## Lecture 7

## Definitions in Mathematics

## Definition.

## Definition. A (binary) relation $R$ on a set $X$

## Definition. A (binary) relation $R$ on a set $X$ is a subset of $X \times X$ :

## Definition. A (binary) relation $R$ on a set $X$ is a subset of $X \times X$ :

$$
R \subset X \times X
$$

Definition. A (binary) relation $R$ on a set $X$ is a subset of $X \times X$ :

$$
R \subset X \times X \Longleftrightarrow R \in \mathcal{P}(X \times X)
$$

## Relations

Definition. A (binary) relation $R$ on a set $X$ is a subset of $X \times X$ :

$$
R \subset X \times X \Longleftrightarrow R \in \mathcal{P}(X \times X)
$$

A binary relation corresponds
to a statement about an ordered pair of arguments taken from $X$.

## Relations

Definition. A (binary) relation $R$ on a set $X$ is a subset of $X \times X$ :

$$
R \subset X \times X \Longleftrightarrow R \in \mathcal{P}(X \times X)
$$

A binary relation corresponds
to a statement about an ordered pair of arguments taken from $X$.

## More generally:

a statement about an ordered $n$-tuple of arguments is called an $n$-ary relation.

Definition. A (binary) relation $R$ on a set $X$ is a subset of $X \times X$ :

$$
R \subset X \times X \Longleftrightarrow R \in \mathcal{P}(X \times X)
$$

A binary relation corresponds
to a statement about an ordered pair of arguments taken from $X$.

## More generally:

a statement about an ordered $n$-tuple of arguments is called an $n$-ary relation.
Furthermore, the arguments may belong to different sets.

Definition. A (binary) relation $R$ on a set $X$ is a subset of $X \times X$ :

$$
R \subset X \times X \Longleftrightarrow R \in \mathcal{P}(X \times X)
$$

A binary relation corresponds
to a statement about an ordered pair of arguments taken from $X$.

## More generally:

a statement about an ordered $n$-tuple of arguments is called an $n$-ary relation.
Furthermore, the arguments may belong to different sets.
The notion of binary relation generalizes the notion of mapping:

Definition. A (binary) relation $R$ on a set $X$ is a subset of $X \times X$ :

$$
R \subset X \times X \Longleftrightarrow R \in \mathcal{P}(X \times X)
$$

A binary relation corresponds
to a statement about an ordered pair of arguments taken from $X$.

## More generally:

a statement about an ordered $n$-tuple of arguments is called an $n$-ary relation.
Furthermore, the arguments may belong to different sets.
The notion of binary relation generalizes the notion of mapping: any map $f: X \rightarrow Y$ can be considered as a relation $y=f(x)$
between elements of $X$ and $Y$.

Definition. A (binary) relation $R$ on a set $X$ is a subset of $X \times X$ :

$$
R \subset X \times X \Longleftrightarrow R \in \mathcal{P}(X \times X)
$$

A binary relation corresponds
to a statement about an ordered pair of arguments taken from $X$.

## More generally:

a statement about an ordered $n$-tuple of arguments is called an $n$-ary relation.
Furthermore, the arguments may belong to different sets.
The notion of binary relation generalizes the notion of mapping: any map $f: X \rightarrow Y$ can be considered as a relation $y=f(x)$ between elements of $X$ and $Y$.

Example. Orthogonality of a line and a plane in $\mathbb{R}^{3}$.

Definition. A (binary) relation $R$ on a set $X$ is a subset of $X \times X$ :

$$
R \subset X \times X \Longleftrightarrow R \in \mathcal{P}(X \times X)
$$

A binary relation corresponds
to a statement about an ordered pair of arguments taken from $X$.

## More generally:

a statement about an ordered $n$-tuple of arguments is called an $n$-ary relation.
Furthermore, the arguments may belong to different sets.
The notion of binary relation generalizes the notion of mapping: any map $f: X \rightarrow Y$ can be considered as a relation $y=f(x)$ between elements of $X$ and $Y$.

Example. Orthogonality of a line and a plane in $\mathbb{R}^{3}$.
We will deal mostly with binary relations on a single set.

## The number of relations

Definitions in mathematics

## Let a set $X$ have 3 elements.

## The number of relations

Definitions in mathematics

Let a set $X$ have 3 elements. How many relations are there on $X$ ?

## The number of relations

Let a set $X$ have 3 elements. How many relations are there on $X$ ?
Answer:

## The number of relations

Let a set $X$ have 3 elements. How many relations are there on $X$ ?
Answer: 512.

Let a set $X$ have 3 elements. How many relations are there on $X$ ?
Answer: 512. How come?

Let a set $X$ have 3 elements. How many relations are there on $X$ ?
Answer: 512 . How come?
The number of relations of a finite set $X$

Let a set $X$ have 3 elements. How many relations are there on $X$ ?
Answer: 512 . How come?
The number of relations of a finite set $X$
is equal to the number of elements in $\mathcal{P}(X \times X)$.

Let a set $X$ have 3 elements. How many relations are there on $X$ ?
Answer: 512 . How come?
The number of relations of a finite set $X$
is equal to the number of elements in $\mathcal{P}(X \times X)$.
If $X$ has $n$ elements,

Let a set $X$ have 3 elements. How many relations are there on $X$ ?
Answer: 512 . How come?
The number of relations of a finite set $X$
is equal to the number of elements in $\mathcal{P}(X \times X)$.
If $X$ has $n$ elements, then $X \times X$ has

Let a set $X$ have 3 elements. How many relations are there on $X$ ?
Answer: 512 . How come?
The number of relations of a finite set $X$
is equal to the number of elements in $\mathcal{P}(X \times X)$.
If $X$ has $n$ elements, then $X \times X$ has $n^{2}$ elements,

Let a set $X$ have 3 elements. How many relations are there on $X$ ?
Answer: 512 . How come?
The number of relations of a finite set $X$
is equal to the number of elements in $\mathcal{P}(X \times X)$.
If $X$ has $n$ elements, then $X \times X$ has $n^{2}$ elements, and $\mathcal{P}(X \times X)$ has

Let a set $X$ have 3 elements. How many relations are there on $X$ ?
Answer: 512 . How come?
The number of relations of a finite set $X$
is equal to the number of elements in $\mathcal{P}(X \times X)$.
If $X$ has $n$ elements, then $X \times X$ has $n^{2}$ elements, and $\mathcal{P}(X \times X)$ has $2^{n^{2}}$ elements.

Let a set $X$ have 3 elements. How many relations are there on $X$ ?
Answer: 512 . How come?
The number of relations of a finite set $X$
is equal to the number of elements in $\mathcal{P}(X \times X)$.
If $X$ has $n$ elements, then $X \times X$ has $n^{2}$ elements, and $\mathcal{P}(X \times X)$ has $2^{n^{2}}$ elements.

So the number of relations on a set of 3 elements

Let a set $X$ have 3 elements. How many relations are there on $X$ ?
Answer: 512 . How come?
The number of relations of a finite set $X$
is equal to the number of elements in $\mathcal{P}(X \times X)$.
If $X$ has $n$ elements, then $X \times X$ has $n^{2}$ elements, and $\mathcal{P}(X \times X)$ has $2^{n^{2}}$ elements.
So the number of relations on a set of 3 elements is $2^{3^{2}}$

Let a set $X$ have 3 elements. How many relations are there on $X$ ?
Answer: 512 . How come?
The number of relations of a finite set $X$
is equal to the number of elements in $\mathcal{P}(X \times X)$.
If $X$ has $n$ elements, then $X \times X$ has $n^{2}$ elements, and $\mathcal{P}(X \times X)$ has $2^{n^{2}}$ elements.
So the number of relations on a set of 3 elements is $2^{3^{2}}=2^{9}$

Let a set $X$ have 3 elements. How many relations are there on $X$ ?
Answer: 512 . How come?
The number of relations of a finite set $X$
is equal to the number of elements in $\mathcal{P}(X \times X)$.
If $X$ has $n$ elements, then $X \times X$ has $n^{2}$ elements, and $\mathcal{P}(X \times X)$ has $2^{n^{2}}$ elements.
So the number of relations on a set of 3 elements is $2^{3^{2}}=2^{9}=512$.

Let a set $X$ have 3 elements. How many relations are there on $X$ ?
Answer: 512 . How come?
The number of relations of a finite set $X$
is equal to the number of elements in $\mathcal{P}(X \times X)$.
If $X$ has $n$ elements, then $X \times X$ has $n^{2}$ elements, and $\mathcal{P}(X \times X)$ has $2^{n^{2}}$ elements.
So the number of relations on a set of 3 elements is $2^{3^{2}}=2^{9}=512$.
$\mathcal{P}(X \times X)$

Let a set $X$ have 3 elements. How many relations are there on $X$ ?
Answer: 512 . How come?
The number of relations of a finite set $X$
is equal to the number of elements in $\mathcal{P}(X \times X)$.
If $X$ has $n$ elements, then $X \times X$ has $n^{2}$ elements, and $\mathcal{P}(X \times X)$ has $2^{n^{2}}$ elements.
So the number of relations on a set of 3 elements is $2^{3^{2}}=2^{9}=512$.
$\mathcal{P}(X \times X)$ is a huge set!

## Notation.

Notation. Let $R$ be a relation on $X$,

Notation. Let $R$ be a relation on $X$, and $x, y \in X$.

Notation. Let $R$ be a relation on $X$, and $x, y \in X$.
If $(x, y) \in R$

Notation. Let $R$ be a relation on $X$, and $x, y \in X$.
If $(x, y) \in R$ then we say that " $x$ is related to $y$ "

## Relation " $\leq$ "

Notation. Let $R$ be a relation on $X$, and $x, y \in X$.
If $(x, y) \in R$ then we say that " $x$ is related to $y$ " and write $x R y$.

## Example 1.

Notation. Let $R$ be a relation on $X$, and $x, y \in X$.
If $(x, y) \in R$ then we say that " $x$ is related to $y$ " and write $x R y$.

## Example 1. Let $X=\mathbb{R}$.

Notation. Let $R$ be a relation on $X$, and $x, y \in X$.
If $(x, y) \in R$ then we say that " $x$ is related to $y$ " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality $\leq$

Notation. Let $R$ be a relation on $X$, and $x, y \in X$.
If $(x, y) \in R$ then we say that " $x$ is related to $y$ " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality $\leq$ is a relation $R_{\leq}$on $\mathbb{R}$ :

Notation. Let $R$ be a relation on $X$, and $x, y \in X$.
If $(x, y) \in R$ then we say that " $x$ is related to $y$ " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality $\leq$ is a relation $R_{\leq}$on $\mathbb{R}$ :
$(x, y) \in R_{\leq} \Longleftrightarrow x \leq y$.

Notation. Let $R$ be a relation on $X$, and $x, y \in X$.
If $(x, y) \in R$ then we say that " $x$ is related to $y$ " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality $\leq$ is a relation $R_{\leq}$on $\mathbb{R}$ :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y .
$$

Is it true that 1 is related to 2 ?

## Relation " $\leq$ "

Notation. Let $R$ be a relation on $X$, and $x, y \in X$.
If $(x, y) \in R$ then we say that " $x$ is related to $y$ " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality $\leq$ is a relation $R_{\leq}$on $\mathbb{R}$ :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y .
$$

Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$?

## Relation " $\leq$ "

Notation. Let $R$ be a relation on $X$, and $x, y \in X$.
If $(x, y) \in R$ then we say that " $x$ is related to $y$ " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality $\leq$ is a relation $R_{\leq}$on $\mathbb{R}$ :
$(x, y) \in R_{\leq} \Longleftrightarrow x \leq y$.
Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since

## Relation " $\leq$ "

Notation. Let $R$ be a relation on $X$, and $x, y \in X$.
If $(x, y) \in R$ then we say that " $x$ is related to $y$ " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality $\leq$ is a relation $R_{\leq}$on $\mathbb{R}$ :
$(x, y) \in R_{\leq} \Longleftrightarrow x \leq y$.
Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since

$$
(1,2) \in R_{\leq}
$$

## Relation " $\leq$ "

Notation. Let $R$ be a relation on $X$, and $x, y \in X$.
If $(x, y) \in R$ then we say that " $x$ is related to $y$ " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality $\leq$ is a relation $R_{\leq}$on $\mathbb{R}$ :
$(x, y) \in R_{\leq} \Longleftrightarrow x \leq y$.
Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since

$$
(1,2) \in R_{\leq} \Longleftrightarrow 1 \leq 2,
$$

## Relation " $\leq$ "

Notation. Let $R$ be a relation on $X$, and $x, y \in X$.
If $(x, y) \in R$ then we say that " $x$ is related to $y$ " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality $\leq$ is a relation $R_{\leq}$on $\mathbb{R}$ :
$(x, y) \in R_{\leq} \Longleftrightarrow x \leq y$.
Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since
$(1,2) \in R_{\leq} \Longleftrightarrow 1 \leq 2$, which is true.

## Relation " $\leq$ "

Notation. Let $R$ be a relation on $X$, and $x, y \in X$.
If $(x, y) \in R$ then we say that " $x$ is related to $y$ " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality $\leq$ is a relation $R_{\leq}$on $\mathbb{R}$ :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y .
$$

Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since
$(1,2) \in R_{\leq} \Longleftrightarrow 1 \leq 2$, which is true.
Is it true that 2 is related to 1 ?

## Relation " $\leq$ "

Notation. Let $R$ be a relation on $X$, and $x, y \in X$.
If $(x, y) \in R$ then we say that " $x$ is related to $y$ " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality $\leq$ is a relation $R_{\leq}$on $\mathbb{R}$ :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y .
$$

Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since
$(1,2) \in R_{\leq} \Longleftrightarrow 1 \leq 2$, which is true.
Is it true that 2 is related to 1 ? That is, $(2,1) \in R_{\leq}$?

## Relation " $\leq$ "

Notation. Let $R$ be a relation on $X$, and $x, y \in X$.
If $(x, y) \in R$ then we say that " $x$ is related to $y$ " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality $\leq$ is a relation $R_{\leq}$on $\mathbb{R}$ :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y .
$$

Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since
$(1,2) \in R_{\leq} \Longleftrightarrow 1 \leq 2$, which is true.
Is it true that 2 is related to 1 ? That is, $(2,1) \in R_{\leq}$? No, since

## Relation " $\leq$ "

Notation. Let $R$ be a relation on $X$, and $x, y \in X$.
If $(x, y) \in R$ then we say that " $x$ is related to $y$ " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality $\leq$ is a relation $R_{\leq}$on $\mathbb{R}$ :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y .
$$

Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since
$(1,2) \in R_{\leq} \Longleftrightarrow 1 \leq 2$, which is true.
Is it true that 2 is related to 1 ? That is, $(2,1) \in R_{\leq}$? No, since
$(2,1) \in R_{\leq}$

## Relation " $\leq$ "

Notation. Let $R$ be a relation on $X$, and $x, y \in X$.
If $(x, y) \in R$ then we say that " $x$ is related to $y$ " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality $\leq$ is a relation $R_{\leq}$on $\mathbb{R}$ :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y .
$$

Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since
$(1,2) \in R_{\leq} \Longleftrightarrow 1 \leq 2$, which is true.
Is it true that 2 is related to 1 ? That is, $(2,1) \in R_{\leq}$? No, since
$(2,1) \in R_{\leq} \Longleftrightarrow 2 \leq 1$,

## Relation " $\leq$ "

Notation. Let $R$ be a relation on $X$, and $x, y \in X$.
If $(x, y) \in R$ then we say that " $x$ is related to $y$ " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality $\leq$ is a relation $R_{\leq}$on $\mathbb{R}$ :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y .
$$

Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since
$(1,2) \in R_{\leq} \Longleftrightarrow 1 \leq 2$, which is true.
Is it true that 2 is related to 1 ? That is, $(2,1) \in R_{\leq}$? No, since
$(2,1) \in R_{\leq} \Longleftrightarrow 2 \leq 1$, which is false.

