∈ R then we say that “x is related to y ” and write xRy .

Example 1. Let X = R . The inequality ≤ is a relation R≤ on R :
(x, y) ∈ R≤ ⇐⇒ x ≤ y .

Is it true that 1 is related to 2 ? That is, (1, 2) ∈ R≤ ? Yes, since
(1, 2) ∈ R≤ ⇐⇒ 1 ≤ 2 , which is true.

Is it true that 2 is related to 1 ? That is, (2, 1) ∈ R≤ ? No, since
(2, 1) ∈ R≤ ⇐⇒ 2 ≤ 1 , which is false.

The relation R≤ is a subset of the plane: R≤ = {(x, y) ∈ R
2 ∣ x ≤ y} ⊂ R2 ,

so we may draw the graph of R≤ .

x

y

R≤ ∀x, y ∈ R (x, y) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x≤y

or (y, x) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y≤x

.



MAT 250
Lecture 7
Definitions in mathematics

Relation “≤”

4 / 36

Notation. Let R be a relation on X ,

and x, y ∈X .

If (x, y) ∈ R then we say that “x is related to y ” and write xRy .

Example 1. Let X = R . The inequality ≤ is a relation R≤ on R :
(x, y) ∈ R≤ ⇐⇒ x ≤ y .

Is it true that 1 is related to 2 ? That is, (1, 2) ∈ R≤ ? Yes, since
(1, 2) ∈ R≤ ⇐⇒ 1 ≤ 2 , which is true.

Is it true that 2 is related to 1 ? That is, (2, 1) ∈ R≤ ? No, since
(2, 1) ∈ R≤ ⇐⇒ 2 ≤ 1 , which is false.

The relation R≤ is a subset of the plane: R≤ = {(x, y) ∈ R
2 ∣ x ≤ y} ⊂ R2 ,

so we may draw the graph of R≤ .

x

y

R≤ ∀x, y ∈ R (x, y) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x≤y

or (y, x) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y≤x

.



MAT 250
Lecture 7
Definitions in mathematics

Relation “≤”

4 / 36

Notation. Let R be a relation on X , and x, y ∈X .

If (x, y) ∈ R then we say that “x is related to y ” and write xRy .

Example 1. Let X = R . The inequality ≤ is a relation R≤ on R :
(x, y) ∈ R≤ ⇐⇒ x ≤ y .

Is it true that 1 is related to 2 ? That is, (1, 2) ∈ R≤ ? Yes, since
(1, 2) ∈ R≤ ⇐⇒ 1 ≤ 2 , which is true.

Is it true that 2 is related to 1 ? That is, (2, 1) ∈ R≤ ? No, since
(2, 1) ∈ R≤ ⇐⇒ 2 ≤ 1 , which is false.

The relation R≤ is a subset of the plane: R≤ = {(x, y) ∈ R
2 ∣ x ≤ y} ⊂ R2 ,

so we may draw the graph of R≤ .

x

y

R≤ ∀x, y ∈ R (x, y) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x≤y

or (y, x) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y≤x

.



MAT 250
Lecture 7
Definitions in mathematics

Relation “≤”

4 / 36

Notation. Let R be a relation on X , and x, y ∈X .

If (x, y) ∈ R

then we say that “x is related to y ” and write xRy .

Example 1. Let X = R . The inequality ≤ is a relation R≤ on R :
(x, y) ∈ R≤ ⇐⇒ x ≤ y .

Is it true that 1 is related to 2 ? That is, (1, 2) ∈ R≤ ? Yes, since
(1, 2) ∈ R≤ ⇐⇒ 1 ≤ 2 , which is true.

Is it true that 2 is related to 1 ? That is, (2, 1) ∈ R≤ ? No, since
(2, 1) ∈ R≤ ⇐⇒ 2 ≤ 1 , which is false.

The relation R≤ is a subset of the plane: R≤ = {(x, y) ∈ R
2 ∣ x ≤ y} ⊂ R2 ,

so we may draw the graph of R≤ .

x

y

R≤ ∀x, y ∈ R (x, y) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x≤y

or (y, x) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y≤x

.



MAT 250
Lecture 7
Definitions in mathematics

Relation “≤”

4 / 36

Notation. Let R be a relation on X , and x, y ∈X .

If (x, y) ∈ R then we say that “x is related to y ”

and write xRy .

Example 1. Let X = R . The inequality ≤ is a relation R≤ on R :
(x, y) ∈ R≤ ⇐⇒ x ≤ y .

Is it true that 1 is related to 2 ? That is, (1, 2) ∈ R≤ ? Yes, since
(1, 2) ∈ R≤ ⇐⇒ 1 ≤ 2 , which is true.

Is it true that 2 is related to 1 ? That is, (2, 1) ∈ R≤ ? No, since
(2, 1) ∈ R≤ ⇐⇒ 2 ≤ 1 , which is false.

The relation R≤ is a subset of the plane: R≤ = {(x, y) ∈ R
2 ∣ x ≤ y} ⊂ R2 ,

so we may draw the graph of R≤ .

x

y

R≤ ∀x, y ∈ R (x, y) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x≤y

or (y, x) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y≤x

.



MAT 250
Lecture 7
Definitions in mathematics

Relation “≤”

4 / 36

Notation. Let R be a relation on X , and x, y ∈X .

If (x, y) ∈ R then we say that “x is related to y ” and write xRy .

Example 1.

Let X = R . The inequality ≤ is a relation R≤ on R :
(x, y) ∈ R≤ ⇐⇒ x ≤ y .

Is it true that 1 is related to 2 ? That is, (1, 2) ∈ R≤ ? Yes, since
(1, 2) ∈ R≤ ⇐⇒ 1 ≤ 2 , which is true.

Is it true that 2 is related to 1 ? That is, (2, 1) ∈ R≤ ? No, since
(2, 1) ∈ R≤ ⇐⇒ 2 ≤ 1 , which is false.

The relation R≤ is a subset of the plane: R≤ = {(x, y) ∈ R
2 ∣ x ≤ y} ⊂ R2 ,

so we may draw the graph of R≤ .

x

y

R≤ ∀x, y ∈ R (x, y) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x≤y

or (y, x) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y≤x

.



MAT 250
Lecture 7
Definitions in mathematics

Relation “≤”

4 / 36

Notation. Let R be a relation on X , and x, y ∈X .

If (x, y) ∈ R then we say that “x is related to y ” and write xRy .

Example 1. Let X = R .

The inequality ≤ is a relation R≤ on R :
(x, y) ∈ R≤ ⇐⇒ x ≤ y .

Is it true that 1 is related to 2 ? That is, (1, 2) ∈ R≤ ? Yes, since
(1, 2) ∈ R≤ ⇐⇒ 1 ≤ 2 , which is true.

Is it true that 2 is related to 1 ? That is, (2, 1) ∈ R≤ ? No, since
(2, 1) ∈ R≤ ⇐⇒ 2 ≤ 1 , which is false.

The relation R≤ is a subset of the plane: R≤ = {(x, y) ∈ R
2 ∣ x ≤ y} ⊂ R2 ,

so we may draw the graph of R≤ .

x

y

R≤ ∀x, y ∈ R (x, y) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x≤y

or (y, x) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y≤x

.



MAT 250
Lecture 7
Definitions in mathematics

Relation “≤”

4 / 36

Notation. Let R be a relation on X , and x, y ∈X .

If (x, y) ∈ R then we say that “x is related to y ” and write xRy .

Example 1. Let X = R . The inequality ≤

is a relation R≤ on R :
(x, y) ∈ R≤ ⇐⇒ x ≤ y .

Is it true that 1 is related to 2 ? That is, (1, 2) ∈ R≤ ? Yes, since
(1, 2) ∈ R≤ ⇐⇒ 1 ≤ 2 , which is true.

Is it true that 2 is related to 1 ? That is, (2, 1) ∈ R≤ ? No, since
(2, 1) ∈ R≤ ⇐⇒ 2 ≤ 1 , which is false.

The relation R≤ is a subset of the plane: R≤ = {(x, y) ∈ R
2 ∣ x ≤ y} ⊂ R2 ,

so we may draw the graph of R≤ .

x

y

R≤ ∀x, y ∈ R (x, y) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x≤y

or (y, x) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y≤x

.



MAT 250
Lecture 7
Definitions in mathematics

Relation “≤”

4 / 36

Notation. Let R be a relation on X , and x, y ∈X .

If (x, y) ∈ R then we say that “x is related to y ” and write xRy .

Example 1. Let X = R . The inequality ≤ is a relation R≤ on R :

(x, y) ∈ R≤ ⇐⇒ x ≤ y .

Is it true that 1 is related to 2 ? That is, (1, 2) ∈ R≤ ? Yes, since
(1, 2) ∈ R≤ ⇐⇒ 1 ≤ 2 , which is true.

Is it true that 2 is related to 1 ? That is, (2, 1) ∈ R≤ ? No, since
(2, 1) ∈ R≤ ⇐⇒ 2 ≤ 1 , which is false.

The relation R≤ is a subset of the plane: R≤ = {(x, y) ∈ R
2 ∣ x ≤ y} ⊂ R2 ,

so we may draw the graph of R≤ .

x

y

R≤ ∀x, y ∈ R (x, y) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x≤y

or (y, x) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y≤x

.