Notation. Let $R$ be a relation on $X$, and $x, y \in X$.
If $(x, y) \in R$ then we say that " $x$ is related to $y$ " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality $\leq$ is a relation $R_{\leq}$on $\mathbb{R}$ :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y .
$$

Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since
$(1,2) \in R_{\leq} \Longleftrightarrow 1 \leq 2$, which is true.
Is it true that 2 is related to 1 ? That is, $(2,1) \in R_{\leq}$? No, since
$(2,1) \in R_{\leq} \Longleftrightarrow 2 \leq 1$, which is false.
The relation $R_{\leq}$is a subset of the plane:

Notation. Let $R$ be a relation on $X$, and $x, y \in X$.
If $(x, y) \in R$ then we say that " $x$ is related to $y$ " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality $\leq$ is a relation $R_{\leq}$on $\mathbb{R}$ :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y
$$

Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since
$(1,2) \in R_{\leq} \Longleftrightarrow 1 \leq 2$, which is true.
Is it true that 2 is related to 1 ? That is, $(2,1) \in R_{\leq}$? No, since
$(2,1) \in R_{\leq} \Longleftrightarrow 2 \leq 1$, which is false.
The relation $R_{\leq}$is a subset of the plane: $R_{\leq}=\left\{(x, y) \in \mathbb{R}^{2} \mid x \leq y\right\}$

## Relation " $\leq$ "

Notation. Let $R$ be a relation on $X$, and $x, y \in X$.
If $(x, y) \in R$ then we say that " $x$ is related to $y$ " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality $\leq$ is a relation $R_{\leq}$on $\mathbb{R}$ :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y .
$$

Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since
$(1,2) \in R_{\leq} \Longleftrightarrow 1 \leq 2$, which is true.
Is it true that 2 is related to 1 ? That is, $(2,1) \in R_{\leq}$? No, since
$(2,1) \in R_{\leq} \Longleftrightarrow 2 \leq 1$, which is false.
The relation $R_{\leq}$is a subset of the plane: $R_{\leq}=\left\{(x, y) \in \mathbb{R}^{2} \mid x \leq y\right\} \subset \mathbb{R}^{2}$, so we may draw the graph of $R_{\leq}$.

## Relation " $\leq$ "

Notation. Let $R$ be a relation on $X$, and $x, y \in X$.
If $(x, y) \in R$ then we say that " $x$ is related to $y$ " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality $\leq$ is a relation $R_{\leq}$on $\mathbb{R}$ :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y
$$

Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since
$(1,2) \in R_{\leq} \Longleftrightarrow 1 \leq 2$, which is true.
Is it true that 2 is related to 1 ? That is, $(2,1) \in R_{\leq}$? No, since
$(2,1) \in R_{\leq} \Longleftrightarrow 2 \leq 1$, which is false.
The relation $R_{\leq}$is a subset of the plane: $R_{\leq}=\left\{(x, y) \in \mathbb{R}^{2} \mid x \leq y\right\} \subset \mathbb{R}^{2}$,

so we may draw the graph of $R_{\leq}$.

## Relation " $\leq$ "

Notation. Let $R$ be a relation on $X$, and $x, y \in X$.
If $(x, y) \in R$ then we say that " $x$ is related to $y$ " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality $\leq$ is a relation $R_{\leq}$on $\mathbb{R}$ :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y
$$

Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since
$(1,2) \in R_{\leq} \Longleftrightarrow 1 \leq 2$, which is true.
Is it true that 2 is related to 1 ? That is, $(2,1) \in R_{\leq}$? No, since
$(2,1) \in R_{\leq} \Longleftrightarrow 2 \leq 1$, which is false.
The relation $R_{\leq}$is a subset of the plane: $R_{\leq}=\left\{(x, y) \in \mathbb{R}^{2} \mid x \leq y\right\} \subset \mathbb{R}^{2}$,

so we may draw the graph of $R_{\leq}$.

$$
\forall x, y \in \mathbb{R} \underbrace{(x, y) \in R_{\leq}}_{x \leq y} \text { or } \underbrace{(y, x) \in R_{\leq}}_{y \leq x} .
$$

## Example 2.

## Example 2. Let $X$ be a set,

## Example 2. Let $X$ be a set, and $\mathcal{P}(X)$ be its power set.

## Example 2. Let $X$ be a set, and $\mathcal{P}(X)$ be its power set. Inclusion $\subset$

## Example 2. Let $X$ be a set, and $\mathcal{P}(X)$ be its power set.

Inclusion $\subset$ is a relation $R_{\subset}$ on $\mathcal{P}(X)$ :

Example 2. Let $X$ be a set, and $\mathcal{P}(X)$ be its power set.
Inclusion $\subset$ is a relation $R_{\subset}$ on $\mathcal{P}(X)$ :
$\forall A, B \in \mathcal{P}(X)$

Example 2. Let $X$ be a set, and $\mathcal{P}(X)$ be its power set.
Inclusion $\subset$ is a relation $R_{\subset}$ on $\mathcal{P}(X)$ :
$\forall A, B \in \mathcal{P}(X) \quad(A, B) \in R_{\subset} \Longleftrightarrow A \subset B$.

Example 2. Let $X$ be a set, and $\mathcal{P}(X)$ be its power set.
Inclusion $\subset$ is a relation $R_{\subset}$ on $\mathcal{P}(X)$ :
$\forall A, B \in \mathcal{P}(X) \quad(A, B) \in R_{\subset} \Longleftrightarrow A \subset B$.


Example 2. Let $X$ be a set, and $\mathcal{P}(X)$ be its power set.
Inclusion $\subset$ is a relation $R_{\subset}$ on $\mathcal{P}(X)$ :
$\forall A, B \in \mathcal{P}(X) \quad(A, B) \in R_{\subset} \Longleftrightarrow A \subset B$.


Example 2. Let $X$ be a set, and $\mathcal{P}(X)$ be its power set.
Inclusion $\subset$ is a relation $R_{\subset}$ on $\mathcal{P}(X)$ :
$\forall A, B \in \mathcal{P}(X) \quad(A, B) \in R_{\subset} \Longleftrightarrow A \subset B$.


Example 2. Let $X$ be a set, and $\mathcal{P}(X)$ be its power set.
Inclusion $\subset$ is a relation $R_{\subset}$ on $\mathcal{P}(X)$ :
$\forall A, B \in \mathcal{P}(X) \quad(A, B) \in R_{\subset} \Longleftrightarrow A \subset B$.


Example 2. Let $X$ be a set, and $\mathcal{P}(X)$ be its power set.
Inclusion $\subset$ is a relation $R_{\subset}$ on $\mathcal{P}(X)$ :
$\forall A, B \in \mathcal{P}(X) \quad(A, B) \in R_{\subset} \Longleftrightarrow A \subset B$.


Example 2. Let $X$ be a set, and $\mathcal{P}(X)$ be its power set.
Inclusion $\subset$ is a relation $R_{\subset}$ on $\mathcal{P}(X)$ :
$\forall A, B \in \mathcal{P}(X) \quad(A, B) \in R_{\subset} \Longleftrightarrow A \subset B$.


Example 2. Let $X$ be a set, and $\mathcal{P}(X)$ be its power set.
Inclusion $\subset$ is a relation $R_{\subset}$ on $\mathcal{P}(X)$ :
$\forall A, B \in \mathcal{P}(X) \quad(A, B) \in R_{\subset} \Longleftrightarrow A \subset B$.


Example 2. Let $X$ be a set, and $\mathcal{P}(X)$ be its power set.
Inclusion $\subset$ is a relation $R_{\subset}$ on $\mathcal{P}(X)$ :
$\forall A, B \in \mathcal{P}(X) \quad(A, B) \in R_{\subset} \Longleftrightarrow A \subset B$.


Example 2. Let $X$ be a set, and $\mathcal{P}(X)$ be its power set.
Inclusion $\subset$ is a relation $R_{\subset}$ on $\mathcal{P}(X)$ :
$\forall A, B \in \mathcal{P}(X) \quad(A, B) \in R_{\subset} \Longleftrightarrow A \subset B$.

$(A, B) \in R_{\subset}$ since $A \subset B$

$(A, B) \notin R_{\subset}$ since

Example 2. Let $X$ be a set, and $\mathcal{P}(X)$ be its power set.
Inclusion $\subset$ is a relation $R_{\subset}$ on $\mathcal{P}(X)$ :
$\forall A, B \in \mathcal{P}(X) \quad(A, B) \in R_{\subset} \Longleftrightarrow A \subset B$.

$(A, B) \in R_{\subset}$ since $A \subset B$

$(A, B) \notin R_{\subset}$ since

$$
A \not \subset B
$$

Example 2. Let $X$ be a set, and $\mathcal{P}(X)$ be its power set.
Inclusion $\subset$ is a relation $R_{\subset}$ on $\mathcal{P}(X)$ :
$\forall A, B \in \mathcal{P}(X) \quad(A, B) \in R_{\subset} \Longleftrightarrow A \subset B$.

$(A, B) \in R_{\subset}$ since $A \subset B$

$(A, B) \notin R_{\subset}$ since

$$
A \not \subset B
$$

Is it true that $\forall A, B \in \mathcal{P}(X)$

Example 2. Let $X$ be a set, and $\mathcal{P}(X)$ be its power set.
Inclusion $\subset$ is a relation $R_{\subset}$ on $\mathcal{P}(X)$ :
$\forall A, B \in \mathcal{P}(X) \quad(A, B) \in R_{\subset} \Longleftrightarrow A \subset B$.

$(A, B) \in R_{\subset}$ since $A \subset B$

$(A, B) \notin R_{\subset}$ since

$$
A \not \subset B
$$

Is it true that $\forall A, B \in \mathcal{P}(X) \underbrace{(A, B) \in R_{c}}_{A \subset B}$ or $\underbrace{(B, A) \in R_{\subset}}_{B \subset A}$ ?

Example 2. Let $X$ be a set, and $\mathcal{P}(X)$ be its power set.
Inclusion $\subset$ is a relation $R_{\subset}$ on $\mathcal{P}(X)$ :
$\forall A, B \in \mathcal{P}(X) \quad(A, B) \in R_{\subset} \Longleftrightarrow A \subset B$.

$(A, B) \in R_{\subset}$ since $A \subset B$

$(A, B) \notin R_{\subset}$ since

$$
A \not \subset B
$$

Is it true that $\forall A, B \in \mathcal{P}(X) \underbrace{(A, B) \in R_{\subset}}$ or $\underbrace{(B, A) \in R_{\subset}}$ ? No!

## Relation of divisibility

## Example 3.

## Example 3. Define a relation of divisibility on $\mathbb{N}$ as follows:

Example 3. Define a relation of divisibility on $\mathbb{N}$ as follows:
$a \mid b \Longleftrightarrow b=a \cdot k$ for some $k \in \mathbb{N}$.

## Relation of divisibility

Example 3. Define a relation of divisibility on $\mathbb{N}$ as follows:
$a \mid b \Longleftrightarrow b=a \cdot k$ for some $k \in \mathbb{N}$.
$2 \mid 6$

## Relation of divisibility

Example 3. Define a relation of divisibility on $\mathbb{N}$ as follows:
$a \mid b \Longleftrightarrow b=a \cdot k$ for some $k \in \mathbb{N}$.
$2 \mid 6$ since $6=2 \cdot 3$,

Example 3. Define a relation of divisibility on $\mathbb{N}$ as follows:
$a \mid b \Longleftrightarrow b=a \cdot k$ for some $k \in \mathbb{N}$.
$2 \mid 6$ since $6=2 \cdot 3$,
$3+10$

Example 3. Define a relation of divisibility on $\mathbb{N}$ as follows:
$a \mid b \Longleftrightarrow b=a \cdot k$ for some $k \in \mathbb{N}$.
$2 \mid 6$ since $6=2 \cdot 3$,
$3+10$ since there is no $k \in \mathbb{N}$ such that $10=3 \cdot k$,

Example 3. Define a relation of divisibility on $\mathbb{N}$ as follows:
$a \mid b \Longleftrightarrow b=a \cdot k$ for some $k \in \mathbb{N}$.
$2 \mid 6$ since $6=2 \cdot 3$,
$3+10$ since there is no $k \in \mathbb{N}$ such that $10=3 \cdot k$,
$\forall a \in \mathbb{N} \quad 1 \mid a$

## Relation of divisibility

Example 3. Define a relation of divisibility on $\mathbb{N}$ as follows:
$a \mid b \Longleftrightarrow b=a \cdot k$ for some $k \in \mathbb{N}$.
$2 \mid 6$ since $6=2 \cdot 3$,
$3+10$ since there is no $k \in \mathbb{N}$ such that $10=3 \cdot k$,
$\forall a \in \mathbb{N} \quad 1 \mid a$ and $a \mid a$.

## Relation of congruence modulo 3

Definitions in mathematics

## Example 4.

## Example 4. Define a relation of congruence modulo 3 on $\mathbb{Z}$ as follows:

## Example 4. Define a relation of congruence modulo 3 on $\mathbb{Z}$ as follows:

$$
a \equiv b \bmod 3
$$

Example 4. Define a relation of congruence modulo 3 on $\mathbb{Z}$ as follows: $a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b)$.

## Relation of congruence modulo 3

Example 4. Define a relation of congruence modulo 3 on $\mathbb{Z}$ as follows: $a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b)$.
$a \equiv b \bmod 3$

## Relation of congruence modulo 3

Example 4. Define a relation of congruence modulo 3 on $\mathbb{Z}$ as follows: $a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b)$.
$a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b)$

Example 4. Define a relation of congruence modulo 3 on $\mathbb{Z}$ as follows: $a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b)$.
$a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b) \Longleftrightarrow a$ and $b$ have the same remainder

## Relation of congruence modulo 3

Example 4. Define a relation of congruence modulo 3 on $\mathbb{Z}$ as follows:

$$
a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b) .
$$

$a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b) \Longleftrightarrow a$ and $b$ have the same remainder
when divided by 3 .

## Relation of congruence modulo 3

Example 4. Define a relation of congruence modulo 3 on $\mathbb{Z}$ as follows:

$$
a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b) .
$$

$a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b) \Longleftrightarrow a$ and $b$ have the same remainder when divided by 3 .
$5 \equiv 2 \bmod 3$

## Relation of congruence modulo 3

Example 4. Define a relation of congruence modulo 3 on $\mathbb{Z}$ as follows:

$$
a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b) .
$$

$a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b) \Longleftrightarrow a$ and $b$ have the same remainder when divided by 3 .
$5 \equiv 2 \bmod 3 \quad$ since $3 \mid(5-2)$

## Relation of congruence modulo 3

Example 4. Define a relation of congruence modulo 3 on $\mathbb{Z}$ as follows: $a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b)$.
$a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b) \Longleftrightarrow a$ and $b$ have the same remainder when divided by 3 .
$5 \equiv 2 \bmod 3 \quad$ since $3 \mid(5-2)$
$-4 \equiv 20 \bmod 3$

## Relation of congruence modulo 3

Example 4. Define a relation of congruence modulo 3 on $\mathbb{Z}$ as follows:

$$
a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b) .
$$

$a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b) \Longleftrightarrow a$ and $b$ have the same remainder when divided by 3 .
$5 \equiv 2 \bmod 3$ since $3 \mid(5-2)$
$-4 \equiv 20 \bmod 3$ since $3 \mid \underbrace{(-4-20)}_{-24}$

## Relation of congruence modulo 3

Example 4. Define a relation of congruence modulo 3 on $\mathbb{Z}$ as follows: $a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b)$.
$a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b) \Longleftrightarrow a$ and $b$ have the same remainder when divided by 3 .
$5 \equiv 2 \bmod 3$ since $3 \mid(5-2)$
$-4 \equiv 20 \bmod 3$ since $3 \mid \underbrace{(-4-20)}_{-24}$
$16 \equiv 16 \bmod 3$

## Relation of congruence modulo 3

Example 4. Define a relation of congruence modulo 3 on $\mathbb{Z}$ as follows: $a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b)$.
$a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b) \Longleftrightarrow a$ and $b$ have the same remainder when divided by 3 .
$5 \equiv 2 \bmod 3$ since $3 \mid(5-2)$
$-4 \equiv 20 \bmod 3$ since $3 \mid \underbrace{(-4-20)}_{-24}$
$16 \equiv 16 \bmod 3$ since $3 \mid \underbrace{(16-16)}_{0}$

## Relation of congruence modulo 3

Example 4. Define a relation of congruence modulo 3 on $\mathbb{Z}$ as follows: $a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b)$.
$a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b) \Longleftrightarrow a$ and $b$ have the same remainder when divided by 3 .
$5 \equiv 2 \bmod 3$ since $3 \mid(5-2)$
$-4 \equiv 20 \bmod 3$ since $3 \mid \underbrace{(-4-20)}_{-24}$
$16 \equiv 16 \bmod 3$ since $3 \mid \underbrace{(16-16)}_{0}$
$2019 \equiv 0 \bmod 3$

## Relation of congruence modulo 3

Example 4. Define a relation of congruence modulo 3 on $\mathbb{Z}$ as follows: $a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b)$.
$a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b) \Longleftrightarrow a$ and $b$ have the same remainder when divided by 3 .
$5 \equiv 2 \bmod 3$ since $3 \mid(5-2)$
$-4 \equiv 20 \bmod 3$ since $3 \mid \underbrace{(-4-20)}_{-24}$
$16 \equiv 16 \bmod 3$ since $3 \mid \underbrace{(16-16)}_{0}$
$2019 \equiv 0 \bmod 3$ since $3 \mid(2019-0)$

## Criteria for divisibility by 3 and 9

Definitions in mathematics

## Lemma.

## Criteria for divisibility by 3 and 9

Definitions in mathematics

Lemma. A number is divisible by 3

## Criteria for divisibility by 3 and 9

Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3 .