MAT 250
Lecture 7
Definitions in mathematics

Relation “≤”

4 / 36

Notation. Let R be a relation on X , and x, y ∈X .

If (x, y) ∈ R then we say that “x is related to y ” and write xRy .

Example 1. Let X = R . The inequality ≤ is a relation R≤ on R :
(x, y) ∈ R≤ ⇐⇒ x ≤ y .

Is it true that 1 is related to 2 ? That is, (1, 2) ∈ R≤ ? Yes, since
(1, 2) ∈ R≤ ⇐⇒ 1 ≤ 2 , which is true.

Is it true that 2 is related to 1 ? That is, (2, 1) ∈ R≤ ? No, since
(2, 1) ∈ R≤ ⇐⇒ 2 ≤ 1 , which is false.

The relation R≤ is a subset of the plane: R≤ = {(x, y) ∈ R
2 ∣ x ≤ y} ⊂ R2 ,

so we may draw the graph of R≤ .

x

y

R≤ ∀x, y ∈ R (x, y) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x≤y

or (y, x) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y≤x

.



MAT 250
Lecture 7
Definitions in mathematics

Relation “≤”

4 / 36

Notation. Let R be a relation on X , and x, y ∈X .

If (x, y) ∈ R then we say that “x is related to y ” and write xRy .

Example 1. Let X = R . The inequality ≤ is a relation R≤ on R :
(x, y) ∈ R≤ ⇐⇒ x ≤ y .

Is it true that 1 is related to 2 ?

That is, (1, 2) ∈ R≤ ? Yes, since
(1, 2) ∈ R≤ ⇐⇒ 1 ≤ 2 , which is true.

Is it true that 2 is related to 1 ? That is, (2, 1) ∈ R≤ ? No, since
(2, 1) ∈ R≤ ⇐⇒ 2 ≤ 1 , which is false.

The relation R≤ is a subset of the plane: R≤ = {(x, y) ∈ R
2 ∣ x ≤ y} ⊂ R2 ,

so we may draw the graph of R≤ .

x

y

R≤ ∀x, y ∈ R (x, y) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x≤y

or (y, x) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y≤x

.



MAT 250
Lecture 7
Definitions in mathematics

Relation “≤”

4 / 36

Notation. Let R be a relation on X , and x, y ∈X .

If (x, y) ∈ R then we say that “x is related to y ” and write xRy .

Example 1. Let X = R . The inequality ≤ is a relation R≤ on R :
(x, y) ∈ R≤ ⇐⇒ x ≤ y .

Is it true that 1 is related to 2 ? That is, (1, 2) ∈ R≤ ?

Yes, since
(1, 2) ∈ R≤ ⇐⇒ 1 ≤ 2 , which is true.

Is it true that 2 is related to 1 ? That is, (2, 1) ∈ R≤ ? No, since
(2, 1) ∈ R≤ ⇐⇒ 2 ≤ 1 , which is false.

The relation R≤ is a subset of the plane: R≤ = {(x, y) ∈ R
2 ∣ x ≤ y} ⊂ R2 ,

so we may draw the graph of R≤ .

x

y

R≤ ∀x, y ∈ R (x, y) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x≤y

or (y, x) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y≤x

.



MAT 250
Lecture 7
Definitions in mathematics

Relation “≤”

4 / 36

Notation. Let R be a relation on X , and x, y ∈X .

If (x, y) ∈ R then we say that “x is related to y ” and write xRy .

Example 1. Let X = R . The inequality ≤ is a relation R≤ on R :
(x, y) ∈ R≤ ⇐⇒ x ≤ y .

Is it true that 1 is related to 2 ? That is, (1, 2) ∈ R≤ ? Yes, since

(1, 2) ∈ R≤ ⇐⇒ 1 ≤ 2 , which is true.

Is it true that 2 is related to 1 ? That is, (2, 1) ∈ R≤ ? No, since
(2, 1) ∈ R≤ ⇐⇒ 2 ≤ 1 , which is false.

The relation R≤ is a subset of the plane: R≤ = {(x, y) ∈ R
2 ∣ x ≤ y} ⊂ R2 ,

so we may draw the graph of R≤ .

x

y

R≤ ∀x, y ∈ R (x, y) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x≤y

or (y, x) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y≤x

.



MAT 250
Lecture 7
Definitions in mathematics

Relation “≤”

4 / 36

Notation. Let R be a relation on X , and x, y ∈X .

If (x, y) ∈ R then we say that “x is related to y ” and write xRy .

Example 1. Let X = R . The inequality ≤ is a relation R≤ on R :
(x, y) ∈ R≤ ⇐⇒ x ≤ y .

Is it true that 1 is related to 2 ? That is, (1, 2) ∈ R≤ ? Yes, since
(1, 2) ∈ R≤

⇐⇒ 1 ≤ 2 , which is true.

Is it true that 2 is related to 1 ? That is, (2, 1) ∈ R≤ ? No, since
(2, 1) ∈ R≤ ⇐⇒ 2 ≤ 1 , which is false.

The relation R≤ is a subset of the plane: R≤ = {(x, y) ∈ R
2 ∣ x ≤ y} ⊂ R2 ,

so we may draw the graph of R≤ .

x

y

R≤ ∀x, y ∈ R (x, y) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x≤y

or (y, x) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y≤x

.



MAT 250
Lecture 7
Definitions in mathematics

Relation “≤”

4 / 36

Notation. Let R be a relation on X , and x, y ∈X .

If (x, y) ∈ R then we say that “x is related to y ” and write xRy .

Example 1. Let X = R . The inequality ≤ is a relation R≤ on R :
(x, y) ∈ R≤ ⇐⇒ x ≤ y .

Is it true that 1 is related to 2 ? That is, (1, 2) ∈ R≤ ? Yes, since
(1, 2) ∈ R≤ ⇐⇒ 1 ≤ 2 ,

which is true.

Is it true that 2 is related to 1 ? That is, (2, 1) ∈ R≤ ? No, since
(2, 1) ∈ R≤ ⇐⇒ 2 ≤ 1 , which is false.

The relation R≤ is a subset of the plane: R≤ = {(x, y) ∈ R
2 ∣ x ≤ y} ⊂ R2 ,

so we may draw the graph of R≤ .

x

y

R≤ ∀x, y ∈ R (x, y) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x≤y

or (y, x) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y≤x

.



MAT 250
Lecture 7
Definitions in mathematics

Relation “≤”

4 / 36

Notation. Let R be a relation on X , and x, y ∈X .

If (x, y) ∈ R then we say that “x is related to y ” and write xRy .

Example 1. Let X = R . The inequality ≤ is a relation R≤ on R :
(x, y) ∈ R≤ ⇐⇒ x ≤ y .

Is it true that 1 is related to 2 ? That is, (1, 2) ∈ R≤ ? Yes, since
(1, 2) ∈ R≤ ⇐⇒ 1 ≤ 2 , which is true.

Is it true that 2 is related to 1 ? That is, (2, 1) ∈ R≤ ? No, since
(2, 1) ∈ R≤ ⇐⇒ 2 ≤ 1 , which is false.

The relation R≤ is a subset of the plane: R≤ = {(x, y) ∈ R
2 ∣ x ≤ y} ⊂ R2 ,

so we may draw the graph of R≤ .

x

y

R≤ ∀x, y ∈ R (x, y) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x≤y

or (y, x) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y≤x

.



MAT 250
Lecture 7
Definitions in mathematics

Relation “≤”

4 / 36

Notation. Let R be a relation on X , and x, y ∈X .

If (x, y) ∈ R then we say that “x is related to y ” and write xRy .

Example 1. Let X = R . The inequality ≤ is a relation R≤ on R :
(x, y) ∈ R≤ ⇐⇒ x ≤ y .

Is it true that 1 is related to 2 ? That is, (1, 2) ∈ R≤ ? Yes, since
(1, 2) ∈ R≤ ⇐⇒ 1 ≤ 2 , which is true.

Is it true that 2 is related to 1 ?

That is, (2, 1) ∈ R≤ ? No, since
(2, 1) ∈ R≤ ⇐⇒ 2 ≤ 1 , which is false.

The relation R≤ is a subset of the plane: R≤ = {(x, y) ∈ R
2 ∣ x ≤ y} ⊂ R2 ,

so we may draw the graph of R≤ .

x

y

R≤ ∀x, y ∈ R (x, y) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x≤y

or (y, x) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y≤x

.



MAT 250
Lecture 7
Definitions in mathematics

Relation “≤”

4 / 36

Notation. Let R be a relation on X , and x, y ∈X .

If (x, y) ∈ R then we say that “x is related to y ” and write xRy .

Example 1. Let X = R . The inequality ≤ is a relation R≤ on R :
(x, y) ∈ R≤ ⇐⇒ x ≤ y .

Is it true that 1 is related to 2 ? That is, (1, 2) ∈ R≤ ? Yes, since
(1, 2) ∈ R≤ ⇐⇒ 1 ≤ 2 , which is true.

Is it true that 2 is related to 1 ? That is, (2, 1) ∈ R≤ ?