## Criteria for divisibility by 3 and 9

Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3 . Proof.

## Criteria for divisibility by 3 and 9

Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3 . Proof. Let a number $N$ is written with digits $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$.

## Criteria for divisibility by 3 and 9

Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3 . Proof. Let a number $N$ is written with digits $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$. Then

## Criteria for divisibility by 3 and 9

Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3 . Proof. Let a number $N$ is written with digits $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$. Then $N=a_{n} \cdot 10^{n}+a_{n-1} \cdot 10^{n-1}+\cdots+a_{2} \cdot 10^{2}+a_{1} \cdot 10+a_{0}$

## Criteria for divisibility by 3 and 9

Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3 . Proof. Let a number $N$ is written with digits $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$. Then

$$
\begin{aligned}
& N=a_{n} \cdot 10^{n}+a_{n-1} \cdot 10^{n-1}+\cdots+a_{2} \cdot 10^{2}+a_{1} \cdot 10+a_{0} \\
& =a_{n} \cdot(\underbrace{99 \ldots 9}_{n}+1)+a_{n-1} \cdot(\underbrace{99 \ldots 9}_{n-1}+1)+\cdots+a_{2} \cdot(99+1)+a_{1}(9+1)+a_{0}
\end{aligned}
$$

## Criteria for divisibility by 3 and 9

Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3 . Proof. Let a number $N$ is written with digits $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$. Then $N=a_{n} \cdot 10^{n}+a_{n-1} \cdot 10^{n-1}+\cdots+a_{2} \cdot 10^{2}+a_{1} \cdot 10+a_{0}$
$=a_{n} \cdot(\underbrace{99 \ldots 9}_{n}+1)+a_{n-1} \cdot(\underbrace{99 \ldots 9}_{n-1}+1)+\cdots+a_{2} \cdot(99+1)+a_{1}(9+1)+a_{0}$ $=\underbrace{\left(a_{n} \cdot 99 \ldots 9+a_{n-1} \cdot 99 \ldots 9+\cdots+a_{2} \cdot 99+a_{1} \cdot 9\right)}$ divisible by 3

$$
+\left(a_{n}+a_{n-1}+\cdots+a_{2}+a_{1}+a_{0}\right)
$$

## Criteria for divisibility by 3 and 9

Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3 . Proof. Let a number $N$ is written with digits $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$. Then

$$
\begin{aligned}
& N=a_{n} \cdot 10^{n}+a_{n-1} \cdot 10^{n-1}+\cdots+a_{2} \cdot 10^{2}+a_{1} \cdot 10+a_{0} \\
& =a_{n} \cdot(\underbrace{(9 \ldots \ldots}_{n}+1)+a_{n-1} \cdot(\underbrace{99 \ldots 9}_{n-1}+1)+\cdots+a_{2} \cdot(99+1)+a_{1}(9+1)+a_{0} \\
& =\underbrace{\left(a_{n} \cdot 99 \ldots 9+a_{n-1} \cdot 99 \ldots 9+\cdots+a_{2} \cdot 99+a_{1} \cdot 9\right)}_{\text {divisible by } 3} \\
& +\left(a_{n}+a_{n-1}+\cdots+a_{2}+a_{1}+a_{0}\right) .
\end{aligned}
$$

Therefore, $N$ is divisible by 3 iff the sum $a_{n}+a_{n-1}+\cdots+a_{2}+a_{1}+a_{0}$ of its digits is divisible by 3 .

## Criteria for divisibility by 3 and 9

Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3 . Proof. Let a number $N$ is written with digits $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$. Then

$$
\begin{aligned}
& N=a_{n} \cdot 10^{n}+a_{n-1} \cdot 10^{n-1}+\cdots+a_{2} \cdot 10^{2}+a_{1} \cdot 10+a_{0} \\
& =a_{n} \cdot(\underbrace{99 \ldots 9}_{n}+1)+a_{n-1} \cdot(\underbrace{99 \ldots 9}_{n-1}+1)+\cdots+a_{2} \cdot(99+1)+a_{1}(9+1)+a_{0} \\
& =\underbrace{\left(a_{n} \cdot 99 \ldots 9+a_{n-1} \cdot 99 \ldots 9+\cdots+a_{2} \cdot 99+a_{1} \cdot 9\right)}_{\text {divisible by } 3} \\
& +\left(a_{n}+a_{n-1}+\cdots+a_{2}+a_{1}+a_{0}\right) .
\end{aligned}
$$

Therefore, $N$ is divisible by 3 iff the sum $a_{n}+a_{n-1}+\cdots+a_{2}+a_{1}+a_{0}$ of its digits is divisible by 3 .

Remark. The same proof proves that,

Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3 . Proof. Let a number $N$ is written with digits $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$. Then

$$
\begin{aligned}
& N=a_{n} \cdot 10^{n}+a_{n-1} \cdot 10^{n-1}+\cdots+a_{2} \cdot 10^{2}+a_{1} \cdot 10+a_{0} \\
& =a_{n} \cdot(\underbrace{(9 \ldots \ldots 9}_{n}+1)+a_{n-1} \cdot(\underbrace{99 \ldots 9}_{n-1}+1)+\cdots+a_{2} \cdot(99+1)+a_{1}(9+1)+a_{0} \\
& =\underbrace{\left(a_{n} \cdot 99 \ldots 9+a_{n-1} \cdot 99 \ldots 9+\cdots+a_{2} \cdot 99+a_{1} \cdot 9\right)}_{\text {divisible by } 3} \\
& +\left(a_{n}+a_{n-1}+\cdots+a_{2}+a_{1}+a_{0}\right) .
\end{aligned}
$$

Therefore, $N$ is divisible by 3 iff the sum $a_{n}+a_{n-1}+\cdots+a_{2}+a_{1}+a_{0}$ of its digits is divisible by 3 .

Remark. The same proof proves that, a number is divisible by 9

Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3 . Proof. Let a number $N$ is written with digits $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$. Then

$$
\begin{aligned}
& N=a_{n} \cdot 10^{n}+a_{n-1} \cdot 10^{n-1}+\cdots+a_{2} \cdot 10^{2}+a_{1} \cdot 10+a_{0} \\
& =a_{n} \cdot(\underbrace{99 \ldots 9}_{n}+1)+a_{n-1} \cdot(\underbrace{99 \ldots 9}_{n-1}+1)+\cdots+a_{2} \cdot(99+1)+a_{1}(9+1)+a_{0} \\
& =\underbrace{\left(a_{n} \cdot 99 \ldots 9+a_{n-1} \cdot 99 \ldots 9+\cdots+a_{2} \cdot 99+a_{1} \cdot 9\right)}_{\text {divisible by } 3} \\
& +\left(a_{n}+a_{n-1}+\cdots+a_{2}+a_{1}+a_{0}\right) .
\end{aligned}
$$

Therefore, $N$ is divisible by 3 iff the sum $a_{n}+a_{n-1}+\cdots+a_{2}+a_{1}+a_{0}$ of its digits is divisible by 3 .

Remark. The same proof proves that, a number is divisible by 9 iff the sum of its digits is divisible by 9 .

Definitions in mathematics

Relations may differ by their properties.

Relations may differ by their properties. Here are some of them:

Relations may differ by their properties. Here are some of them:
A relation $R$ on a set $X$ is called

Relations may differ by their properties. Here are some of them:
A relation $R$ on a set $X$ is called reflexive

Relations may differ by their properties. Here are some of them:
A relation $R$ on a set $X$ is called
reflexive if $\forall x \in X \quad x R x$

Relations may differ by their properties. Here are some of them:
A relation $R$ on a set $X$ is called
reflexive if $\forall x \in X \quad x R x$
for example, $\leq$

Relations may differ by their properties. Here are some of them:
A relation $R$ on a set $X$ is called
reflexive if $\forall x \in X \quad x R x \quad$ for example, $\leq$
irreflexive

Relations may differ by their properties. Here are some of them:
A relation $R$ on a set $X$ is called
reflexive if $\forall x \in X \quad x R x$
for example, $\leq$
irreflexive if $\forall x \in X \quad \neg(x R x)$

Relations may differ by their properties. Here are some of them:
A relation $R$ on a set $X$ is called
reflexive if $\forall x \in X \quad x R x$
irreflexive if $\forall x \in X \quad \neg(x R x)$
for example, $\leq$
for example, <

Relations may differ by their properties. Here are some of them:
A relation $R$ on a set $X$ is called
reflexive if $\forall x \in X \quad x R x$
irreflexive if $\forall x \in X \quad \neg(x R x)$
symmetric
for example, $\leq$
for example, <

Relations may differ by their properties. Here are some of them:
A relation $R$ on a set $X$ is called
reflexive if $\forall x \in X \quad x R x$
irreflexive if $\forall x \in X \quad \neg(x R x)$
symmetric if $\forall x, y \in X \quad x R y \Longrightarrow y R x$
for example, $\leq$
for example, <

Relations may differ by their properties. Here are some of them:
A relation $R$ on a set $X$ is called
reflexive if $\forall x \in X \quad x R x$
irreflexive if $\forall x \in X \quad \neg(x R x)$
symmetric if $\forall x, y \in X \quad x R y \Longrightarrow y R x$
for example, $\leq$
for example, <
for example, ||

Relations may differ by their properties. Here are some of them:
A relation $R$ on a set $X$ is called
reflexive if $\forall x \in X \quad x R x$
irreflexive if $\forall x \in X \quad \neg(x R x)$
symmetric if $\forall x, y \in X \quad x R y \Longrightarrow y R x$ antisymmetric
for example, $\leq$
for example, <
for example, ||

Relations may differ by their properties. Here are some of them:
A relation $R$ on a set $X$ is called
reflexive if $\forall x \in X \quad x R x \quad$ for example, $\leq$
irreflexive if $\forall x \in X \quad \neg(x R x) \quad$ for example, <
symmetric if $\forall x, y \in X \quad x R y \Longrightarrow y R x \quad$ for example, \|
antisymmetric if $\forall x, y \in X x R y \wedge y R x \Longrightarrow x=y$

Relations may differ by their properties. Here are some of them:
A relation $R$ on a set $X$ is called
reflexive if $\forall x \in X \quad x R x \quad$ for example, $\leq$
irreflexive if $\forall x \in X \quad \neg(x R x) \quad$ for example, <
symmetric if $\forall x, y \in X \quad x R y \Longrightarrow y R x \quad$ for example, \|
antisymmetric if $\forall x, y \in X x R y \wedge y R x \Longrightarrow x=y \quad$ for example, c

Relations may differ by their properties. Here are some of them:
A relation $R$ on a set $X$ is called
reflexive if $\forall x \in X \quad x R x \quad$ for example, $\leq$
irreflexive if $\forall x \in X \quad \neg(x R x) \quad$ for example, <
symmetric if $\forall x, y \in X \quad x R y \Longrightarrow y R x \quad$ for example, \|
antisymmetric if $\forall x, y \in X x R y \wedge y R x \Longrightarrow x=y \quad$ for example, $\subset$
transitive

Relations may differ by their properties. Here are some of them:
A relation $R$ on a set $X$ is called
reflexive if $\forall x \in X \quad x R x \quad$ for example, $\leq$
irreflexive if $\forall x \in X \quad \neg(x R x) \quad$ for example, <
symmetric if $\forall x, y \in X \quad x R y \Longrightarrow y R x \quad$ for example, \|
antisymmetric if $\forall x, y \in X x R y \wedge y R x \Longrightarrow x=y \quad$ for example, $\subset$
transitive if $\forall x, y, z \in X \quad x R y \wedge y R z \Longrightarrow x R z$

Relations may differ by their properties. Here are some of them:
A relation $R$ on a set $X$ is called
reflexive if $\forall x \in X \quad x R x \quad$ for example, $\leq$
irreflexive if $\forall x \in X \quad \neg(x R x) \quad$ for example, <
symmetric if $\forall x, y \in X \quad x R y \Longrightarrow y R x \quad$ for example, \|
antisymmetric if $\forall x, y \in X x R y \wedge y R x \Longrightarrow x=y \quad$ for example, $\subset$
transitive if $\forall x, y, z \in X \quad x R y \wedge y R z \Longrightarrow x R z \quad$ for example, <

Relations may differ by their properties. Here are some of them:
A relation $R$ on a set $X$ is called
reflexive if $\forall x \in X \quad x R x \quad$ for example, $\leq$
irreflexive if $\forall x \in X \quad \neg(x R x) \quad$ for example, <
symmetric if $\forall x, y \in X \quad x R y \Longrightarrow y R x \quad$ for example, \|
antisymmetric if $\forall x, y \in X x R y \wedge y R x \Longrightarrow x=y \quad$ for example, $\subset$
transitive if $\forall x, y, z \in X \quad x R y \wedge y R z \Longrightarrow x R z \quad$ for example, <
total

Relations may differ by their properties. Here are some of them:
A relation $R$ on a set $X$ is called
reflexive if $\forall x \in X \quad x R x \quad$ for example, $\leq$
irreflexive if $\forall x \in X \quad \neg(x R x) \quad$ for example, <
symmetric if $\forall x, y \in X \quad x R y \Longrightarrow y R x \quad$ for example, \|
antisymmetric if $\forall x, y \in X x R y \wedge y R x \Longrightarrow x=y \quad$ for example, $\subset$
transitive if $\forall x, y, z \in X \quad x R y \wedge y R z \Longrightarrow x R z \quad$ for example, <
total if $\forall x, y \in X \quad x R y \vee y R x$

Relations may differ by their properties. Here are some of them:
A relation $R$ on a set $X$ is called
reflexive if $\forall x \in X \quad x R x \quad$ for example, $\leq$
irreflexive if $\forall x \in X \quad \neg(x R x) \quad$ for example, <
symmetric if $\forall x, y \in X \quad x R y \Longrightarrow y R x \quad$ for example, \|
antisymmetric if $\forall x, y \in X x R y \wedge y R x \Longrightarrow x=y \quad$ for example, c
transitive if $\forall x, y, z \in X \quad x R y \wedge y R z \Longrightarrow x R z \quad$ for example, <
total if $\forall x, y \in X \quad x R y \vee y R x$
for example, $\leq$