No, since
(2, 1) ∈ R≤ ⇐⇒ 2 ≤ 1 , which is false.

The relation R≤ is a subset of the plane: R≤ = {(x, y) ∈ R
2 ∣ x ≤ y} ⊂ R2 ,

so we may draw the graph of R≤ .

x

y

R≤ ∀x, y ∈ R (x, y) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x≤y

or (y, x) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y≤x

.



MAT 250
Lecture 7
Definitions in mathematics

Relation “≤”

4 / 36

Notation. Let R be a relation on X , and x, y ∈X .

If (x, y) ∈ R then we say that “x is related to y ” and write xRy .

Example 1. Let X = R . The inequality ≤ is a relation R≤ on R :
(x, y) ∈ R≤ ⇐⇒ x ≤ y .

Is it true that 1 is related to 2 ? That is, (1, 2) ∈ R≤ ? Yes, since
(1, 2) ∈ R≤ ⇐⇒ 1 ≤ 2 , which is true.

Is it true that 2 is related to 1 ? That is, (2, 1) ∈ R≤ ? No, since

(2, 1) ∈ R≤ ⇐⇒ 2 ≤ 1 , which is false.

The relation R≤ is a subset of the plane: R≤ = {(x, y) ∈ R
2 ∣ x ≤ y} ⊂ R2 ,

so we may draw the graph of R≤ .

x

y

R≤ ∀x, y ∈ R (x, y) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x≤y

or (y, x) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y≤x

.



MAT 250
Lecture 7
Definitions in mathematics

Relation “≤”

4 / 36

Notation. Let R be a relation on X , and x, y ∈X .

If (x, y) ∈ R then we say that “x is related to y ” and write xRy .

Example 1. Let X = R . The inequality ≤ is a relation R≤ on R :
(x, y) ∈ R≤ ⇐⇒ x ≤ y .

Is it true that 1 is related to 2 ? That is, (1, 2) ∈ R≤ ? Yes, since
(1, 2) ∈ R≤ ⇐⇒ 1 ≤ 2 , which is true.

Is it true that 2 is related to 1 ? That is, (2, 1) ∈ R≤ ? No, since
(2, 1) ∈ R≤

⇐⇒ 2 ≤ 1 , which is false.

The relation R≤ is a subset of the plane: R≤ = {(x, y) ∈ R
2 ∣ x ≤ y} ⊂ R2 ,

so we may draw the graph of R≤ .

x

y

R≤ ∀x, y ∈ R (x, y) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x≤y

or (y, x) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y≤x

.



MAT 250
Lecture 7
Definitions in mathematics

Relation “≤”

4 / 36

Notation. Let R be a relation on X , and x, y ∈X .

If (x, y) ∈ R then we say that “x is related to y ” and write xRy .

Example 1. Let X = R . The inequality ≤ is a relation R≤ on R :
(x, y) ∈ R≤ ⇐⇒ x ≤ y .

Is it true that 1 is related to 2 ? That is, (1, 2) ∈ R≤ ? Yes, since
(1, 2) ∈ R≤ ⇐⇒ 1 ≤ 2 , which is true.

Is it true that 2 is related to 1 ? That is, (2, 1) ∈ R≤ ? No, since
(2, 1) ∈ R≤ ⇐⇒ 2 ≤ 1 ,

which is false.

The relation R≤ is a subset of the plane: R≤ = {(x, y) ∈ R
2 ∣ x ≤ y} ⊂ R2 ,

so we may draw the graph of R≤ .

x

y

R≤ ∀x, y ∈ R (x, y) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x≤y

or (y, x) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y≤x

.



MAT 250
Lecture 7
Definitions in mathematics

Relation “≤”

4 / 36

Notation. Let R be a relation on X , and x, y ∈X .

If (x, y) ∈ R then we say that “x is related to y ” and write xRy .

Example 1. Let X = R . The inequality ≤ is a relation R≤ on R :
(x, y) ∈ R≤ ⇐⇒ x ≤ y .

Is it true that 1 is related to 2 ? That is, (1, 2) ∈ R≤ ? Yes, since
(1, 2) ∈ R≤ ⇐⇒ 1 ≤ 2 , which is true.

Is it true that 2 is related to 1 ? That is, (2, 1) ∈ R≤ ? No, since
(2, 1) ∈ R≤ ⇐⇒ 2 ≤ 1 , which is false.

The relation R≤ is a subset of the plane: R≤ = {(x, y) ∈ R
2 ∣ x ≤ y} ⊂ R2 ,

so we may draw the graph of R≤ .

x

y

R≤ ∀x, y ∈ R (x, y) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x≤y

or (y, x) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y≤x

.



MAT 250
Lecture 7
Definitions in mathematics

Relation “≤”

4 / 36

Notation. Let R be a relation on X , and x, y ∈X .

If (x, y) ∈ R then we say that “x is related to y ” and write xRy .

Example 1. Let X = R . The inequality ≤ is a relation R≤ on R :
(x, y) ∈ R≤ ⇐⇒ x ≤ y .

Is it true that 1 is related to 2 ? That is, (1, 2) ∈ R≤ ? Yes, since
(1, 2) ∈ R≤ ⇐⇒ 1 ≤ 2 , which is true.

Is it true that 2 is related to 1 ? That is, (2, 1) ∈ R≤ ? No, since
(2, 1) ∈ R≤ ⇐⇒ 2 ≤ 1 , which is false.

The relation R≤ is a subset of the plane:

R≤ = {(x, y) ∈ R
2 ∣ x ≤ y} ⊂ R2 ,

so we may draw the graph of R≤ .

x

y

R≤ ∀x, y ∈ R (x, y) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x≤y

or (y, x) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y≤x

.



MAT 250
Lecture 7
Definitions in mathematics

Relation “≤”

4 / 36

Notation. Let R be a relation on X , and x, y ∈X .

If (x, y) ∈ R then we say that “x is related to y ” and write xRy .

Example 1. Let X = R . The inequality ≤ is a relation R≤ on R :
(x, y) ∈ R≤ ⇐⇒ x ≤ y .

Is it true that 1 is related to 2 ? That is, (1, 2) ∈ R≤ ? Yes, since
(1, 2) ∈ R≤ ⇐⇒ 1 ≤ 2 , which is true.

Is it true that 2 is related to 1 ? That is, (2, 1) ∈ R≤ ? No, since
(2, 1) ∈ R≤ ⇐⇒ 2 ≤ 1 , which is false.

The relation R≤ is a subset of the plane: R≤ = {(x, y) ∈ R
2 ∣ x ≤ y}

⊂ R2 ,
so we may draw the graph of R≤ .

x

y

R≤ ∀x, y ∈ R (x, y) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x≤y

or (y, x) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y≤x

.



MAT 250
Lecture 7
Definitions in mathematics

Relation “≤”

4 / 36

Notation. Let R be a relation on X , and x, y ∈X .

If (x, y) ∈ R then we say that “x is related to y ” and write xRy .

Example 1. Let X = R . The inequality ≤ is a relation R≤ on R :
(x, y) ∈ R≤ ⇐⇒ x ≤ y .

Is it true that 1 is related to 2 ? That is, (1, 2) ∈ R≤ ? Yes, since
(1, 2) ∈ R≤ ⇐⇒ 1 ≤ 2 , which is true.

Is it true that 2 is related to 1 ? That is, (2, 1) ∈ R≤ ? No, since
(2, 1) ∈ R≤ ⇐⇒ 2 ≤ 1 , which is false.

The relation R≤ is a subset of the plane: R≤ = {(x, y) ∈ R
2 ∣ x ≤ y} ⊂ R2 ,

so we may draw the graph of R≤ .

x

y

R≤ ∀x, y ∈ R (x, y) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x≤y

or (y, x) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y≤x

.



MAT 250
Lecture 7
Definitions in mathematics

Relation “≤”

4 / 36

Notation. Let R be a relation on X , and x, y ∈X .

If (x, y) ∈ R then we say that “x is related to y ” and write xRy .

Example 1. Let X = R . The inequality ≤ is a relation R≤ on R :
(x, y) ∈ R≤ ⇐⇒ x ≤ y .

Is it true that 1 is related to 2 ? That is, (1, 2) ∈ R≤ ? Yes, since
(1, 2) ∈ R≤ ⇐⇒ 1 ≤ 2 , which is true.

Is it true that 2 is related to 1 ? That is, (2, 1) ∈ R≤ ? No, since
(2, 1) ∈ R≤ ⇐⇒ 2 ≤ 1 , which is false.

The relation R≤ is a subset of the plane: R≤ = {(x, y) ∈ R
2 ∣ x ≤ y} ⊂ R2 ,

so we may draw the graph of R≤ .

x

y

R≤

∀x, y ∈ R (x, y) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x≤y

or (y, x) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y≤x

.



MAT 250
Lecture 7
Definitions in mathematics

Relation “≤”

4 / 36

Notation. Let R be a relation on X , and x, y ∈X .

If (x, y) ∈ R then we say that “x is related to y ” and write xRy .

Example 1. Let X = R . The inequality ≤ is a relation R≤ on R :
(x, y) ∈ R≤ ⇐⇒ x ≤ y .

Is it true that 1 is related to 2 ? That is, (1, 2) ∈ R≤ ? Yes, since
(1, 2) ∈ R≤ ⇐⇒ 1 ≤ 2 , which is true.

Is it true that 2 is related to 1 ? That is, (2, 1) ∈ R≤ ? No, since
(2, 1) ∈ R≤ ⇐⇒ 2 ≤ 1 , which is false.

The relation R≤ is a subset of the plane: R≤ = {(x, y) ∈ R
2 ∣ x ≤ y} ⊂ R2 ,

so we may draw the graph of R≤ .

x

y

R≤ ∀x, y ∈ R (x, y) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x≤y

or (y, x) ∈ R≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y≤x

.



MAT 250
Lecture 7
Definitions in mathematics

Relation of inclusion

5 / 36

Example 2. Let X be a set, and P(X) be its power set.
Inclusion ⊂ is a relation R⊂ on P(X) :

∀A,B ∈ P(X) (A,B) ∈ R⊂ ⇐⇒ A ⊂ B .

X

BA

(A,B) ∈ R⊂ since

A ⊂ B

X

BA

(A,B) /∈ R⊂ since

A /⊂ B

Is it true that ∀A,B ∈ P(X) (A,B) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A⊂B

or (B,A) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B⊂A

? No!



MAT 250
Lecture 7
Definitions in mathematics

Relation of inclusion

5 / 36

Example 2.

Let X be a set, and P(X) be its power set.
Inclusion ⊂ is a relation R⊂ on P(X) :

∀A,B ∈ P(X) (A,B) ∈ R⊂ ⇐⇒ A ⊂ B .

X

BA

(A,B) ∈ R⊂ since

A ⊂ B

X

BA

(A,B) /∈ R⊂ since

A /⊂ B

Is it true that ∀A,B ∈ P(X) (A,B) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A⊂B

or (B,A) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B⊂A

? No!



MAT 250
Lecture 7
Definitions in mathematics

Relation of inclusion

5 / 36

Example 2. Let X be a set,

and P(X) be its power set.
Inclusion ⊂ is a relation R⊂ on P(X) :

∀A,B ∈ P(X) (A,B) ∈ R⊂ ⇐⇒ A ⊂ B .

X

BA

(A,B) ∈ R⊂ since

A ⊂ B

X

BA

(A,B) /∈ R⊂ since

A /⊂ B

Is it true that ∀A,B ∈ P(X) (A,B) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A⊂B

or (B,A) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B⊂A

? No!



MAT 250
Lecture 7
Definitions in mathematics

Relation of inclusion

5 / 36

Example 2. Let X be a set, and P(X) be its power set.

Inclusion ⊂ is a relation R⊂ on P(X) :
∀A,B ∈ P(X) (A,B) ∈ R⊂ ⇐⇒ A ⊂ B .

X

BA

(A,B) ∈ R⊂ since

A ⊂ B

X

BA

(A,B) /∈ R⊂ since

A /⊂ B

Is it true that ∀A,B ∈ P(X) (A,B) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A⊂B

or (B,A) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B⊂A

? No!



MAT 250
Lecture 7
Definitions in mathematics

Relation of inclusion

5 / 36

Example 2. Let X be a set, and P(X) be its power set.
Inclusion ⊂

is a relation R⊂ on P(X) :
∀A,B ∈ P(X) (A,B) ∈ R⊂ ⇐⇒ A ⊂ B .

X

BA

(A,B) ∈ R⊂ since

A ⊂ B

X

BA

(A,B) /∈ R⊂ since

A /⊂ B

Is it true that ∀A,B ∈ P(X) (A,B) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A⊂B

or (B,A) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B⊂A

? No!



MAT 250
Lecture 7
Definitions in mathematics

Relation of inclusion

5 / 36

Example 2. Let X be a set, and P(X) be its power set.
Inclusion ⊂ is a relation R⊂ on P(X) :

∀A,B ∈ P(X) (A,B) ∈ R⊂ ⇐⇒ A ⊂ B .

X

BA

(A,B) ∈ R⊂ since

A ⊂ B

X

BA

(A,B) /∈ R⊂ since

A /⊂ B

Is it true that ∀A,B ∈ P(X) (A,B) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A⊂B

or (B,A) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B⊂A

? No!



MAT 250
Lecture 7
Definitions in mathematics

Relation of inclusion

5 / 36

Example 2. Let X be a set, and P(X) be its power set.
Inclusion ⊂ is a relation R⊂ on P(X) :

∀A,B ∈ P(X)

(A,B) ∈ R⊂ ⇐⇒ A ⊂ B .

X

BA

(A,B) ∈ R⊂ since

A ⊂ B

X

BA

(A,B) /∈ R⊂ since

A /⊂ B

Is it true that ∀A,B ∈ P(X) (A,B) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A⊂B

or (B,A) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B⊂A

? No!



MAT 250
Lecture 7
Definitions in mathematics

Relation of inclusion

5 / 36

Example 2. Let X be a set, and P(X) be its power set.
Inclusion ⊂ is a relation R⊂ on P(X) :

∀A,B ∈ P(X) (A,B) ∈ R⊂ ⇐⇒ A ⊂ B .

X

BA

(A,B) ∈ R⊂ since

A ⊂ B

X

BA

(A,B) /∈ R⊂ since

A /⊂ B

Is it true that ∀A,B ∈ P(X) (A,B) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A⊂B

or (B,A) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B⊂A

? No!



MAT 250
Lecture 7
Definitions in mathematics

Relation of inclusion

5 / 36

Example 2. Let X be a set, and P(X) be its power set.
Inclusion ⊂ is a relation R⊂ on P(X) :

∀A,B ∈ P(X) (A,B) ∈ R⊂ ⇐⇒ A ⊂ B .

X

BA

(A,B) ∈ R⊂ since

A ⊂ B

X

BA

(A,B) /∈ R⊂ since

A /⊂ B

Is it true that ∀A,B ∈ P(X) (A,B) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A⊂B

or (B,A) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B⊂A

? No!



MAT 250
Lecture 7
Definitions in mathematics

Relation of inclusion

5 / 36

Example 2. Let X be a set, and P(X) be its power set.
Inclusion ⊂ is a relation R⊂ on P(X) :

∀A,B ∈ P(X) (A,B) ∈ R⊂ ⇐⇒ A ⊂ B .

X

B

A

(A,B) ∈ R⊂ since

A ⊂ B

X

BA

(A,B) /∈ R⊂ since

A /⊂ B

Is it true that ∀A,B ∈ P(X) (A,B) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A⊂B

or (B,A) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B⊂A

? No!



MAT 250
Lecture 7
Definitions in mathematics

Relation of inclusion

5 / 36

Example 2. Let X be a set, and P(X) be its power set.
Inclusion ⊂ is a relation R⊂ on P(X) :

∀A,B ∈ P(X) (A,B) ∈ R⊂ ⇐⇒ A ⊂ B .

X

BA

(A,B) ∈ R⊂ since

A ⊂ B

X

BA

(A,B) /∈ R⊂ since

A /⊂ B

Is it true that ∀A,B ∈ P(X) (A,B) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A⊂B

or (B,A) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B⊂A

? No!



MAT 250
Lecture 7
Definitions in mathematics

Relation of inclusion

5 / 36

Example 2. Let X be a set, and P(X) be its power set.
Inclusion ⊂ is a relation R⊂ on P(X) :

∀A,B ∈ P(X) (A,B) ∈ R⊂ ⇐⇒ A ⊂ B .

X

BA

(A,B) ∈ R⊂ since

A ⊂ B

X

BA

(A,B) /∈ R⊂ since

A /⊂ B

Is it true that ∀A,B ∈ P(X) (A,B) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A⊂B

or (B,A) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B⊂A

? No!



MAT 250
Lecture 7
Definitions in mathematics

Relation of inclusion

5 / 36

Example 2. Let X be a set, and P(X) be its power set.
Inclusion ⊂ is a relation R⊂ on P(X) :

∀A,B ∈ P(X) (A,B) ∈ R⊂ ⇐⇒ A ⊂ B .

X

BA

(A,B) ∈ R⊂ since

A ⊂ B

X

BA

(A,B) /∈ R⊂ since

A /⊂ B

Is it true that ∀A,B ∈ P(X) (A,B) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A⊂B

or (B,A) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B⊂A

? No!



MAT 250
Lecture 7
Definitions in mathematics

Relation of inclusion

5 / 36

Example 2. Let X be a set, and P(X) be its power set.
Inclusion ⊂ is a relation R⊂ on P(X) :

∀A,B ∈ P(X) (A,B) ∈ R⊂ ⇐⇒ A ⊂ B .

X

BA

(A,B) ∈ R⊂ since

A ⊂ B

X

BA

(A,B) /∈ R⊂ since

A /⊂ B

Is it true that ∀A,B ∈ P(X) (A,B) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A⊂B

or (B,A) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B⊂A

? No!



MAT 250
Lecture 7
Definitions in mathematics

Relation of inclusion

5 / 36

Example 2. Let X be a set, and P(X) be its power set.
Inclusion ⊂ is a relation R⊂ on P(X) :

∀A,B ∈ P(X) (A,B) ∈ R⊂ ⇐⇒ A ⊂ B .