## Properties of relations

Definitions in mathematics

| $\leq$ on $\mathbb{R}$ | $\equiv \bmod 3$ on $\mathbb{Z}$ | c on $\mathcal{P}(X)$ | divisibility on $\mathbb{N}$ |
| :---: | :---: | :---: | :---: |
| reflexive $x \leq x$ | $\begin{gathered} \text { reflexive } \\ a \equiv a \bmod 3 \end{gathered}$ | reflexive $A \subset A$ | reflexive <br> $a \mid a$ |
| $\begin{gathered} \text { antisymmetric } \\ x \leq y \wedge y \leq x \\ \Longrightarrow x=y \end{gathered}$ | $\begin{gathered} \text { symmetric } \\ a \equiv b \bmod 3 \\ \Longrightarrow b \equiv a \bmod 3 \end{gathered}$ | $\begin{aligned} & \text { antisymmetric } \\ & A \subset B \wedge B \subset A \\ & \Longrightarrow A=B \end{aligned}$ | $\begin{aligned} & \text { antisymmetric } \\ & a\|b \wedge b\| a \\ & \xlongequal[\Longrightarrow]{\Longrightarrow} a=b \end{aligned}$ |
| $\begin{array}{r} \text { transitive } \\ x \leq y \wedge y \leq z \\ \Longrightarrow x \leq z \end{array}$ | transitive $\begin{gathered} a \equiv b \bmod 3 \wedge \\ b \equiv c \bmod 3 \\ \Longrightarrow a \equiv c \bmod 3 \end{gathered}$ | transitive $\begin{gathered} A \subset B \wedge B \subset C \\ \quad \Longrightarrow A \subset C \end{gathered}$ | $\begin{aligned} & \left.\begin{array}{c} \text { transitive } \\ a\|b \wedge b\| c \end{array} \stackrel{\Longrightarrow}{\Longrightarrow} a \right\rvert\, c \end{aligned}$ |
| $\begin{gathered} \text { total } \\ \forall x, y \in \mathbb{R} \\ x \leq y \vee y \leq x \end{gathered}$ |  |  |  |

## Special classes of relations

Definitions in mathematics

## Special classes of relations

Definitions in mathematics

- Ordering relations:


## Special classes of relations

Definitions in mathematics

- Ordering relations:

Non-strict total (linear) order

- Ordering relations:

Non-strict total (linear) order (antisymmetric+transitive+total)

## Special classes of relations

- Ordering relations:

Non-strict total (linear) order (antisymmetric+transitive+total)
$\leq$ on $\mathbb{R}$

- Ordering relations:

Non-strict total (linear) order (antisymmetric+transitive+total)

$$
\leq \text { on } \mathbb{R}
$$

## Non-strict partial order

- Ordering relations:

Non-strict total (linear) order (antisymmetric+transitive+total)

$$
\leq \text { on } \mathbb{R}
$$

Non-strict partial order (reflexive+antisymmetric+transitive)

## Special classes of relations

- Ordering relations:

Non-strict total (linear) order (antisymmetric+transitive+total)

$$
\leq \text { on } \mathbb{R}
$$

Non-strict partial order (reflexive+antisymmetric+transitive) c on $\mathcal{P}(X)$, divisibility on $\mathbb{N}$

## Special classes of relations

- Ordering relations:

Non-strict total (linear) order (antisymmetric+transitive+total)

$$
\leq \text { on } \mathbb{R}
$$

Non-strict partial order (reflexive+antisymmetric+transitive) c on $\mathcal{P}(X)$, divisibility on $\mathbb{N}$

A strict order can be obtained from non-strict by removing the diagonal.

## Special classes of relations

- Ordering relations:

Non-strict total (linear) order (antisymmetric+transitive+total)

$$
\leq \text { on } \mathbb{R}
$$

Non-strict partial order (reflexive+antisymmetric+transitive) c on $\mathcal{P}(X)$, divisibility on $\mathbb{N}$

A strict order can be obtained from non-strict by removing the diagonal. It becomes irreflexive.

## Special classes of relations

- Ordering relations:

Non-strict total (linear) order (antisymmetric+transitive+total)

$$
\leq \text { on } \mathbb{R}
$$

Non-strict partial order (reflexive+antisymmetric+transitive) c on $\mathcal{P}(X)$, divisibility on $\mathbb{N}$

A strict order can be obtained from non-strict by removing the diagonal. It becomes irreflexive.

A strict partial order

## Special classes of relations

- Ordering relations:

Non-strict total (linear) order (antisymmetric+transitive+total)

$$
\leq \text { on } \mathbb{R}
$$

Non-strict partial order (reflexive+antisymmetric+transitive) c on $\mathcal{P}(X)$, divisibility on $\mathbb{N}$

A strict order can be obtained from non-strict by removing the diagonal. It becomes irreflexive.

A strict partial order (irreflexive+transitive)

```
< on \mathbb{R}
```


## Special classes of relations

- Ordering relations:

Non-strict total (linear) order (antisymmetric+transitive+total)

$$
\leq \text { on } \mathbb{R}
$$

Non-strict partial order (reflexive+antisymmetric+transitive) c on $\mathcal{P}(X)$, divisibility on $\mathbb{N}$

A strict order can be obtained from non-strict by removing the diagonal. It becomes irreflexive.

A strict partial order (irreflexive+transitive)

```
< on \mathbb{R}
```

The word poset

## Special classes of relations

- Ordering relations:

Non-strict total (linear) order (antisymmetric+transitive+total)

$$
\leq \text { on } \mathbb{R}
$$

Non-strict partial order (reflexive+antisymmetric+transitive) c on $\mathcal{P}(X)$, divisibility on $\mathbb{N}$

A strict order can be obtained from non-strict by removing the diagonal. It becomes irreflexive.

A strict partial order (irreflexive+transitive)

```
< on \mathbb{R}
```

The word poset= partially ordered set.

## Special classes of relations

- Ordering relations:

Non-strict total (linear) order (antisymmetric+transitive+total)

$$
\leq \text { on } \mathbb{R}
$$

Non-strict partial order (reflexive+antisymmetric+transitive) c on $\mathcal{P}(X)$, divisibility on $\mathbb{N}$

A strict order can be obtained from non-strict by removing the diagonal. It becomes irreflexive.

A strict partial order (irreflexive+transitive)

```
< on \mathbb{R}
```

The word poset= partially ordered set.

- Equivalence relation
- Ordering relations:

Non-strict total (linear) order (antisymmetric+transitive+total)

$$
\leq \text { on } \mathbb{R}
$$

Non-strict partial order (reflexive+antisymmetric+transitive) c on $\mathcal{P}(X)$, divisibility on $\mathbb{N}$

A strict order can be obtained from non-strict by removing the diagonal. It becomes irreflexive.

A strict partial order (irreflexive+transitive)

$$
<\text { on } \mathbb{R}
$$

The word poset= partially ordered set.

- Equivalence relation (reflexive+symmetric+transitive)
- Ordering relations:

Non-strict total (linear) order (antisymmetric+transitive+total)

$$
\leq \text { on } \mathbb{R}
$$

Non-strict partial order (reflexive+antisymmetric+transitive) c on $\mathcal{P}(X)$, divisibility on $\mathbb{N}$

A strict order can be obtained from non-strict by removing the diagonal. It becomes irreflexive.

A strict partial order (irreflexive+transitive)

$$
<\text { on } \mathbb{R}
$$

The word poset= partially ordered set.

- Equivalence relation (reflexive+symmetric+transitive)

$$
\equiv \bmod 3 \text { on } \mathbb{Z}
$$

## Equivalence relations

Definitions in mathematics

## Equivalence relations

Definitions in mathematics

## Definition. An equivalence relation on a set $X$

## Equivalence relations

Definitions in mathematics
Definition. An equivalence relation on a set $X$ is a relation $\sim$ which is

## Equivalence relations

Definitions in mathematics

Definition. An equivalence relation on a set $X$ is a relation $\sim$ which is - reflexive:

## Equivalence relations

Definition. An equivalence relation on a set $X$ is a relation $\sim$ which is - reflexive: $\forall x \in X \quad x \sim x$

## Equivalence relations

Definition. An equivalence relation on a set $X$ is a relation $\sim$ which is

- reflexive: $\forall x \in X \quad x \sim x$
- symmetric:


## Equivalence relations

Definition. An equivalence relation on a set $X$ is a relation $\sim$ which is

- reflexive: $\forall x \in X \quad x \sim x$
- symmetric: $\forall x, y \in X \quad x \sim y \Longrightarrow y \sim x$


## Equivalence relations

Definition. An equivalence relation on a set $X$ is a relation $\sim$ which is

- reflexive: $\forall x \in X \quad x \sim x$
- symmetric: $\forall x, y \in X \quad x \sim y \Longrightarrow y \sim x$
- transitive:


## Equivalence relations

Definition. An equivalence relation on a set $X$ is a relation $\sim$ which is

- reflexive: $\forall x \in X \quad x \sim x$
- symmetric: $\forall x, y \in X \quad x \sim y \Longrightarrow y \sim x$
- transitive: $\forall x, y, z \in X \quad x \sim y \wedge y \sim z \Longrightarrow x \sim z$.


## Equivalence relations

Definition. An equivalence relation on a set $X$ is a relation $\sim$ which is

- reflexive: $\forall x \in X \quad x \sim x$
- symmetric: $\forall x, y \in X \quad x \sim y \Longrightarrow y \sim x$
- transitive: $\forall x, y, z \in X \quad x \sim y \wedge y \sim z \Longrightarrow x \sim z$.


## Example 1.

## Equivalence relations

Definition. An equivalence relation on a set $X$ is a relation $\sim$ which is

- reflexive: $\forall x \in X \quad x \sim x$
- symmetric: $\forall x, y \in X \quad x \sim y \Longrightarrow y \sim x$
- transitive: $\forall x, y, z \in X \quad x \sim y \wedge y \sim z \Longrightarrow x \sim z$.

Example 1. Relation " $=$ " on $\mathbb{R}$ is an equivalence relation,

## Equivalence relations

Definition. An equivalence relation on a set $X$ is a relation $\sim$ which is

- reflexive: $\forall x \in X \quad x \sim x$
- symmetric: $\forall x, y \in X \quad x \sim y \Longrightarrow y \sim x$
- transitive: $\forall x, y, z \in X \quad x \sim y \wedge y \sim z \Longrightarrow x \sim z$.

Example 1. Relation " $=$ " on $\mathbb{R}$ is an equivalence relation, since it is

## Equivalence relations

Definition. An equivalence relation on a set $X$ is a relation $\sim$ which is

- reflexive: $\forall x \in X \quad x \sim x$
- symmetric: $\forall x, y \in X \quad x \sim y \Longrightarrow y \sim x$
- transitive: $\forall x, y, z \in X \quad x \sim y \wedge y \sim z \Longrightarrow x \sim z$.

Example 1. Relation "=" on $\mathbb{R}$ is an equivalence relation, since it is reflexive:

## Equivalence relations

Definition. An equivalence relation on a set $X$ is a relation $\sim$ which is

- reflexive: $\forall x \in X \quad x \sim x$
- symmetric: $\forall x, y \in X \quad x \sim y \Longrightarrow y \sim x$
- transitive: $\forall x, y, z \in X \quad x \sim y \wedge y \sim z \Longrightarrow x \sim z$.

Example 1. Relation "=" on $\mathbb{R}$ is an equivalence relation, since it is reflexive: $\forall x \in \mathbb{R} \quad x=x$

## Equivalence relations

Definition. An equivalence relation on a set $X$ is a relation $\sim$ which is

- reflexive: $\forall x \in X \quad x \sim x$
- symmetric: $\forall x, y \in X \quad x \sim y \Longrightarrow y \sim x$
- transitive: $\forall x, y, z \in X \quad x \sim y \wedge y \sim z \Longrightarrow x \sim z$.

Example 1. Relation "=" on $\mathbb{R}$ is an equivalence relation, since it is reflexive: $\forall x \in \mathbb{R} \quad x=x$
symmetric:

## Equivalence relations

Definition. An equivalence relation on a set $X$ is a relation $\sim$ which is

- reflexive: $\forall x \in X \quad x \sim x$
- symmetric: $\forall x, y \in X \quad x \sim y \Longrightarrow y \sim x$
- transitive: $\forall x, y, z \in X \quad x \sim y \wedge y \sim z \Longrightarrow x \sim z$.

Example 1. Relation "=" on $\mathbb{R}$ is an equivalence relation, since it is reflexive: $\forall x \in \mathbb{R} \quad x=x$
symmetric: $\forall x, y \in \mathbb{R} \quad x=y \Longrightarrow y=x$,

## Equivalence relations

Definition. An equivalence relation on a set $X$ is a relation $\sim$ which is

- reflexive: $\forall x \in X \quad x \sim x$
- symmetric: $\forall x, y \in X \quad x \sim y \Longrightarrow y \sim x$
- transitive: $\forall x, y, z \in X \quad x \sim y \wedge y \sim z \Longrightarrow x \sim z$.

Example 1. Relation " $=$ " on $\mathbb{R}$ is an equivalence relation, since it is reflexive: $\forall x \in \mathbb{R} \quad x=x$
symmetric: $\forall x, y \in \mathbb{R} \quad x=y \Longrightarrow y=x$, transitive:

## Equivalence relations

Definition. An equivalence relation on a set $X$ is a relation $\sim$ which is

- reflexive: $\forall x \in X \quad x \sim x$
- symmetric: $\forall x, y \in X \quad x \sim y \Longrightarrow y \sim x$
- transitive: $\forall x, y, z \in X \quad x \sim y \wedge y \sim z \Longrightarrow x \sim z$.

Example 1. Relation "=" on $\mathbb{R}$ is an equivalence relation, since it is reflexive: $\forall x \in \mathbb{R} \quad x=x$
symmetric: $\forall x, y \in \mathbb{R} \quad x=y \Longrightarrow y=x$,
transitive: $\forall x, y, z \in \mathbb{R} \quad x=y \wedge y=z \Longrightarrow x=z$.

## Equivalence relations

Definition. An equivalence relation on a set $X$ is a relation $\sim$ which is

- reflexive: $\forall x \in X \quad x \sim x$
- symmetric: $\forall x, y \in X \quad x \sim y \Longrightarrow y \sim x$
- transitive: $\forall x, y, z \in X \quad x \sim y \wedge y \sim z \Longrightarrow x \sim z$.

Example 1. Relation "=" on $\mathbb{R}$ is an equivalence relation, since it is reflexive: $\forall x \in \mathbb{R} \quad x=x$
symmetric: $\forall x, y \in \mathbb{R} \quad x=y \Longrightarrow y=x$,
transitive: $\forall x, y, z \in \mathbb{R} \quad x=y \wedge y=z \Longrightarrow x=z$.

## Example 2.

## Equivalence relations

Definition. An equivalence relation on a set $X$ is a relation $\sim$ which is

- reflexive: $\forall x \in X \quad x \sim x$
- symmetric: $\forall x, y \in X \quad x \sim y \Longrightarrow y \sim x$
- transitive: $\forall x, y, z \in X \quad x \sim y \wedge y \sim z \Longrightarrow x \sim z$.

Example 1. Relation "=" on $\mathbb{R}$ is an equivalence relation, since it is reflexive: $\forall x \in \mathbb{R} \quad x=x$
symmetric: $\forall x, y \in \mathbb{R} \quad x=y \Longrightarrow y=x$,
transitive: $\forall x, y, z \in \mathbb{R} \quad x=y \wedge y=z \Longrightarrow x=z$.
Example 2. Relation "to be congruent" is an equivalence relation

## Equivalence relations

Definition. An equivalence relation on a set $X$ is a relation $\sim$ which is

- reflexive: $\forall x \in X \quad x \sim x$
- symmetric: $\forall x, y \in X \quad x \sim y \Longrightarrow y \sim x$
- transitive: $\forall x, y, z \in X \quad x \sim y \wedge y \sim z \Longrightarrow x \sim z$.