X

BA

(A,B) ∈ R⊂ since

A ⊂ B

X

B

A

(A,B) /∈ R⊂ since

A /⊂ B

Is it true that ∀A,B ∈ P(X) (A,B) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A⊂B

or (B,A) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B⊂A

? No!



MAT 250
Lecture 7
Definitions in mathematics

Relation of inclusion

5 / 36

Example 2. Let X be a set, and P(X) be its power set.
Inclusion ⊂ is a relation R⊂ on P(X) :

∀A,B ∈ P(X) (A,B) ∈ R⊂ ⇐⇒ A ⊂ B .

X

BA

(A,B) ∈ R⊂ since

A ⊂ B

X

BA

(A,B) /∈ R⊂ since

A /⊂ B

Is it true that ∀A,B ∈ P(X) (A,B) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A⊂B

or (B,A) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B⊂A

? No!



MAT 250
Lecture 7
Definitions in mathematics

Relation of inclusion

5 / 36

Example 2. Let X be a set, and P(X) be its power set.
Inclusion ⊂ is a relation R⊂ on P(X) :

∀A,B ∈ P(X) (A,B) ∈ R⊂ ⇐⇒ A ⊂ B .

X

BA

(A,B) ∈ R⊂ since

A ⊂ B

X

BA

(A,B) /∈ R⊂ since

A /⊂ B

Is it true that ∀A,B ∈ P(X) (A,B) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A⊂B

or (B,A) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B⊂A

? No!



MAT 250
Lecture 7
Definitions in mathematics

Relation of inclusion

5 / 36

Example 2. Let X be a set, and P(X) be its power set.
Inclusion ⊂ is a relation R⊂ on P(X) :

∀A,B ∈ P(X) (A,B) ∈ R⊂ ⇐⇒ A ⊂ B .

X

BA

(A,B) ∈ R⊂ since

A ⊂ B

X

BA

(A,B) /∈ R⊂ since

A /⊂ B

Is it true that ∀A,B ∈ P(X) (A,B) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A⊂B

or (B,A) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B⊂A

? No!



MAT 250
Lecture 7
Definitions in mathematics

Relation of inclusion

5 / 36

Example 2. Let X be a set, and P(X) be its power set.
Inclusion ⊂ is a relation R⊂ on P(X) :

∀A,B ∈ P(X) (A,B) ∈ R⊂ ⇐⇒ A ⊂ B .

X

BA

(A,B) ∈ R⊂ since

A ⊂ B

X

BA

(A,B) /∈ R⊂ since

A /⊂ B

Is it true that ∀A,B ∈ P(X)

(A,B) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A⊂B

or (B,A) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B⊂A

? No!



MAT 250
Lecture 7
Definitions in mathematics

Relation of inclusion

5 / 36

Example 2. Let X be a set, and P(X) be its power set.
Inclusion ⊂ is a relation R⊂ on P(X) :

∀A,B ∈ P(X) (A,B) ∈ R⊂ ⇐⇒ A ⊂ B .

X

BA

(A,B) ∈ R⊂ since

A ⊂ B

X

BA

(A,B) /∈ R⊂ since

A /⊂ B

Is it true that ∀A,B ∈ P(X) (A,B) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A⊂B

or (B,A) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B⊂A

?

No!



MAT 250
Lecture 7
Definitions in mathematics

Relation of inclusion

5 / 36

Example 2. Let X be a set, and P(X) be its power set.
Inclusion ⊂ is a relation R⊂ on P(X) :

∀A,B ∈ P(X) (A,B) ∈ R⊂ ⇐⇒ A ⊂ B .

X

BA

(A,B) ∈ R⊂ since

A ⊂ B

X

BA

(A,B) /∈ R⊂ since

A /⊂ B

Is it true that ∀A,B ∈ P(X) (A,B) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A⊂B

or (B,A) ∈ R⊂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B⊂A

? No!
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Example 3. Define a relation of divisibility on N as follows:
a ∣ b ⇐⇒ b = a ⋅ k for some k ∈ N .

2 ∣6 since 6 = 2 ⋅ 3 ,

3 ∤ 10 since there is no k ∈ N such that 10 = 3 ⋅ k ,

∀a ∈ N 1 ∣a and a ∣a .
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Example 4. Define a relation of congruence modulo 3 on Z as follows:
a ≡ b mod 3 ⇐⇒ 3 ∣ (a − b) .

a ≡ b mod 3 ⇐⇒ 3 ∣ (a − b) ⇐⇒ a and b have the same remainder
when divided by 3 .

5 ≡ 2 mod 3 since 3 ∣ (5 − 2)

−4 ≡ 20 mod 3 since 3 ∣ (−4 − 20)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
−24

16 ≡ 16 mod 3 since 3 ∣ (16 − 16)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

0

2019 ≡ 0 mod 3 since 3 ∣ (2019 − 0)
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Lemma.

A number is divisible by 3 iff the sum of its digits is divisible by 3 .

Proof. Let a number N is written with digits a0, a1, a2, . . . , an−1, an . Then

N = an ⋅ 10
n
+ an−1 ⋅ 10

n−1
+ ⋅ ⋅ ⋅ + a2 ⋅ 10

2
+ a1 ⋅ 10 + a0

= an ⋅ (99 . . .9
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

n

+1) + an−1 ⋅ (99 . . .9
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

n−1

+1) + ⋅ ⋅ ⋅ + a2 ⋅ (99 + 1) + a1(9 + 1) + a0

= (an ⋅ 99 . . .9 + an−1 ⋅ 99 . . .9 + ⋅ ⋅ ⋅ + a2 ⋅ 99 + a1 ⋅ 9)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

divisible by 3

+(an + an−1 + ⋅ ⋅ ⋅ + a2 + a1 + a0) .

Therefore, N is divisible by 3 iff
the sum an + an−1 + ⋅ ⋅ ⋅ + a2 + a1 + a0 of its digits is divisible by 3 .

Remark. The same proof proves that,
a number is divisible by 9 iff the sum of its digits is divisible by 9 .
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Relations may differ by their properties. Here are some of them:

A relation R on a set X is called

reflexive if ∀x ∈X xRx for example, ≤

irreflexive if ∀x ∈X ¬(xRx) for example, <

symmetric if ∀x, y ∈X xRy Ô⇒ yRx for example, ∥

antisymmetric if ∀x, y ∈X xRy ∧ yRx Ô⇒ x = y for example, ⊂

transitive if ∀x, y, z ∈X xRy ∧ yRz Ô⇒ xRz for example, <

total if ∀x, y ∈ X xRy ∨ yRx for example, ≤
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≤ onR ≡ mod 3 on Z ⊂ on P(X) divisibility on N

reflexive reflexive reflexive reflexive

x ≤ x a ≡ a mod 3 A ⊂ A a ∣a

antisymmetric symmetric antisymmetric antisymmetric

x ≤ y ∧ y ≤ x

Ô⇒ x = y
a ≡ b mod 3

Ô⇒ b ≡ a mod 3

A ⊂ B ∧B ⊂ A

Ô⇒ A = B

a ∣ b ∧ b ∣a
Ô⇒ a = b

transitive transitive transitive transitive

x ≤ y ∧ y ≤ z

Ô⇒ x ≤ z

a ≡ b mod 3 ∧

b ≡ c mod 3

Ô⇒ a ≡ c mod 3

A ⊂ B ∧B ⊂ C

Ô⇒ A ⊂ C

a ∣ b ∧ b ∣ c
Ô⇒ a ∣ c

total
∀x, y ∈ R

x ≤ y ∨ y ≤ x
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● Ordering relations:

Non-strict total (linear) order (antisymmetric+transitive+total)
≤ on R

Non-strict partial order (reflexive+antisymmetric+transitive)
⊂ on P(X) , divisibility on N

A strict order can be obtained from non-strict by removing the diagonal.
It becomes irreflexive.

A strict partial order (irreflexive+transitive)
< on R

The word poset= partially ordered set.

● Equivalence relation (reflexive+symmetric+transitive)
≡ mod 3 on Z .
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Definition. An equivalence relation on a set X is a relation ∼ which is

● reflexive: ∀x ∈X x ∼ x

● symmetric: ∀x, y ∈X x ∼ y Ô⇒ y ∼ x

● transitive: ∀x, y, z ∈ X x ∼ y ∧ y ∼ z Ô⇒ x ∼ z .

Example 1. Relation “ = ” on R is an equivalence relation, since it is

reflexive: ∀x ∈ R x = x

symmetric: ∀x, y ∈ R x = y Ô⇒ y = x ,
transitive: ∀x, y, z ∈ R x = y ∧ y = z Ô⇒ x = z .

Example 2. Relation “to be congruent” is an equivalence relation
on the set of all triangles on a plane.
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Example 4. Relation “to be parallel” is an equivalence relation
on the set of lines on a plane.

Example 5 (from linear algebra).
Two matrices A,B ∈Matn(R) are called similar

if there exists an invertible matrix C such that B = C−1AC .

Similarity is an equivalence relation on Matn(R) .

Example 6. Friendship is not an equivalence relation
(neither reflexive, nor transitive).

Example 7. Love is not an equivalence relation
(neither reflexive, nor symmetric, nor transitive).
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Definition. Let m ≥ 2 be a positive integer.
Integers a, b are said to be congruent modulo m if m ∣ (a − b) .

Notation: a ≡ b mod m

By definition, a ≡ b mod m ⇐⇒ m ∣ (a − b) .

Examples. 7 ≡ 2 mod 5 since 5 ∣ (7 − 2)

−1 ≡ 13 mod 7 since 7 ∣ (−1 − 13)
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Theorem.

Congruence modulo m is an equivalence relation on Z .

Proof.
≡ mod m is reflexive: ∀a ∈ Z a ≡ a mod m since m ∣ (a − a) .

≡ mod m is symmetric: ∀a, b ∈ Z a ≡ b mod m Ô⇒ b ≡ a mod m since
m ∣ (a − b) Ô⇒ m ∣ (b − a) .

≡ mod m is transitive:
∀a, b, c ∈ Z (a ≡ b mod m) ∧ (b ≡ c mod m) Ô⇒ a ≡ c mod m

Indeed, a ≡ b mod m ⇐⇒ m ∣ (a − b) and b ≡ c mod m ⇐⇒ m ∣ (b − c) .

In this case, a − c = (a − b)
´¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
div.bym

+ (b − c)
´¹¹¹¹¹¸¹¹¹¹¹¹¶
div.bym

which is divisible by m .

Therefore, a ≡ c mod m . ◻

What about congruence of real numbers modulo π ?
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Let us draw the graph of congruence modulo 3 .

The graph of this relation is {(x, y) ∈ Z ×Z ∣ x ≡ y mod 3} ⊆ R2
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Definition. Let ∼ be an equivalence relation on a set X . Let a ∈X .
The set [a] = {x ∈ X ∣ x ∼ a} of elements equivalent to a is called

the equivalence class of a .

Example. Let X = Z and ∼ be congruence modulo 3 .

What are equivalence classes?

[0] = {x ∈ Z ∣ x ≡ 0 mod 3} = {0,±3,±6,±9, . . .} = {3k ∣ k ∈ Z} ⊆ Z

[3] = {x ∈ Z ∣ x ≡ 3 mod 3} = {x ∈ Z ∣ x ≡ 0 mod 3} = [0] , since
3 ≡ 0 mod 3 .

[0] = [3] = [−3] = [6] = [2019] = . . .

[a] = [b] ⇐⇒ a ≡ b mod 3

0 1 2 3 4 5 6 7 8 9 10 11-1-2-3-4-5-6-7-8-9-10-11

Numbers . . . ,−9,−6,−3, 0, 3, 6, 9, . . . are called
representatives of the class [0] .
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In general, [a] = [b] ⇐⇒ a ∼ b .

[1] = {x ∈ Z ∣ x ≡ 1 mod 3} = {. . . ,−5,−2, 1, 4, 7, . . .}

= {3k + 1 ∣ k ∈ Z} ⊆ Z

0 1 2 3 4 5 6 7 8 9 10 11-1-2-3-4-5-6-7-8-9-10-11

[2] = {x ∈ Z ∣ x ≡ 2 mod 3} = {. . . ,−4,−1, 2, 5, 8, . . .}

= {3k + 2 ∣ k ∈ Z} ⊆ Z

0 1 2 3 4 5 6 7 8 9 10 11-1-2-3-4-5-6-7-8-9-10-11
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(they are called congruence classes):

0 1 2 3 4 5 6 7 8 9 10 11-1-2-3-4-5-6-7-8-9-10-11

They are 1) pairwise disjoint: [0] ∩ [1] = ∅ , [0] ∩ [2] = ∅ , [1] ∩ [2] = ∅ ,
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Theorem. Let ∼ be an equivalence relation on X . Then

∀a, b ∈X [a] = [b] or [a] ∩ [b] = ∅ .

Equivalence classes are either coincide or disjoint.

Proof. Take any a, b ∈ X and assume that [a] ∩ [b] /= ∅ .

Then ∃ c ∈X such that c ∈ [a] and c ∈ [b] . It means that

c ∼ a and c ∼ b , therefore a ∼ b .

Let us prove that [a] = [b] .

Take any x ∈ [a] . Then x ∼ a , but a ∼ b , so x ∼ b and, by this, x ∈ [b] .

Therefore, [a] ⊆ [b] .

Analogously, we prove [b] ⊆ [a] .

Together this gives us that [a] = [b] . ◻
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Definition.

A partition of a set X is a collection Σ of
non-empty pairwise disjoint subsets of X which cover the whole X .

In other words, partition ofX is Σ ⊂ P(X) such that
∀A ∈ Σ A /= ∅ ,
∀A,B ∈ Σ A ≠ B Ô⇒ A ∩B = ∅ ,
X = ⋃A∈ΣA .

Yet one more reformulation:
Definition. A partition of a set is a presentation of this set

as a union of non-empty pairwise disjoint sets.
These sets are called the elements of the partition.
Each element of the set belongs to exactly one element of the partition.
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X1

X2

X3

X4

X =X1 ∪X2 ∪X3 ∪X4

Xi ≠ ∅ for i = 1, 2, 3, 4

Xi ∩Xj = ∅ for i, j = 1, 2, 3, 4

∀x ∈X ∃ ! i ∈ {1, 2, 3, 4} x ∈Xi .

We have proven that
for any equivalence relation on X , the equivalence classes are disjoint.

This means that they form a partition of X .
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Fix an integer m ≥ 2 .

Congruence modulo m gives rise to the following m equivalence classes:

[0]m = {x ∣ x ≡ 0 mod m}

[1]m = {x ∣ x ≡ 1 mod m}

[2]m = {x ∣ x ≡ 2 mod m}

. . . . . . . . . . . . . . . . . . . . . . . . . . .

[m − 1]m = {x ∣ x ≡m − 1 mod m}

These equivalence classes form a partition of Z :

Z = [0] ∪ [1] ∪ [2] ∪ ⋅ ⋅ ⋅ ∪ [m − 1],

since each equivalence class is non-empty
and the equivalence classes are pairwise disjoint.
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. . . . . . . . . . . . . . . . . . . . . . . . . . .

[m − 1]m = {x ∣ x ≡m − 1 mod m}

These equivalence classes form a partition of Z :

Z = [0] ∪ [1] ∪ [2] ∪ ⋅ ⋅ ⋅ ∪ [m − 1],

since each equivalence class is non-empty

and the equivalence classes are pairwise disjoint.
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Theorem. There is a natural one-to-one correspondence (bijection)
between the set of all equivalence relations on a set X

and the set of all partitions on X .

More precisely,
each equivalence relation on X

gives rise to the partition of X into equivalence classes.

Proof. We have already seen that for any equivalence relation on a set X ,
equivalence classes form a partition of X .

This gives a map {equivalence relations on X }Ð→ {partitions of X }.

To any partition of X , the inverse map assigns the equivalence relation
in which two elements are equivalent if and only if

they belong to the same element of the partition.

This is indeed an equivalence relation,
because it is reflexive, symmetric and transitive.
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Definition. Let ∼ be an equivalence relation on a set X .
The set of all equivalence classes is called

the quotient set of X with respect to ∼
and denoted by X/∼ .

By definition, X/∼ = {[x] ∣ x ∈X} .

In other words, the quotient set X/∼
is the partition of X to equivalence classes for ∼ .

Indeed, the partition and the quotient set are sets
which consist of the same elements, hence they coincide.

There is a stillistical difference between usage of these terms.

If we remember that the equivalence classes are subsets of X

and keep track of their internal structure, then we speak on a partition.

If we think of them as atoms, ignoring their possible internal structure,
then we speak about a quotient set.

Moreover, for a partition Σ of X , we denote the quotient set by X/Σ .
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What is the quotient set of Z with respect to the congruence modulo 3 ?

Since there are three congruence classes modulo 3 , namely, [0], [1], [2] ,
the quotient set is {[0], [1], [2]} . It is denoted by Z/3 or Z3 .

The partition of Z , associated with congruence modulo 3 is

Z = [0] ∪ [1] ∪ [2] . The elements {[0], [1], [2]} of this partition
are the elements of the quotient set.
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Let ∼ be an equivalence relation on a set X . It defines the quotient set X/∼ ,
whose elements are the equivalence classes.

The map pr∼ ∶X →X/∼ defined by x↦ [x] is called the quotient projection.
The quotient projection is surjective.

Example. The quotient projection Z→ Zm , x↦ xmodm
is called the reduction modulo m .
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Let f ∶X → Y be a map, and ∼ be an equivalence relation in X .

Assume that ∀x1, x2 ∈X x1 ∼ x2 Ô⇒ f(x1) = f(x2) .

Then f is constant on every equivalence class.
Define f/∼ ∶X/∼ → Y ∶ [x]↦ f(x) ,

where [x] denotes the equivalence class that contains x .

Notice that f/∼([x]) does not depend on the choice of x from [x] .