Example 1. Relation "=" on $\mathbb{R}$ is an equivalence relation, since it is
reflexive: $\forall x \in \mathbb{R} \quad x=x$
symmetric: $\forall x, y \in \mathbb{R} \quad x=y \Longrightarrow y=x$,
transitive: $\forall x, y, z \in \mathbb{R} \quad x=y \wedge y=z \Longrightarrow x=z$.
Example 2. Relation "to be congruent" is an equivalence relation on the set of all triangles on a plane.

## Equivalence relations

Definition. An equivalence relation on a set $X$ is a relation $\sim$ which is

- reflexive: $\forall x \in X \quad x \sim x$
- symmetric: $\forall x, y \in X \quad x \sim y \Longrightarrow y \sim x$
- transitive: $\forall x, y, z \in X \quad x \sim y \wedge y \sim z \Longrightarrow x \sim z$.

Example 1. Relation "=" on $\mathbb{R}$ is an equivalence relation, since it is
reflexive: $\forall x \in \mathbb{R} \quad x=x$
symmetric: $\forall x, y \in \mathbb{R} \quad x=y \Longrightarrow y=x$,
transitive: $\forall x, y, z \in \mathbb{R} \quad x=y \wedge y=z \Longrightarrow x=z$.
Example 2. Relation "to be congruent" is an equivalence relation on the set of all triangles on a plane.

## Example 3.

## Equivalence relations

Definition. An equivalence relation on a set $X$ is a relation $\sim$ which is

- reflexive: $\forall x \in X \quad x \sim x$
- symmetric: $\forall x, y \in X \quad x \sim y \Longrightarrow y \sim x$
- transitive: $\forall x, y, z \in X \quad x \sim y \wedge y \sim z \Longrightarrow x \sim z$.

Example 1. Relation " $=$ " on $\mathbb{R}$ is an equivalence relation, since it is
reflexive: $\forall x \in \mathbb{R} \quad x=x$
symmetric: $\forall x, y \in \mathbb{R} \quad x=y \Longrightarrow y=x$,
transitive: $\forall x, y, z \in \mathbb{R} \quad x=y \wedge y=z \Longrightarrow x=z$.
Example 2. Relation "to be congruent" is an equivalence relation on the set of all triangles on a plane.

Example 3. Similarity of triangles

## Equivalence relations

Definition. An equivalence relation on a set $X$ is a relation $\sim$ which is

- reflexive: $\forall x \in X \quad x \sim x$
- symmetric: $\forall x, y \in X \quad x \sim y \Longrightarrow y \sim x$
- transitive: $\forall x, y, z \in X \quad x \sim y \wedge y \sim z \Longrightarrow x \sim z$.

Example 1. Relation " $=$ " on $\mathbb{R}$ is an equivalence relation, since it is
reflexive: $\forall x \in \mathbb{R} \quad x=x$
symmetric: $\forall x, y \in \mathbb{R} \quad x=y \Longrightarrow y=x$,
transitive: $\forall x, y, z \in \mathbb{R} \quad x=y \wedge y=z \Longrightarrow x=z$.
Example 2. Relation "to be congruent" is an equivalence relation on the set of all triangles on a plane.

Example 3. Similarity of triangles is an equivalence relation

## Equivalence relations

Definition. An equivalence relation on a set $X$ is a relation $\sim$ which is

- reflexive: $\forall x \in X \quad x \sim x$
- symmetric: $\forall x, y \in X \quad x \sim y \Longrightarrow y \sim x$
- transitive: $\forall x, y, z \in X \quad x \sim y \wedge y \sim z \Longrightarrow x \sim z$.

Example 1. Relation " $=$ " on $\mathbb{R}$ is an equivalence relation, since it is
reflexive: $\forall x \in \mathbb{R} \quad x=x$
symmetric: $\forall x, y \in \mathbb{R} \quad x=y \Longrightarrow y=x$,
transitive: $\forall x, y, z \in \mathbb{R} \quad x=y \wedge y=z \Longrightarrow x=z$.
Example 2. Relation "to be congruent" is an equivalence relation on the set of all triangles on a plane.

Example 3. Similarity of triangles is an equivalence relation
on the set of all triangles on a plane.

## Examples of equivalence relations

Definitions in mathematics

## Examples of equivalence relations

Definitions in mathematics

## Example 4.

## Examples of equivalence relations

Definitions in mathematics

## Example 4. Relation "to be parallel" is an equivalence relation

## Examples of equivalence relations

## Example 4. Relation "to be parallel" is an equivalence relation

on the set of lines on a plane.

## Example 4. Relation "to be parallel" is an equivalence relation

on the set of lines on a plane.
Example 5 (from linear algebra).

## Examples of equivalence relations

## Example 4. Relation "to be parallel" is an equivalence relation

on the set of lines on a plane.
Example 5 (from linear algebra).
Two matrices $A, B \in \operatorname{Mat}_{n}(\mathbb{R})$ are called similar

## Examples of equivalence relations

Example 4. Relation "to be parallel" is an equivalence relation
on the set of lines on a plane.
Example 5 (from linear algebra).
Two matrices $A, B \in \operatorname{Mat}_{n}(\mathbb{R})$ are called similar
if there exists an invertible matrix $C$ such that $B=C^{-1} A C$.

Example 4. Relation "to be parallel" is an equivalence relation on the set of lines on a plane.

Example 5 (from linear algebra).
Two matrices $A, B \in \operatorname{Mat}_{n}(\mathbb{R})$ are called similar
if there exists an invertible matrix $C$ such that $B=C^{-1} A C$.
Similarity is an equivalence relation on $\operatorname{Mat}_{n}(\mathbb{R})$.

Example 4. Relation "to be parallel" is an equivalence relation on the set of lines on a plane.

Example 5 (from linear algebra).
Two matrices $A, B \in \operatorname{Mat}_{n}(\mathbb{R})$ are called similar
if there exists an invertible matrix $C$ such that $B=C^{-1} A C$.
Similarity is an equivalence relation on $\operatorname{Mat}_{n}(\mathbb{R})$.

## Example 6.

Example 4. Relation "to be parallel" is an equivalence relation on the set of lines on a plane.

Example 5 (from linear algebra).
Two matrices $A, B \in \operatorname{Mat}_{n}(\mathbb{R})$ are called similar if there exists an invertible matrix $C$ such that $B=C^{-1} A C$.

Similarity is an equivalence relation on $\operatorname{Mat}_{n}(\mathbb{R})$.

## Example 6. Friendship

Example 4. Relation "to be parallel" is an equivalence relation on the set of lines on a plane.

Example 5 (from linear algebra).
Two matrices $A, B \in \operatorname{Mat}_{n}(\mathbb{R})$ are called similar if there exists an invertible matrix $C$ such that $B=C^{-1} A C$.

Similarity is an equivalence relation on $\operatorname{Mat}_{n}(\mathbb{R})$.
Example 6. Friendship is not an equivalence relation

Example 4. Relation "to be parallel" is an equivalence relation on the set of lines on a plane.

Example 5 (from linear algebra).
Two matrices $A, B \in \operatorname{Mat}_{n}(\mathbb{R})$ are called similar if there exists an invertible matrix $C$ such that $B=C^{-1} A C$.

Similarity is an equivalence relation on $\operatorname{Mat}_{n}(\mathbb{R})$.
Example 6. Friendship is not an equivalence relation
(neither reflexive

Example 4. Relation "to be parallel" is an equivalence relation on the set of lines on a plane.

Example 5 (from linear algebra).
Two matrices $A, B \in \operatorname{Mat}_{n}(\mathbb{R})$ are called similar if there exists an invertible matrix $C$ such that $B=C^{-1} A C$.

Similarity is an equivalence relation on $M a t_{n}(\mathbb{R})$.
Example 6. Friendship is not an equivalence relation
(neither reflexive, nor transitive).

Example 4. Relation "to be parallel" is an equivalence relation on the set of lines on a plane.

Example 5 (from linear algebra).
Two matrices $A, B \in \operatorname{Mat}_{n}(\mathbb{R})$ are called similar
if there exists an invertible matrix $C$ such that $B=C^{-1} A C$.
Similarity is an equivalence relation on $\operatorname{Mat}_{n}(\mathbb{R})$.
Example 6. Friendship is not an equivalence relation
(neither reflexive, nor transitive).

## Example 7.

Example 4. Relation "to be parallel" is an equivalence relation on the set of lines on a plane.

Example 5 (from linear algebra).
Two matrices $A, B \in \operatorname{Mat}_{n}(\mathbb{R})$ are called similar
if there exists an invertible matrix $C$ such that $B=C^{-1} A C$.
Similarity is an equivalence relation on $\operatorname{Mat}_{n}(\mathbb{R})$.
Example 6. Friendship is not an equivalence relation
(neither reflexive, nor transitive).

Example 7. Love

Example 4. Relation "to be parallel" is an equivalence relation on the set of lines on a plane.

Example 5 (from linear algebra).
Two matrices $A, B \in \operatorname{Mat}_{n}(\mathbb{R})$ are called similar
if there exists an invertible matrix $C$ such that $B=C^{-1} A C$.
Similarity is an equivalence relation on $\operatorname{Mat}_{n}(\mathbb{R})$.
Example 6. Friendship is not an equivalence relation
(neither reflexive, nor transitive).
Example 7. Love is not an equivalence relation

Example 4. Relation "to be parallel" is an equivalence relation on the set of lines on a plane.

Example 5 (from linear algebra).
Two matrices $A, B \in \operatorname{Mat}_{n}(\mathbb{R})$ are called similar
if there exists an invertible matrix $C$ such that $B=C^{-1} A C$.
Similarity is an equivalence relation on $\operatorname{Mat}_{n}(\mathbb{R})$.
Example 6. Friendship is not an equivalence relation
(neither reflexive, nor transitive).
Example 7. Love is not an equivalence relation
(neither reflexive

Example 4. Relation "to be parallel" is an equivalence relation on the set of lines on a plane.

Example 5 (from linear algebra).
Two matrices $A, B \in \operatorname{Mat}_{n}(\mathbb{R})$ are called similar if there exists an invertible matrix $C$ such that $B=C^{-1} A C$.

Similarity is an equivalence relation on $\operatorname{Mat}_{n}(\mathbb{R})$.
Example 6. Friendship is not an equivalence relation
(neither reflexive, nor transitive).
Example 7. Love is not an equivalence relation
(neither reflexive, nor symmetric

Example 4. Relation "to be parallel" is an equivalence relation on the set of lines on a plane.

Example 5 (from linear algebra).
Two matrices $A, B \in \operatorname{Mat}_{n}(\mathbb{R})$ are called similar if there exists an invertible matrix $C$ such that $B=C^{-1} A C$.

Similarity is an equivalence relation on $\operatorname{Mat}_{n}(\mathbb{R})$.
Example 6. Friendship is not an equivalence relation
(neither reflexive, nor transitive).
Example 7. Love is not an equivalence relation
(neither reflexive, nor symmetric, nor transitive).

## Definition.

## Definition. Let $m \geq 2$ be a positive integer.

Definition. Let $m \geq 2$ be a positive integer.
Integers $a, b$ are said to be congruent modulo $m$

Definition. Let $m \geq 2$ be a positive integer.
Integers $a, b$ are said to be congruent modulo $m$ if $m \mid(a-b)$.

Definition. Let $m \geq 2$ be a positive integer.
Integers $a, b$ are said to be congruent modulo $m$ if $m \mid(a-b)$.
Notation: $a \equiv b \bmod m$

Definition. Let $m \geq 2$ be a positive integer. Integers $a, b$ are said to be congruent modulo $m$ if $m \mid(a-b)$.
Notation: $a \equiv b \bmod m$
By definition, $a \equiv b \bmod m$

Definition. Let $m \geq 2$ be a positive integer. Integers $a, b$ are said to be congruent modulo $m$ if $m \mid(a-b)$.
Notation: $a \equiv b \bmod m$
By definition, $a \equiv b \bmod m \Longleftrightarrow m \mid(a-b)$.

Definition. Let $m \geq 2$ be a positive integer. Integers $a, b$ are said to be congruent modulo $m$ if $m \mid(a-b)$.
Notation: $a \equiv b \bmod m$
By definition, $a \equiv b \bmod m \Longleftrightarrow m \mid(a-b)$.

## Examples.

Definition. Let $m \geq 2$ be a positive integer. Integers $a, b$ are said to be congruent modulo $m$ if $m \mid(a-b)$.
Notation: $a \equiv b \bmod m$
By definition, $a \equiv b \bmod m \Longleftrightarrow m \mid(a-b)$.
Examples. $7 \equiv 2 \bmod 5$

Definition. Let $m \geq 2$ be a positive integer. Integers $a, b$ are said to be congruent modulo $m$ if $m \mid(a-b)$.
Notation: $a \equiv b \bmod m$
By definition, $a \equiv b \bmod m \Longleftrightarrow m \mid(a-b)$.
Examples. $7 \equiv 2 \bmod 5$ since $5 \mid(7-2)$

Definition. Let $m \geq 2$ be a positive integer. Integers $a, b$ are said to be congruent modulo $m$ if $m \mid(a-b)$.
Notation: $a \equiv b \bmod m$
By definition, $a \equiv b \bmod m \Longleftrightarrow m \mid(a-b)$.
Examples. $7 \equiv 2 \bmod 5$ since $5 \mid(7-2)$

$$
-1 \equiv 13 \bmod 7
$$

Definition. Let $m \geq 2$ be a positive integer. Integers $a, b$ are said to be congruent modulo $m$ if $m \mid(a-b)$.
Notation: $a \equiv b \bmod m$
By definition, $a \equiv b \bmod m \Longleftrightarrow m \mid(a-b)$.
Examples. $7 \equiv 2 \bmod 5$ since $5 \mid(7-2)$
$-1 \equiv 13 \bmod 7$ since $7 \mid(-1-13)$

Theorem.

Theorem. Congruence modulo $m$ is an equivalence relation on $\mathbb{Z}$.

Theorem. Congruence modulo $m$ is an equivalence relation on $\mathbb{Z}$. Proof.

Theorem. Congruence modulo $m$ is an equivalence relation on $\mathbb{Z}$. Proof.
$\equiv \bmod m$ is reflexive:

Theorem. Congruence modulo $m$ is an equivalence relation on $\mathbb{Z}$. Proof.
$\equiv \bmod m$ is reflexive: $\forall a \in \mathbb{Z}$

Theorem. Congruence modulo $m$ is an equivalence relation on $\mathbb{Z}$. Proof.
$\equiv \bmod m$ is reflexive: $\forall a \in \mathbb{Z} \quad a \equiv a \bmod m$

Theorem. Congruence modulo $m$ is an equivalence relation on $\mathbb{Z}$. Proof.
$\equiv \bmod m$ is reflexive: $\forall a \in \mathbb{Z} \quad a \equiv a \bmod m \quad$ since $m \mid(a-a)$.

Theorem. Congruence modulo $m$ is an equivalence relation on $\mathbb{Z}$. Proof.
$\equiv \bmod m$ is reflexive: $\forall a \in \mathbb{Z} \quad a \equiv a \bmod m \quad$ since $m \mid(a-a)$.
$\equiv \bmod m$ is symmetric:

Theorem. Congruence modulo $m$ is an equivalence relation on $\mathbb{Z}$. Proof.
$\equiv \bmod m$ is reflexive: $\forall a \in \mathbb{Z} \quad a \equiv a \bmod m \quad$ since $m \mid(a-a)$.
$\equiv \bmod m$ is symmetric: $\forall a, b \in \mathbb{Z}$

Theorem. Congruence modulo $m$ is an equivalence relation on $\mathbb{Z}$. Proof.
$\equiv \bmod m$ is reflexive: $\forall a \in \mathbb{Z} \quad a \equiv a \bmod m \quad$ since $m \mid(a-a)$.
$\equiv \bmod m$ is symmetric: $\forall a, b \in \mathbb{Z} \quad a \equiv b \bmod m$

Theorem. Congruence modulo $m$ is an equivalence relation on $\mathbb{Z}$. Proof.
$\equiv \bmod m$ is reflexive: $\forall a \in \mathbb{Z} \quad a \equiv a \bmod m \quad$ since $m \mid(a-a)$.
$\equiv \bmod m$ is symmetric: $\forall a, b \in \mathbb{Z} \quad a \equiv b \bmod m \Longrightarrow b \equiv a \bmod m$

Theorem. Congruence modulo $m$ is an equivalence relation on $\mathbb{Z}$. Proof.
$\equiv \bmod m$ is reflexive: $\forall a \in \mathbb{Z} \quad a \equiv a \bmod m \quad$ since $m \mid(a-a)$.
$\equiv \bmod m$ is symmetric: $\forall a, b \in \mathbb{Z} \quad a \equiv b \bmod m \Longrightarrow b \equiv a \bmod m \quad$ since $m|(a-b) \Longrightarrow m|(b-a)$.

Theorem. Congruence modulo $m$ is an equivalence relation on $\mathbb{Z}$. Proof.
$\equiv \bmod m$ is reflexive: $\forall a \in \mathbb{Z} \quad a \equiv a \bmod m \quad$ since $m \mid(a-a)$.
$\equiv \bmod m$ is symmetric: $\forall a, b \in \mathbb{Z} \quad a \equiv b \bmod m \Longrightarrow b \equiv a \bmod m \quad$ since $m|(a-b) \Longrightarrow m|(b-a)$.
$\equiv \bmod m$ is transitive:

Theorem. Congruence modulo $m$ is an equivalence relation on $\mathbb{Z}$. Proof.
$\equiv \bmod m$ is reflexive: $\forall a \in \mathbb{Z} \quad a \equiv a \bmod m \quad$ since $m \mid(a-a)$.
$\equiv \bmod m$ is symmetric: $\forall a, b \in \mathbb{Z} \quad a \equiv b \bmod m \Longrightarrow b \equiv a \bmod m \quad$ since
$m|(a-b) \Longrightarrow m|(b-a)$.
$\equiv \bmod m$ is transitive:
$\forall a, b, c \in \mathbb{Z}$

Theorem. Congruence modulo $m$ is an equivalence relation on $\mathbb{Z}$. Proof.
$\equiv \bmod m$ is reflexive: $\forall a \in \mathbb{Z} \quad a \equiv a \bmod m \quad$ since $m \mid(a-a)$.
$\equiv \bmod m$ is symmetric: $\forall a, b \in \mathbb{Z} \quad a \equiv b \bmod m \Longrightarrow b \equiv a \bmod m \quad$ since $m|(a-b) \Longrightarrow m|(b-a)$.
$\equiv \bmod m$ is transitive:
$\forall a, b, c \in \mathbb{Z} \quad(a \equiv b \bmod m) \wedge(b \equiv c \bmod m)$

Theorem. Congruence modulo $m$ is an equivalence relation on $\mathbb{Z}$.

## Proof.

$\equiv \bmod m$ is reflexive: $\forall a \in \mathbb{Z} \quad a \equiv a \bmod m \quad$ since $m \mid(a-a)$.
$\equiv \bmod m$ is symmetric: $\forall a, b \in \mathbb{Z} \quad a \equiv b \bmod m \Longrightarrow b \equiv a \bmod m \quad$ since
$m|(a-b) \Longrightarrow m|(b-a)$.
$\equiv \bmod m$ is transitive:
$\forall a, b, c \in \mathbb{Z} \quad(a \equiv b \bmod m) \wedge(b \equiv c \bmod m) \Longrightarrow a \equiv c \bmod m$

Theorem. Congruence modulo $m$ is an equivalence relation on $\mathbb{Z}$. Proof.
$\equiv \bmod m$ is reflexive: $\forall a \in \mathbb{Z} \quad a \equiv a \bmod m \quad$ since $m \mid(a-a)$.
$\equiv \bmod m$ is symmetric: $\forall a, b \in \mathbb{Z} \quad a \equiv b \bmod m \Longrightarrow b \equiv a \bmod m \quad$ since
$m|(a-b) \Longrightarrow m|(b-a)$.
$\equiv \bmod m$ is transitive:
$\forall a, b, c \in \mathbb{Z} \quad(a \equiv b \bmod m) \wedge(b \equiv c \bmod m) \Longrightarrow a \equiv c \bmod m$
Indeed, $a \equiv b \bmod m \Longleftrightarrow m \mid(a-b)$

Theorem. Congruence modulo $m$ is an equivalence relation on $\mathbb{Z}$.

## Proof.

$\equiv \bmod m$ is reflexive: $\forall a \in \mathbb{Z} \quad a \equiv a \bmod m \quad$ since $m \mid(a-a)$.
$\equiv \bmod m$ is symmetric: $\forall a, b \in \mathbb{Z} \quad a \equiv b \bmod m \Longrightarrow b \equiv a \bmod m \quad$ since
$m|(a-b) \Longrightarrow m|(b-a)$.
$\equiv \bmod m$ is transitive:
$\forall a, b, c \in \mathbb{Z} \quad(a \equiv b \bmod m) \wedge(b \equiv c \bmod m) \Longrightarrow a \equiv c \bmod m$
Indeed, $a \equiv b \bmod m \Longleftrightarrow m \mid(a-b)$ and $b \equiv c \bmod m \Longleftrightarrow m \mid(b-c)$.

Theorem. Congruence modulo $m$ is an equivalence relation on $\mathbb{Z}$. Proof.
$\equiv \bmod m$ is reflexive: $\forall a \in \mathbb{Z} \quad a \equiv a \bmod m \quad$ since $m \mid(a-a)$.
$\equiv \bmod m$ is symmetric: $\forall a, b \in \mathbb{Z} \quad a \equiv b \bmod m \Longrightarrow b \equiv a \bmod m \quad$ since $m|(a-b) \Longrightarrow m|(b-a)$.
$\equiv \bmod m$ is transitive:
$\forall a, b, c \in \mathbb{Z} \quad(a \equiv b \bmod m) \wedge(b \equiv c \bmod m) \Longrightarrow a \equiv c \bmod m$
Indeed, $a \equiv b \bmod m \Longleftrightarrow m \mid(a-b)$ and $b \equiv c \bmod m \Longleftrightarrow m \mid(b-c)$.
In this case, $a-c=\underbrace{(a-b)}_{\text {div.by } m}+\underbrace{(b-c)}_{\text {div.by } m}$

Theorem. Congruence modulo $m$ is an equivalence relation on $\mathbb{Z}$. Proof.
$\equiv \bmod m$ is reflexive: $\forall a \in \mathbb{Z} \quad a \equiv a \bmod m \quad$ since $m \mid(a-a)$.
$\equiv \bmod m$ is symmetric: $\forall a, b \in \mathbb{Z} \quad a \equiv b \bmod m \Longrightarrow b \equiv a \bmod m \quad$ since $m|(a-b) \Longrightarrow m|(b-a)$.
$\equiv \bmod m$ is transitive:
$\forall a, b, c \in \mathbb{Z} \quad(a \equiv b \bmod m) \wedge(b \equiv c \bmod m) \Longrightarrow a \equiv c \bmod m$
Indeed, $a \equiv b \bmod m \Longleftrightarrow m \mid(a-b)$ and $b \equiv c \bmod m \Longleftrightarrow m \mid(b-c)$.
In this case, $a-c=\underbrace{(a-b)}_{\text {div.by } m}+\underbrace{(b-c)}_{\text {div.by } m}$ which is divisible by $m$.

Theorem. Congruence modulo $m$ is an equivalence relation on $\mathbb{Z}$. Proof.
$\equiv \bmod m$ is reflexive: $\forall a \in \mathbb{Z} \quad a \equiv a \bmod m \quad$ since $m \mid(a-a)$.
$\equiv \bmod m$ is symmetric: $\forall a, b \in \mathbb{Z} \quad a \equiv b \bmod m \Longrightarrow b \equiv a \bmod m \quad$ since $m|(a-b) \Longrightarrow m|(b-a)$.
$\equiv \bmod m$ is transitive:
$\forall a, b, c \in \mathbb{Z} \quad(a \equiv b \bmod m) \wedge(b \equiv c \bmod m) \Longrightarrow a \equiv c \bmod m$
Indeed, $a \equiv b \bmod m \Longleftrightarrow m \mid(a-b)$ and $b \equiv c \bmod m \Longleftrightarrow m \mid(b-c)$.
In this case, $a-c=\underbrace{(a-b)}_{\text {div.by } m}+\underbrace{(b-c)}_{\text {div.by } m}$ which is divisible by $m$.
Therefore, $a \equiv c \bmod m$.

Theorem. Congruence modulo $m$ is an equivalence relation on $\mathbb{Z}$. Proof.
$\equiv \bmod m$ is reflexive: $\forall a \in \mathbb{Z} \quad a \equiv a \bmod m \quad$ since $m \mid(a-a)$.
$\equiv \bmod m$ is symmetric: $\forall a, b \in \mathbb{Z} \quad a \equiv b \bmod m \Longrightarrow b \equiv a \bmod m \quad$ since $m|(a-b) \Longrightarrow m|(b-a)$.
$\equiv \bmod m$ is transitive:
$\forall a, b, c \in \mathbb{Z} \quad(a \equiv b \bmod m) \wedge(b \equiv c \bmod m) \Longrightarrow a \equiv c \bmod m$
Indeed, $a \equiv b \bmod m \Longleftrightarrow m \mid(a-b)$ and $b \equiv c \bmod m \Longleftrightarrow m \mid(b-c)$.
In this case, $a-c=\underbrace{(a-b)}_{\text {div.by } m}+\underbrace{(b-c)}_{\text {div.by } m}$ which is divisible by $m$.
Therefore, $a \equiv c \bmod m$.

Theorem. Congruence modulo $m$ is an equivalence relation on $\mathbb{Z}$. Proof.
$\equiv \bmod m$ is reflexive: $\forall a \in \mathbb{Z} \quad a \equiv a \bmod m \quad$ since $m \mid(a-a)$.
$\equiv \bmod m$ is symmetric: $\forall a, b \in \mathbb{Z} \quad a \equiv b \bmod m \Longrightarrow b \equiv a \bmod m \quad$ since $m|(a-b) \Longrightarrow m|(b-a)$.
$\equiv \bmod m$ is transitive:
$\forall a, b, c \in \mathbb{Z} \quad(a \equiv b \bmod m) \wedge(b \equiv c \bmod m) \Longrightarrow a \equiv c \bmod m$
Indeed, $a \equiv b \bmod m \Longleftrightarrow m \mid(a-b)$ and $b \equiv c \bmod m \Longleftrightarrow m \mid(b-c)$.
In this case, $a-c=\underbrace{(a-b)}+\underbrace{(b-c)}$ which is divisible by $m$.
div.by $m \quad$ div.by $m$

Therefore, $a \equiv c \bmod m$.

What about congruence of real numbers modulo $\pi$ ?

## Graph of congruence modulo 3

Definitions in mathematics

## Graph of congruence modulo 3

Let us draw the graph of congruence modulo 3 .

## Graph of congruence modulo 3

Let us draw the graph of congruence modulo 3 .
The graph of this relation is

## Graph of congruence modulo 3

Let us draw the graph of congruence modulo 3 .
The graph of this relation is $\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x \equiv y \bmod 3\}$

## Graph of congruence modulo 3

Let us draw the graph of congruence modulo 3 .
The graph of this relation is $\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x \equiv y \bmod 3\} \subseteq \mathbb{R}^{2}$

## Graph of congruence modulo 3

Let us draw the graph of congruence modulo 3 .
The graph of this relation is $\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x \equiv y \bmod 3\} \subseteq \mathbb{R}^{2}$


## Equivalence classes

Definitions in mathematics

## Equivalence classes

Definitions in mathematics

## Definition.

## Equivalence classes

Definitions in mathematics
Definition. Let $\sim$ be an equivalence relation on a set $X$.

## Equivalence classes

Definition. Let $\sim$ be an equivalence relation on a set $X$. Let $a \in X$.

## Equivalence classes

Definition. Let $\sim$ be an equivalence relation on a set $X$. Let $a \in X$. The set $[a]=\{x \in X \mid x \sim a\}$ of elements equivalent to $a$ is called<br>the equivalence class of $a$.

## Equivalence classes

Definition. Let $\sim$ be an equivalence relation on a set $X$. Let $a \in X$. The set $[a]=\{x \in X \mid x \sim a\}$ of elements equivalent to $a$ is called the equivalence class of $a$.

## Example.

## Equivalence classes

```
Definition. Let \(\sim\) be an equivalence relation on a set \(X\). Let \(a \in X\). The set \([a]=\{x \in X \mid x \sim a\}\) of elements equivalent to \(a\) is called the equivalence class of \(a\).
```

Example. Let $X=\mathbb{Z}$

Definition. Let $\sim$ be an equivalence relation on a set $X$. Let $a \in X$. The set $[a]=\{x \in X \mid x \sim a\}$ of elements equivalent to $a$ is called
the equivalence class of $a$.
Example. Let $X=\mathbb{Z}$ and $\sim$ be congruence modulo 3 .

Definition. Let $\sim$ be an equivalence relation on a set $X$. Let $a \in X$. The set $[a]=\{x \in X \mid x \sim a\}$ of elements equivalent to $a$ is called
the equivalence class of $a$.
Example. Let $X=\mathbb{Z}$ and $\sim$ be congruence modulo 3 .
What are equivalence classes?

Definition. Let $\sim$ be an equivalence relation on a set $X$. Let $a \in X$. The set $[a]=\{x \in X \mid x \sim a\}$ of elements equivalent to $a$ is called
the equivalence class of $a$.
Example. Let $X=\mathbb{Z}$ and $\sim$ be congruence modulo 3 .
What are equivalence classes?
[0] =

Definition. Let $\sim$ be an equivalence relation on a set $X$. Let $a \in X$. The set $[a]=\{x \in X \mid x \sim a\}$ of elements equivalent to $a$ is called
the equivalence class of $a$.
Example. Let $X=\mathbb{Z}$ and $\sim$ be congruence modulo 3 .
What are equivalence classes?
$[0]=\{x \in \mathbb{Z} \mid x \equiv 0 \bmod 3\}=$

Definition. Let $\sim$ be an equivalence relation on a set $X$. Let $a \in X$. The set $[a]=\{x \in X \mid x \sim a\}$ of elements equivalent to $a$ is called
the equivalence class of $a$.
Example. Let $X=\mathbb{Z}$ and $\sim$ be congruence modulo 3 .
What are equivalence classes?
$[0]=\{x \in \mathbb{Z} \mid x \equiv 0 \bmod 3\}=\{0, \pm 3, \pm 6, \pm 9, \ldots\}$

## Equivalence classes

Definition. Let $\sim$ be an equivalence relation on a set $X$. Let $a \in X$. The set $[a]=\{x \in X \mid x \sim a\}$ of elements equivalent to $a$ is called
the equivalence class of $a$.
Example. Let $X=\mathbb{Z}$ and $\sim$ be congruence modulo 3 .
What are equivalence classes?
$[0]=\{x \in \mathbb{Z} \mid x \equiv 0 \bmod 3\}=\{0, \pm 3, \pm 6, \pm 9, \ldots\}=\{3 k \mid k \in \mathbb{Z}\}$

Definition. Let $\sim$ be an equivalence relation on a set $X$. Let $a \in X$. The set $[a]=\{x \in X \mid x \sim a\}$ of elements equivalent to $a$ is called
the equivalence class of $a$.
Example. Let $X=\mathbb{Z}$ and $\sim$ be congruence modulo 3 .
What are equivalence classes?
$[0]=\{x \in \mathbb{Z} \mid x \equiv 0 \bmod 3\}=\{0, \pm 3, \pm 6, \pm 9, \ldots\}=\{3 k \mid k \in \mathbb{Z}\} \subseteq \mathbb{Z}$