The map f/∼ is called a quotient map of f .
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Let f ∶X → Y be a map. Consider the relation on X defined as follows:

x1 ∼f x2 ⇐⇒ f(x1) = f(x2) for x1, x2 ∈X .

Obviously, ∼f is an equivalence relation. What is the quotient set X/∼f ?

Its elements are equivalence classes,
the representatives of each class are mapped to the same element in Y .

That is, [x] = f−1f(x) .

Therefore, the map f/ ∶X/∼f → Y defined by [x]↦ f(x) is an injection.
It is called the injective quotient of f .
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Let us put all pieces together.
Given a map f ∶X → Y , one can define the quotients set X/∼f

and the quotient map f/ ∶X/∼f → Imf .

Beside this, there is the quotient projection pr∼f ∶X →X/∼f
and the inclusion map Imf → Y .

These maps are organized in the following commutative diagram:

X Y

X/∼f Imf

f

pr
∼f

f/∼

in f = in ○ f/ ○ pr∼f

Therefore, any map can be presented
as a composition of a surjection, bijection and injection:

f = in
®

injection

○ f/
¯

bijection

○ pr∼f
±

surjection

This presentation is called the canonical factorization of f .
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Problem. Define the following relation ∼ on R
2 :

(x1, y1) ∼ (x2, y2) ⇐⇒ x1 − x2 = y1 − y2 for (x1, y1), (x2, y2) ∈ R
2 .

1. Prove that ∼ is an equivalence relation on R
2 .

2. Find the equivalence class of (1, 2) ∈ R2 . Draw its graph on the plane R
2 .

3. How many equivalence classes are there? Draw their graphs on the plane.

4. Find the quotient set and the quotient projection.

5. Find a map f ∶ R2 → R such that the equivalence relation ∼ is ∼f .
Find the quotient map f/∼ .

Solution.

1. Let us prove that ∼ is an equivalence relation.

● For reflexivity, we have to show that ∀(x, y) ∈ R2 (x, y) ∼ (x, y) .
(x, y) ∼ (x, y) ⇐⇒ x − x = y − y ⇐⇒ 0 = 0 , which is the case.
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● For symmetry,

we have to show that

∀(x1, y1), (x2, y2) ∈ R
2 (x1, y1) ∼ (x2, y2) Ô⇒ (x2, y2) ∼ (x1, y1) .

By the definition of ∼ , (x1, y1) ∼ (x2, y2) ⇐⇒ x1 − x2 = y1 − y2

and (x2, y2) ∼ (x1, y1) ⇐⇒ x2 − x1 = y2 − y1 .

Since x1 − x2 = y1 − y2 Ô⇒ x2 − x1 = y2 − y1 , the symmetry takes place.

● For transitivity, we have to show that

∀(x1, y1), (x2, y2), (x3, y3) ∈ R
2

(x1, y1) ∼ (x2, y2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x1−x2=y1−y2

∧ (x2, y2) ∼ (x3, y3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x2−x3=y2−y3

Ô⇒ (x1, y1) ∼ (x3, y3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x1−x3=y1−y3

.

x1 − x3 = (x1 − x2) + (x2 − x3) = (y1 − y2) + (y2 − y3) = y1 − y3 ,
as required for transitivity.

Therefore, ∼ is an equivalence relation.
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By the definition of ∼ ,

(x1, y1) ∼ (x2, y2) ⇐⇒ x1 − x2 = y1 − y2

and (x2, y2) ∼ (x1, y1) ⇐⇒ x2 − x1 = y2 − y1 .

Since x1 − x2 = y1 − y2 Ô⇒ x2 − x1 = y2 − y1 , the symmetry takes place.

● For transitivity, we have to show that

∀(x1, y1), (x2, y2), (x3, y3) ∈ R
2

(x1, y1) ∼ (x2, y2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x1−x2=y1−y2

∧ (x2, y2) ∼ (x3, y3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x2−x3=y2−y3

Ô⇒ (x1, y1) ∼ (x3, y3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x1−x3=y1−y3

.

x1 − x3 = (x1 − x2) + (x2 − x3) = (y1 − y2) + (y2 − y3) = y1 − y3 ,
as required for transitivity.

Therefore, ∼ is an equivalence relation.
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● For symmetry, we have to show that

∀(x1, y1), (x2, y2) ∈ R
2 (x1, y1) ∼ (x2, y2) Ô⇒ (x2, y2) ∼ (x1, y1) .

By the definition of ∼ , (x1, y1) ∼ (x2, y2) ⇐⇒ x1 − x2 = y1 − y2

and (x2, y2) ∼ (x1, y1) ⇐⇒ x2 − x1 = y2 − y1 .

Since x1 − x2 = y1 − y2 Ô⇒ x2 − x1 = y2 − y1 , the symmetry takes place.

● For transitivity, we have to show that

∀(x1, y1), (x2, y2), (x3, y3) ∈ R
2

(x1, y1) ∼ (x2, y2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x1−x2=y1−y2

∧ (x2, y2) ∼ (x3, y3)
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Ô⇒ (x1, y1) ∼ (x3, y3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x1−x3=y1−y3

.

x1 − x3 = (x1 − x2) + (x2 − x3) = (y1 − y2) + (y2 − y3) = y1 − y3 ,
as required for transitivity.

Therefore, ∼ is an equivalence relation.
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● For symmetry, we have to show that

∀(x1, y1), (x2, y2) ∈ R
2 (x1, y1) ∼ (x2, y2) Ô⇒ (x2, y2) ∼ (x1, y1) .

By the definition of ∼ , (x1, y1) ∼ (x2, y2) ⇐⇒ x1 − x2 = y1 − y2

and (x2, y2) ∼ (x1, y1) ⇐⇒ x2 − x1 = y2 − y1 .

Since x1 − x2 = y1 − y2 Ô⇒ x2 − x1 = y2 − y1 , the symmetry takes place.

● For transitivity, we have to show that

∀(x1, y1), (x2, y2), (x3, y3) ∈ R
2

(x1, y1) ∼ (x2, y2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x1−x2=y1−y2

∧ (x2, y2) ∼ (x3, y3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x2−x3=y2−y3

Ô⇒ (x1, y1) ∼ (x3, y3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x1−x3=y1−y3

.

x1 − x3 = (x1 − x2) + (x2 − x3) = (y1 − y2) + (y2 − y3) = y1 − y3 ,
as required for transitivity.

Therefore, ∼ is an equivalence relation.
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● For symmetry, we have to show that

∀(x1, y1), (x2, y2) ∈ R
2 (x1, y1) ∼ (x2, y2) Ô⇒ (x2, y2) ∼ (x1, y1) .

By the definition of ∼ , (x1, y1) ∼ (x2, y2) ⇐⇒ x1 − x2 = y1 − y2

and (x2, y2) ∼ (x1, y1) ⇐⇒ x2 − x1 = y2 − y1 .

Since x1 − x2 = y1 − y2 Ô⇒ x2 − x1 = y2 − y1 ,

the symmetry takes place.

● For transitivity, we have to show that

∀(x1, y1), (x2, y2), (x3, y3) ∈ R
2

(x1, y1) ∼ (x2, y2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x1−x2=y1−y2

∧ (x2, y2) ∼ (x3, y3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x2−x3=y2−y3

Ô⇒ (x1, y1) ∼ (x3, y3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x1−x3=y1−y3

.

x1 − x3 = (x1 − x2) + (x2 − x3) = (y1 − y2) + (y2 − y3) = y1 − y3 ,
as required for transitivity.

Therefore, ∼ is an equivalence relation.
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● For symmetry, we have to show that

∀(x1, y1), (x2, y2) ∈ R
2 (x1, y1) ∼ (x2, y2) Ô⇒ (x2, y2) ∼ (x1, y1) .

By the definition of ∼ , (x1, y1) ∼ (x2, y2) ⇐⇒ x1 − x2 = y1 − y2

and (x2, y2) ∼ (x1, y1) ⇐⇒ x2 − x1 = y2 − y1 .

Since x1 − x2 = y1 − y2 Ô⇒ x2 − x1 = y2 − y1 , the symmetry takes place.

● For transitivity, we have to show that

∀(x1, y1), (x2, y2), (x3, y3) ∈ R
2

(x1, y1) ∼ (x2, y2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x1−x2=y1−y2

∧ (x2, y2) ∼ (x3, y3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x2−x3=y2−y3

Ô⇒ (x1, y1) ∼ (x3, y3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x1−x3=y1−y3

.

x1 − x3 = (x1 − x2) + (x2 − x3) = (y1 − y2) + (y2 − y3) = y1 − y3 ,
as required for transitivity.

Therefore, ∼ is an equivalence relation.
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● For symmetry, we have to show that

∀(x1, y1), (x2, y2) ∈ R
2 (x1, y1) ∼ (x2, y2) Ô⇒ (x2, y2) ∼ (x1, y1) .

By the definition of ∼ , (x1, y1) ∼ (x2, y2) ⇐⇒ x1 − x2 = y1 − y2

and (x2, y2) ∼ (x1, y1) ⇐⇒ x2 − x1 = y2 − y1 .

Since x1 − x2 = y1 − y2 Ô⇒ x2 − x1 = y2 − y1 , the symmetry takes place.