Definition. Let $\sim$ be an equivalence relation on a set $X$. Let $a \in X$. The set $[a]=\{x \in X \mid x \sim a\}$ of elements equivalent to $a$ is called
the equivalence class of $a$.
Example. Let $X=\mathbb{Z}$ and $\sim$ be congruence modulo 3 .
What are equivalence classes?
$[0]=\{x \in \mathbb{Z} \mid x \equiv 0 \bmod 3\}=\{0, \pm 3, \pm 6, \pm 9, \ldots\}=\{3 k \mid k \in \mathbb{Z}\} \subseteq \mathbb{Z}$
[3] =

Definition. Let $\sim$ be an equivalence relation on a set $X$. Let $a \in X$. The set $[a]=\{x \in X \mid x \sim a\}$ of elements equivalent to $a$ is called
the equivalence class of $a$.
Example. Let $X=\mathbb{Z}$ and $\sim$ be congruence modulo 3 .
What are equivalence classes?
$[0]=\{x \in \mathbb{Z} \mid x \equiv 0 \bmod 3\}=\{0, \pm 3, \pm 6, \pm 9, \ldots\}=\{3 k \mid k \in \mathbb{Z}\} \subseteq \mathbb{Z}$
$[3]=\{x \in \mathbb{Z} \mid x \equiv 3 \bmod 3\}$

Definition. Let $\sim$ be an equivalence relation on a set $X$. Let $a \in X$. The set $[a]=\{x \in X \mid x \sim a\}$ of elements equivalent to $a$ is called
the equivalence class of $a$.
Example. Let $X=\mathbb{Z}$ and $\sim$ be congruence modulo 3 .
What are equivalence classes?
$[0]=\{x \in \mathbb{Z} \mid x \equiv 0 \bmod 3\}=\{0, \pm 3, \pm 6, \pm 9, \ldots\}=\{3 k \mid k \in \mathbb{Z}\} \subseteq \mathbb{Z}$
$[3]=\{x \in \mathbb{Z} \mid x \equiv 3 \bmod 3\}=\{x \in \mathbb{Z} \mid x \equiv 0 \bmod 3\}$

Definition. Let $\sim$ be an equivalence relation on a set $X$. Let $a \in X$. The set $[a]=\{x \in X \mid x \sim a\}$ of elements equivalent to $a$ is called
the equivalence class of $a$.
Example. Let $X=\mathbb{Z}$ and $\sim$ be congruence modulo 3 .
What are equivalence classes?
$[0]=\{x \in \mathbb{Z} \mid x \equiv 0 \bmod 3\}=\{0, \pm 3, \pm 6, \pm 9, \ldots\}=\{3 k \mid k \in \mathbb{Z}\} \subseteq \mathbb{Z}$
$[3]=\{x \in \mathbb{Z} \mid x \equiv 3 \bmod 3\}=\{x \in \mathbb{Z} \mid x \equiv 0 \bmod 3\}=[0]$,

Definition. Let $\sim$ be an equivalence relation on a set $X$. Let $a \in X$. The set $[a]=\{x \in X \mid x \sim a\}$ of elements equivalent to $a$ is called
the equivalence class of $a$.
Example. Let $X=\mathbb{Z}$ and $\sim$ be congruence modulo 3 .
What are equivalence classes?

$$
\begin{aligned}
& {[0]=\{x \in \mathbb{Z} \mid x \equiv 0 \bmod 3\}=\{0, \pm 3, \pm 6, \pm 9, \ldots\}=\{3 k \mid k \in \mathbb{Z}\} \subseteq \mathbb{Z}} \\
& {[3]=\{x \in \mathbb{Z} \mid x \equiv 3 \bmod 3\}=\{x \in \mathbb{Z} \mid x \equiv 0 \bmod 3\}=[0], \text { since }}
\end{aligned}
$$

$$
3 \equiv 0 \bmod 3
$$

Definition. Let $\sim$ be an equivalence relation on a set $X$. Let $a \in X$. The set $[a]=\{x \in X \mid x \sim a\}$ of elements equivalent to $a$ is called
the equivalence class of $a$.
Example. Let $X=\mathbb{Z}$ and $\sim$ be congruence modulo 3 .
What are equivalence classes?
$[0]=\{x \in \mathbb{Z} \mid x \equiv 0 \bmod 3\}=\{0, \pm 3, \pm 6, \pm 9, \ldots\}=\{3 k \mid k \in \mathbb{Z}\} \subseteq \mathbb{Z}$
$[3]=\{x \in \mathbb{Z} \mid x \equiv 3 \bmod 3\}=\{x \in \mathbb{Z} \mid x \equiv 0 \bmod 3\}=[0]$, since

$$
3 \equiv 0 \bmod 3 .
$$

$[0]=[3]$

Definition. Let $\sim$ be an equivalence relation on a set $X$. Let $a \in X$. The set $[a]=\{x \in X \mid x \sim a\}$ of elements equivalent to $a$ is called
the equivalence class of $a$.
Example. Let $X=\mathbb{Z}$ and $\sim$ be congruence modulo 3 .
What are equivalence classes?
$[0]=\{x \in \mathbb{Z} \mid x \equiv 0 \bmod 3\}=\{0, \pm 3, \pm 6, \pm 9, \ldots\}=\{3 k \mid k \in \mathbb{Z}\} \subseteq \mathbb{Z}$
$[3]=\{x \in \mathbb{Z} \mid x \equiv 3 \bmod 3\}=\{x \in \mathbb{Z} \mid x \equiv 0 \bmod 3\}=[0]$, since

$$
3 \equiv 0 \bmod 3 .
$$

$[0]=[3]=[-3]$

Definition. Let $\sim$ be an equivalence relation on a set $X$. Let $a \in X$. The set $[a]=\{x \in X \mid x \sim a\}$ of elements equivalent to $a$ is called
the equivalence class of $a$.
Example. Let $X=\mathbb{Z}$ and $\sim$ be congruence modulo 3 .
What are equivalence classes?
$[0]=\{x \in \mathbb{Z} \mid x \equiv 0 \bmod 3\}=\{0, \pm 3, \pm 6, \pm 9, \ldots\}=\{3 k \mid k \in \mathbb{Z}\} \subseteq \mathbb{Z}$
$[3]=\{x \in \mathbb{Z} \mid x \equiv 3 \bmod 3\}=\{x \in \mathbb{Z} \mid x \equiv 0 \bmod 3\}=[0]$, since

$$
3 \equiv 0 \bmod 3 .
$$

$[0]=[3]=[-3]=[6]$

Definition. Let $\sim$ be an equivalence relation on a set $X$. Let $a \in X$. The set $[a]=\{x \in X \mid x \sim a\}$ of elements equivalent to $a$ is called
the equivalence class of $a$.
Example. Let $X=\mathbb{Z}$ and $\sim$ be congruence modulo 3 .
What are equivalence classes?
$[0]=\{x \in \mathbb{Z} \mid x \equiv 0 \bmod 3\}=\{0, \pm 3, \pm 6, \pm 9, \ldots\}=\{3 k \mid k \in \mathbb{Z}\} \subseteq \mathbb{Z}$
$[3]=\{x \in \mathbb{Z} \mid x \equiv 3 \bmod 3\}=\{x \in \mathbb{Z} \mid x \equiv 0 \bmod 3\}=[0]$, since

$$
3 \equiv 0 \bmod 3 .
$$

$[0]=[3]=[-3]=[6]=[2019]=\ldots$

Definition. Let $\sim$ be an equivalence relation on a set $X$. Let $a \in X$. The set $[a]=\{x \in X \mid x \sim a\}$ of elements equivalent to $a$ is called
the equivalence class of $a$.
Example. Let $X=\mathbb{Z}$ and $\sim$ be congruence modulo 3 .
What are equivalence classes?
$[0]=\{x \in \mathbb{Z} \mid x \equiv 0 \bmod 3\}=\{0, \pm 3, \pm 6, \pm 9, \ldots\}=\{3 k \mid k \in \mathbb{Z}\} \subseteq \mathbb{Z}$
$[3]=\{x \in \mathbb{Z} \mid x \equiv 3 \bmod 3\}=\{x \in \mathbb{Z} \mid x \equiv 0 \bmod 3\}=[0]$, since $3 \equiv 0 \bmod 3$.
$[0]=[3]=[-3]=[6]=[2019]=\ldots$
$[a]=[b] \Longleftrightarrow a \equiv b \bmod 3$

## Equivalence classes

Definition. Let $\sim$ be an equivalence relation on a set $X$. Let $a \in X$. The set $[a]=\{x \in X \mid x \sim a\}$ of elements equivalent to $a$ is called the equivalence class of $a$.

Example. Let $X=\mathbb{Z}$ and $\sim$ be congruence modulo 3 .
What are equivalence classes?

$$
\begin{aligned}
& {[0]=\{x \in \mathbb{Z} \mid x \equiv 0 \bmod 3\}=\{0, \pm 3, \pm 6, \pm 9, \ldots\}=\{3 k \mid k \in \mathbb{Z}\} \subseteq \mathbb{Z}} \\
& {[3]=\{x \in \mathbb{Z} \mid x \equiv 3 \bmod 3\}=\{x \in \mathbb{Z} \mid x \equiv 0 \bmod 3\}=[0], \text { since }}
\end{aligned}
$$

$$
3 \equiv 0 \bmod 3 .
$$

$$
[0]=[3]=[-3]=[6]=[2019]=\ldots
$$

$$
[a]=[b] \Longleftrightarrow a \equiv b \bmod 3
$$



## Equivalence classes

Definition. Let $\sim$ be an equivalence relation on a set $X$. Let $a \in X$. The set $[a]=\{x \in X \mid x \sim a\}$ of elements equivalent to $a$ is called
the equivalence class of $a$.
Example. Let $X=\mathbb{Z}$ and $\sim$ be congruence modulo 3 .
What are equivalence classes?
$[0]=\{x \in \mathbb{Z} \mid x \equiv 0 \bmod 3\}=\{0, \pm 3, \pm 6, \pm 9, \ldots\}=\{3 k \mid k \in \mathbb{Z}\} \subseteq \mathbb{Z}$
$[3]=\{x \in \mathbb{Z} \mid x \equiv 3 \bmod 3\}=\{x \in \mathbb{Z} \mid x \equiv 0 \bmod 3\}=[0]$, since $3 \equiv 0 \bmod 3$.
$[0]=[3]=[-3]=[6]=[2019]=\ldots$
$[a]=[b] \Longleftrightarrow a \equiv b \bmod 3$


Numbers $\ldots,-9,-6,-3,0,3,6,9, \ldots$

## Equivalence classes

Definition. Let $\sim$ be an equivalence relation on a set $X$. Let $a \in X$. The set $[a]=\{x \in X \mid x \sim a\}$ of elements equivalent to $a$ is called
the equivalence class of $a$.
Example. Let $X=\mathbb{Z}$ and $\sim$ be congruence modulo 3 .
What are equivalence classes?
$[0]=\{x \in \mathbb{Z} \mid x \equiv 0 \bmod 3\}=\{0, \pm 3, \pm 6, \pm 9, \ldots\}=\{3 k \mid k \in \mathbb{Z}\} \subseteq \mathbb{Z}$
$[3]=\{x \in \mathbb{Z} \mid x \equiv 3 \bmod 3\}=\{x \in \mathbb{Z} \mid x \equiv 0 \bmod 3\}=[0]$, since $3 \equiv 0 \bmod 3$.
$[0]=[3]=[-3]=[6]=[2019]=\ldots$
$[a]=[b] \Longleftrightarrow a \equiv b \bmod 3$


Numbers $\ldots,-9,-6,-3,0,3,6,9, \ldots$ are called representatives of the class [0].

Congruence classes modulo 3
Definitions in mathematics

In general,

In general, $[a]=[b] \Longleftrightarrow a \sim b$.

In general, $[a]=[b] \Longleftrightarrow a \sim b$.
[1] =

$$
\begin{aligned}
& \text { In general, }[a]=[b] \Longleftrightarrow a \sim b . \\
& {[1]=\{x \in \mathbb{Z} \mid x \equiv 1 \bmod 3\}=}
\end{aligned}
$$

## Congruence classes modulo 3

In general, $[a]=[b] \Longleftrightarrow a \sim b$.
$[1]=\{x \in \mathbb{Z} \mid x \equiv 1 \bmod 3\}=\{\ldots,-5,-2,1,4,7, \ldots\}$

In general, $[a]=[b] \Longleftrightarrow a \sim b$.

$$
\begin{aligned}
{[1]=\{x \in \mathbb{Z} \mid x \equiv 1 \bmod 3\}=} & \{\ldots,-5,-2,1,4,7, \ldots\} \\
& =\{3 k+1 \mid k \in \mathbb{Z}\}
\end{aligned}
$$

In general, $[a]=[b] \Longleftrightarrow a \sim b$.

$$
\begin{aligned}
{[1]=\{x \in \mathbb{Z} \mid x \equiv 1 \bmod 3\}=} & \{\ldots,-5,-2,1,4,7, \ldots\} \\
& =\{3 k+1 \mid k \in \mathbb{Z}\} \subseteq \mathbb{Z}
\end{aligned}
$$

## Congruence classes modulo 3

In general, $[a]=[b] \Longleftrightarrow a \sim b$.
$[1]=\{x \in \mathbb{Z} \mid x \equiv 1 \bmod 3\}=\{\ldots,-5,-2,1,4,7, \ldots\}$

$$
=\{3 k+1 \mid k \in \mathbb{Z}\} \subseteq \mathbb{Z}
$$



## Congruence classes modulo 3

In general, $[a]=[b] \Longleftrightarrow a \sim b$.
$[1]=\{x \in \mathbb{Z} \mid x \equiv 1 \bmod 3\}=\{\ldots,-5,-2,1,4,7, \ldots\}$

$$
=\{3 k+1 \mid k \in \mathbb{Z}\} \subseteq \mathbb{Z}
$$


[2] =

## Congruence classes modulo 3

In general, $[a]=[b] \Longleftrightarrow a \sim b$.
$[1]=\{x \in \mathbb{Z} \mid x \equiv 1 \bmod 3\}=\{\ldots,-5,-2,1,4,7, \ldots\}$

$$
=\{3 k+1 \mid k \in \mathbb{Z}\} \subseteq \mathbb{Z}
$$



$$
[2]=\{x \in \mathbb{Z} \mid x \equiv 2 \bmod 3\}=
$$

## Congruence classes modulo 3

$$
\text { In general, }[a]=[b] \Longleftrightarrow a \sim b .
$$

$$
[1]=\{x \in \mathbb{Z} \mid x \equiv 1 \bmod 3\}=\{\ldots,-5,-2,1,4,7, \ldots\}
$$

$$
=\{3 k+1 \mid k \in \mathbb{Z}\} \subseteq \mathbb{Z}
$$


$[2]=\{x \in \mathbb{Z} \mid x \equiv 2 \bmod 3\}=\{\ldots,-4,-1,2,5,8, \ldots\}$

## Congruence classes modulo 3

$$
\text { In general, }[a]=[b] \Longleftrightarrow a \sim b .
$$

$$
[1]=\{x \in \mathbb{Z} \mid x \equiv 1 \bmod 3\}=\{\ldots,-5,-2,1,4,7, \ldots\}
$$

$$
=\{3 k+1 \mid k \in \mathbb{Z}\} \subseteq \mathbb{Z}
$$



$$
\begin{aligned}
{[2]=\{x \in \mathbb{Z} \mid x \equiv 2 \bmod 3\}=} & \{\ldots,-4,-1,2,5,8, \ldots\} \\
& =\{3 k+2 \mid k \in \mathbb{Z}\}
\end{aligned}
$$