● For transitivity,

we have to show that

∀(x1, y1), (x2, y2), (x3, y3) ∈ R
2

(x1, y1) ∼ (x2, y2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x1−x2=y1−y2

∧ (x2, y2) ∼ (x3, y3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x2−x3=y2−y3

Ô⇒ (x1, y1) ∼ (x3, y3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x1−x3=y1−y3

.

x1 − x3 = (x1 − x2) + (x2 − x3) = (y1 − y2) + (y2 − y3) = y1 − y3 ,
as required for transitivity.

Therefore, ∼ is an equivalence relation.



MAT 250
Lecture 7
Definitions in mathematics

Example

32 / 36

● For symmetry, we have to show that

∀(x1, y1), (x2, y2) ∈ R
2 (x1, y1) ∼ (x2, y2) Ô⇒ (x2, y2) ∼ (x1, y1) .

By the definition of ∼ , (x1, y1) ∼ (x2, y2) ⇐⇒ x1 − x2 = y1 − y2

and (x2, y2) ∼ (x1, y1) ⇐⇒ x2 − x1 = y2 − y1 .

Since x1 − x2 = y1 − y2 Ô⇒ x2 − x1 = y2 − y1 , the symmetry takes place.

● For transitivity, we have to show that

∀(x1, y1), (x2, y2), (x3, y3) ∈ R
2

(x1, y1) ∼ (x2, y2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x1−x2=y1−y2

∧ (x2, y2) ∼ (x3, y3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x2−x3=y2−y3

Ô⇒ (x1, y1) ∼ (x3, y3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x1−x3=y1−y3

.

x1 − x3 = (x1 − x2) + (x2 − x3) = (y1 − y2) + (y2 − y3) = y1 − y3 ,
as required for transitivity.

Therefore, ∼ is an equivalence relation.
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● For symmetry, we have to show that

∀(x1, y1), (x2, y2) ∈ R
2 (x1, y1) ∼ (x2, y2) Ô⇒ (x2, y2) ∼ (x1, y1) .

By the definition of ∼ , (x1, y1) ∼ (x2, y2) ⇐⇒ x1 − x2 = y1 − y2

and (x2, y2) ∼ (x1, y1) ⇐⇒ x2 − x1 = y2 − y1 .

Since x1 − x2 = y1 − y2 Ô⇒ x2 − x1 = y2 − y1 , the symmetry takes place.

● For transitivity, we have to show that

∀(x1, y1), (x2, y2), (x3, y3) ∈ R
2

(x1, y1) ∼ (x2, y2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x1−x2=y1−y2

∧ (x2, y2) ∼ (x3, y3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x2−x3=y2−y3

Ô⇒ (x1, y1) ∼ (x3, y3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x1−x3=y1−y3

.

x1 − x3 = (x1 − x2) + (x2 − x3) = (y1 − y2) + (y2 − y3) = y1 − y3 ,
as required for transitivity.

Therefore, ∼ is an equivalence relation.
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● For symmetry, we have to show that

∀(x1, y1), (x2, y2) ∈ R
2 (x1, y1) ∼ (x2, y2) Ô⇒ (x2, y2) ∼ (x1, y1) .

By the definition of ∼ , (x1, y1) ∼ (x2, y2) ⇐⇒ x1 − x2 = y1 − y2

and (x2, y2) ∼ (x1, y1) ⇐⇒ x2 − x1 = y2 − y1 .

Since x1 − x2 = y1 − y2 Ô⇒ x2 − x1 = y2 − y1 , the symmetry takes place.

● For transitivity, we have to show that

∀(x1, y1), (x2, y2), (x3, y3) ∈ R
2

(x1, y1) ∼ (x2, y2)

(x1, y1) ∼ (x2, y2)
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x1−x2=y1−y2

∧ (x2, y2) ∼ (x3, y3)
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x2−x3=y2−y3

Ô⇒ (x1, y1) ∼ (x3, y3)
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x1−x3=y1−y3

.

x1 − x3 = (x1 − x2) + (x2 − x3) = (y1 − y2) + (y2 − y3) = y1 − y3 ,
as required for transitivity.

Therefore, ∼ is an equivalence relation.
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● For symmetry, we have to show that

∀(x1, y1), (x2, y2) ∈ R
2 (x1, y1) ∼ (x2, y2) Ô⇒ (x2, y2) ∼ (x1, y1) .

By the definition of ∼ , (x1, y1) ∼ (x2, y2) ⇐⇒ x1 − x2 = y1 − y2

and (x2, y2) ∼ (x1, y1) ⇐⇒ x2 − x1 = y2 − y1 .

Since x1 − x2 = y1 − y2 Ô⇒ x2 − x1 = y2 − y1 , the symmetry takes place.

● For transitivity, we have to show that

∀(x1, y1), (x2, y2), (x3, y3) ∈ R
2

(x1, y1) ∼ (x2, y2) ∧ (x2, y2) ∼ (x3, y3)

(x1, y1) ∼ (x2, y2)
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x1−x2=y1−y2

∧ (x2, y2) ∼ (x3, y3)
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x2−x3=y2−y3

Ô⇒ (x1, y1) ∼ (x3, y3)
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x1−x3=y1−y3

.

x1 − x3 = (x1 − x2) + (x2 − x3) = (y1 − y2) + (y2 − y3) = y1 − y3 ,
as required for transitivity.

Therefore, ∼ is an equivalence relation.
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● For symmetry, we have to show that

∀(x1, y1), (x2, y2) ∈ R
2 (x1, y1) ∼ (x2, y2) Ô⇒ (x2, y2) ∼ (x1, y1) .

By the definition of ∼ , (x1, y1) ∼ (x2, y2) ⇐⇒ x1 − x2 = y1 − y2

and (x2, y2) ∼ (x1, y1) ⇐⇒ x2 − x1 = y2 − y1 .

Since x1 − x2 = y1 − y2 Ô⇒ x2 − x1 = y2 − y1 , the symmetry takes place.

● For transitivity, we have to show that

∀(x1, y1), (x2, y2), (x3, y3) ∈ R
2

(x1, y1) ∼ (x2, y2) ∧ (x2, y2) ∼ (x3, y3) Ô⇒ (x1, y1) ∼ (x3, y3) .

(x1, y1) ∼ (x2, y2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x1−x2=y1−y2

∧ (x2, y2) ∼ (x3, y3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x2−x3=y2−y3

Ô⇒ (x1, y1) ∼ (x3, y3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x1−x3=y1−y3

.

x1 − x3 = (x1 − x2) + (x2 − x3) = (y1 − y2) + (y2 − y3) = y1 − y3 ,
as required for transitivity.

Therefore, ∼ is an equivalence relation.



MAT 250
Lecture 7
Definitions in mathematics

Example

32 / 36

● For symmetry, we have to show that

∀(x1, y1), (x2, y2) ∈ R
2 (x1, y1) ∼ (x2, y2) Ô⇒ (x2, y2) ∼ (x1, y1) .
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2. Let us find the equivalence class of (1, 2) :
[(1, 2)] = {(x, y) ∈ R2 ∣ (x, y) ∼ (1, 2)} = {(x, y) ∈ R2 ∣ x − 1 = y − 2}

= {(x, y) ∈ R2 ∣ y = x + 1} a line on the xy -plane.

x

y [(1, 2)]

−1

1
(1, 2)

This line contains the point (1, 2) ∈ R2 .
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3. What are other equivalence classes?

Let (a, b) ∈ R2 . Then

[(a, b)] = {(x, y) ∈ R2 ∣ (x, y) ∼ (a, b)} = {(x, y) ∈ R2 ∣ x − a = y − b}

= {(x, y) ∈ R2 ∣ y = x + (b − a)} a line on the xy -plane.
So the equivalence class [(a, b)]

is the line with the slope of 1 passing through the point (a, b) .
Here are several equivalence classes:

x

y [(1, 2)]

(1, 2)

[(0, 0)]

(−2, 2)

[(−2, 2)]

[(3, 1)]

(3, 1)
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(1, 2)

[(0, 0)]

(−2, 2)

[(−2, 2)]

[(3, 1)]

(3, 1)
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4. The quotient set is R
2/∼ consists of the lines Lc , where Lc is the line whose

slope is 1 and the y -intercept is c = b − a .

The partition of R
2 into equivalence classes is R

2 = ⋃
c∈R

Lc

x

y L1

L0

L4

L−2

4

1

−2

The quotient projection is pr ∶ R2 → R
2/∼ , (a, b)↦ [(a, b)] = Lb−a .
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5. Find a map f ∶ R2 → R such that the equivalence relation ∼ is ∼f .
Find the quotient map f/∼ .

Let f ∶ R2 → R be the required map. Then

(x1, y1) ∼f (x2, y2) ⇐⇒ (x1, y1) ∼ (x2, y2) ⇐⇒ x1 − x2 = y1 − y2

⇐⇒ x1 − y1 = x2 − y2 .
But
(x1, y1) ∼f (x2, y2) ⇐⇒ f(x1, y1) = f(x2, y2) .

Therefore, we can take f(x, y) = x − y .

The quotient map is

f/∼ ∶ R
2/∼f → R , [(x, y)]↦ x − y .
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