## Congruence classes modulo 3

$$
\text { In general, }[a]=[b] \Longleftrightarrow a \sim b
$$

$$
[1]=\{x \in \mathbb{Z} \mid x \equiv 1 \bmod 3\}=\{\ldots,-5,-2,1,4,7, \ldots\}
$$

$$
=\{3 k+1 \mid k \in \mathbb{Z}\} \subseteq \mathbb{Z}
$$



$$
\begin{aligned}
{[2]=\{x \in \mathbb{Z} \mid x \equiv 2 \bmod 3\}=} & \{\ldots,-4,-1,2,5,8, \ldots\} \\
& =\{3 k+2 \mid k \in \mathbb{Z}\} \subseteq \mathbb{Z}
\end{aligned}
$$

## Congruence classes modulo 3

```
In general, [a]=[b]\Longleftrightarrowa~b.
```

$[1]=\{x \in \mathbb{Z} \mid x \equiv 1 \bmod 3\}=\{\ldots,-5,-2,1,4,7, \ldots\}$
$=\{3 k+1 \mid k \in \mathbb{Z}\} \subseteq \mathbb{Z}$

$[2]=\{x \in \mathbb{Z} \mid x \equiv 2 \bmod 3\}=\{\ldots,-4,-1,2,5,8, \ldots\}$

$$
=\{3 k+2 \mid k \in \mathbb{Z}\} \subseteq \mathbb{Z}
$$



## Equivalence classes modulo 3

Definitions in mathematics

## Equivalence classes modulo 3

Definitions in mathematics

There are three equivalence classes:

## Equivalence classes modulo 3

Definitions in mathematics

There are three equivalence classes: [0], [1], [2]
(they are called congruence classes):

There are three equivalence classes: [0], [1], [2]
(they are called congruence classes):


There are three equivalence classes: [0], [1], [2]
(they are called congruence classes):


They are 1) pairwise disjoint:

There are three equivalence classes: $[0],[1],[2]$
(they are called congruence classes):


They are 1) pairwise disjoint: $[0] \cap[1]=\varnothing$,

There are three equivalence classes: $[0],[1],[2]$
(they are called congruence classes):


They are 1) pairwise disjoint: $[0] \cap[1]=\varnothing, \quad[0] \cap[2]=\varnothing$,

There are three equivalence classes: [0], [1], [2]
(they are called congruence classes):


They are 1) pairwise disjoint: $[0] \cap[1]=\varnothing, \quad[0] \cap[2]=\varnothing, \quad[1] \cap[2]=\varnothing$,

There are three equivalence classes: [0], [1], [2]
(they are called congruence classes):


They are 1) pairwise disjoint: $[0] \cap[1]=\varnothing, \quad[0] \cap[2]=\varnothing, \quad[1] \cap[2]=\varnothing$, and 2) cover the whole $\mathbb{Z}$ :

There are three equivalence classes: [0], [1], [2]
(they are called congruence classes):


They are 1) pairwise disjoint: $[0] \cap[1]=\varnothing, \quad[0] \cap[2]=\varnothing, \quad[1] \cap[2]=\varnothing$, and 2) cover the whole $\mathbb{Z}: \mathbb{Z}=[0] \cup[1] \cup[2]$

There are three equivalence classes: [0], [1], [2]
(they are called congruence classes):


They are 1) pairwise disjoint: $[0] \cap[1]=\varnothing, \quad[0] \cap[2]=\varnothing, \quad[1] \cap[2]=\varnothing$,
and 2) cover the whole $\mathbb{Z}: \mathbb{Z}=[0] \cup[1] \cup[2]$

There are three equivalence classes: [0], [1], [2]
(they are called congruence classes):


They are 1) pairwise disjoint: $[0] \cap[1]=\varnothing, \quad[0] \cap[2]=\varnothing, \quad[1] \cap[2]=\varnothing$, and 2) cover the whole $\mathbb{Z}: \mathbb{Z}=[0] \cup[1] \cup[2]$


There are three equivalence classes: [0], [1], [2]
(they are called congruence classes):


They are 1) pairwise disjoint: $[0] \cap[1]=\varnothing, \quad[0] \cap[2]=\varnothing, \quad[1] \cap[2]=\varnothing$,
and 2) cover the whole $\mathbb{Z}: \mathbb{Z}=[0] \cup[1] \cup[2]$


There are three equivalence classes: [0], [1], [2]
(they are called congruence classes):


They are 1) pairwise disjoint: $[0] \cap[1]=\varnothing, \quad[0] \cap[2]=\varnothing, \quad[1] \cap[2]=\varnothing$,
and 2) cover the whole $\mathbb{Z}: \mathbb{Z}=[0] \cup[1] \cup[2]$


There are three equivalence classes: [0], [1], [2]
(they are called congruence classes):


They are 1) pairwise disjoint: $[0] \cap[1]=\varnothing, \quad[0] \cap[2]=\varnothing, \quad[1] \cap[2]=\varnothing$, and 2) cover the whole $\mathbb{Z}: \mathbb{Z}=[0] \cup[1] \cup[2]$


There are three equivalence classes: [0], [1], [2]
(they are called congruence classes):


They are 1) pairwise disjoint: $[0] \cap[1]=\varnothing, \quad[0] \cap[2]=\varnothing, \quad[1] \cap[2]=\varnothing$, and 2) cover the whole $\mathbb{Z}: \mathbb{Z}=[0] \cup[1] \cup[2]$


There are three equivalence classes: [0], [1], [2]
(they are called congruence classes):


They are 1) pairwise disjoint: $[0] \cap[1]=\varnothing, \quad[0] \cap[2]=\varnothing, \quad[1] \cap[2]=\varnothing$, and 2) cover the whole $\mathbb{Z}: \mathbb{Z}=[0] \cup[1] \cup[2]$


There are three equivalence classes: [0], [1], [2]
(they are called congruence classes):


They are 1) pairwise disjoint: $[0] \cap[1]=\varnothing, \quad[0] \cap[2]=\varnothing, \quad[1] \cap[2]=\varnothing$, and 2) cover the whole $\mathbb{Z}: \mathbb{Z}=[0] \cup[1] \cup[2]$


There are three equivalence classes: [0], [1], [2]
(they are called congruence classes):


They are 1) pairwise disjoint: $[0] \cap[1]=\varnothing, \quad[0] \cap[2]=\varnothing, \quad[1] \cap[2]=\varnothing$, and 2) cover the whole $\mathbb{Z}: \mathbb{Z}=[0] \cup[1] \cup[2]$


## Equivalence classes are disjoint

Definitions in mathematics

## Equivalence classes are disjoint

Definitions in mathematics

Theorem.

## Equivalence classes are disjoint

Definitions in mathematics

Theorem. Let $\sim$ be an equivalence relation on $X$.

## Equivalence classes are disjoint

Theorem. Let $\sim$ be an equivalence relation on $X$. Then

$$
\forall a, b \in X \quad[a]=[b] \text { or }[a] \cap[b]=\varnothing .
$$

## Equivalence classes are disjoint

Theorem. Let $\sim$ be an equivalence relation on $X$. Then

$$
\forall a, b \in X \quad[a]=[b] \text { or }[a] \cap[b]=\varnothing .
$$

Equivalence classes are either coincide or disjoint.

## Equivalence classes are disjoint

Theorem. Let $\sim$ be an equivalence relation on $X$. Then

$$
\forall a, b \in X \quad[a]=[b] \text { or }[a] \cap[b]=\varnothing .
$$

Equivalence classes are either coincide or disjoint.

## Proof.

## Equivalence classes are disjoint

Theorem. Let $\sim$ be an equivalence relation on $X$. Then

$$
\forall a, b \in X \quad[a]=[b] \text { or }[a] \cap[b]=\varnothing .
$$

Equivalence classes are either coincide or disjoint.
Proof. Take any $a, b \in X$

## Equivalence classes are disjoint

Theorem. Let $\sim$ be an equivalence relation on $X$. Then

$$
\forall a, b \in X \quad[a]=[b] \text { or }[a] \cap[b]=\varnothing .
$$

Equivalence classes are either coincide or disjoint.
Proof. Take any $a, b \in X$ and assume that $[a] \cap[b] \neq \varnothing$.

## Equivalence classes are disjoint

Theorem. Let $\sim$ be an equivalence relation on $X$. Then

$$
\forall a, b \in X \quad[a]=[b] \text { or }[a] \cap[b]=\varnothing .
$$

Equivalence classes are either coincide or disjoint.
Proof. Take any $a, b \in X$ and assume that $[a] \cap[b] \neq \varnothing$.
Then $\exists c \in X$

## Equivalence classes are disjoint

Theorem. Let $\sim$ be an equivalence relation on $X$. Then

$$
\forall a, b \in X \quad[a]=[b] \text { or }[a] \cap[b]=\varnothing .
$$

Equivalence classes are either coincide or disjoint.
Proof. Take any $a, b \in X$ and assume that $[a] \cap[b] \neq \varnothing$.
Then $\exists c \in X$ such that $c \in[a]$ and $c \in[b]$.

## Equivalence classes are disjoint

Theorem. Let $\sim$ be an equivalence relation on $X$. Then

$$
\forall a, b \in X \quad[a]=[b] \text { or }[a] \cap[b]=\varnothing .
$$

Equivalence classes are either coincide or disjoint.
Proof. Take any $a, b \in X$ and assume that $[a] \cap[b] \neq \varnothing$.
Then $\exists c \in X$ such that $c \in[a]$ and $c \in[b]$. It means that

## Equivalence classes are disjoint

Theorem. Let $\sim$ be an equivalence relation on $X$. Then

$$
\forall a, b \in X \quad[a]=[b] \text { or }[a] \cap[b]=\varnothing .
$$

Equivalence classes are either coincide or disjoint.
Proof. Take any $a, b \in X$ and assume that $[a] \cap[b] \neq \varnothing$.
Then $\exists c \in X$ such that $c \in[a]$ and $c \in[b]$. It means that $c \sim a$ and $c \sim b$,

## Equivalence classes are disjoint

Theorem. Let $\sim$ be an equivalence relation on $X$. Then

$$
\forall a, b \in X \quad[a]=[b] \text { or }[a] \cap[b]=\varnothing .
$$

Equivalence classes are either coincide or disjoint.
Proof. Take any $a, b \in X$ and assume that $[a] \cap[b] \neq \varnothing$.
Then $\exists c \in X$ such that $c \in[a]$ and $c \in[b]$. It means that $c \sim a$ and $c \sim b$, therefore $a \sim b$.

## Equivalence classes are disjoint

Theorem. Let $\sim$ be an equivalence relation on $X$. Then

$$
\forall a, b \in X \quad[a]=[b] \text { or }[a] \cap[b]=\varnothing .
$$

Equivalence classes are either coincide or disjoint.
Proof. Take any $a, b \in X$ and assume that $[a] \cap[b] \neq \varnothing$.
Then $\exists c \in X$ such that $c \in[a]$ and $c \in[b]$. It means that $c \sim a$ and $c \sim b$, therefore $a \sim b$.

Let us prove that $[a]=[b]$.

## Equivalence classes are disjoint

Theorem. Let $\sim$ be an equivalence relation on $X$. Then

$$
\forall a, b \in X \quad[a]=[b] \text { or }[a] \cap[b]=\varnothing .
$$

Equivalence classes are either coincide or disjoint.
Proof. Take any $a, b \in X$ and assume that $[a] \cap[b] \neq \varnothing$.
Then $\exists c \in X$ such that $c \in[a]$ and $c \in[b]$. It means that $c \sim a$ and $c \sim b$, therefore $a \sim b$.

Let us prove that $[a]=[b]$.
Take any $x \in[a]$.

## Equivalence classes are disjoint

Theorem. Let $\sim$ be an equivalence relation on $X$. Then

$$
\forall a, b \in X \quad[a]=[b] \text { or }[a] \cap[b]=\varnothing .
$$

Equivalence classes are either coincide or disjoint.
Proof. Take any $a, b \in X$ and assume that $[a] \cap[b] \neq \varnothing$.
Then $\exists c \in X$ such that $c \in[a]$ and $c \in[b]$. It means that $c \sim a$ and $c \sim b$, therefore $a \sim b$.

Let us prove that $[a]=[b]$.
Take any $x \in[a]$. Then $x \sim a$,

## Equivalence classes are disjoint

Theorem. Let $\sim$ be an equivalence relation on $X$. Then

$$
\forall a, b \in X \quad[a]=[b] \text { or }[a] \cap[b]=\varnothing .
$$

Equivalence classes are either coincide or disjoint.
Proof. Take any $a, b \in X$ and assume that $[a] \cap[b] \neq \varnothing$.
Then $\exists c \in X$ such that $c \in[a]$ and $c \in[b]$. It means that $c \sim a$ and $c \sim b$, therefore $a \sim b$.

Let us prove that $[a]=[b]$.
Take any $x \in[a]$. Then $x \sim a$, but $a \sim b$,

## Equivalence classes are disjoint

Theorem. Let $\sim$ be an equivalence relation on $X$. Then

$$
\forall a, b \in X \quad[a]=[b] \text { or }[a] \cap[b]=\varnothing .
$$

Equivalence classes are either coincide or disjoint.
Proof. Take any $a, b \in X$ and assume that $[a] \cap[b] \neq \varnothing$.
Then $\exists c \in X$ such that $c \in[a]$ and $c \in[b]$. It means that $c \sim a$ and $c \sim b$, therefore $a \sim b$.

Let us prove that $[a]=[b]$.
Take any $x \in[a]$. Then $x \sim a$, but $a \sim b$, so $x \sim b$

## Equivalence classes are disjoint

Theorem. Let $\sim$ be an equivalence relation on $X$. Then

$$
\forall a, b \in X \quad[a]=[b] \text { or }[a] \cap[b]=\varnothing .
$$

Equivalence classes are either coincide or disjoint.
Proof. Take any $a, b \in X$ and assume that $[a] \cap[b] \neq \varnothing$.
Then $\exists c \in X$ such that $c \in[a]$ and $c \in[b]$. It means that $c \sim a$ and $c \sim b$, therefore $a \sim b$.

Let us prove that $[a]=[b]$.
Take any $x \in[a]$. Then $x \sim a$, but $a \sim b$, so $x \sim b$ and, by this, $x \in[b]$.

## Equivalence classes are disjoint

Theorem. Let $\sim$ be an equivalence relation on $X$. Then

$$
\forall a, b \in X \quad[a]=[b] \text { or }[a] \cap[b]=\varnothing .
$$

Equivalence classes are either coincide or disjoint.
Proof. Take any $a, b \in X$ and assume that $[a] \cap[b] \neq \varnothing$.
Then $\exists c \in X$ such that $c \in[a]$ and $c \in[b]$. It means that $c \sim a$ and $c \sim b$, therefore $a \sim b$.

Let us prove that $[a]=[b]$.
Take any $x \in[a]$. Then $x \sim a$, but $a \sim b$, so $x \sim b$ and, by this, $x \in[b]$.
Therefore, $[a] \subseteq[b]$.

## Equivalence classes are disjoint

Theorem. Let $\sim$ be an equivalence relation on $X$. Then

$$
\forall a, b \in X \quad[a]=[b] \text { or }[a] \cap[b]=\varnothing .
$$

Equivalence classes are either coincide or disjoint.
Proof. Take any $a, b \in X$ and assume that $[a] \cap[b] \neq \varnothing$.
Then $\exists c \in X$ such that $c \in[a]$ and $c \in[b]$. It means that $c \sim a$ and $c \sim b$, therefore $a \sim b$.

Let us prove that $[a]=[b]$.
Take any $x \in[a]$. Then $x \sim a$, but $a \sim b$, so $x \sim b$ and, by this, $x \in[b]$.
Therefore, $[a] \subseteq[b]$.
Analogously, we prove $[b] \subseteq[a]$.

## Equivalence classes are disjoint

Theorem. Let $\sim$ be an equivalence relation on $X$. Then

$$
\forall a, b \in X \quad[a]=[b] \text { or }[a] \cap[b]=\varnothing .
$$

Equivalence classes are either coincide or disjoint.
Proof. Take any $a, b \in X$ and assume that $[a] \cap[b] \neq \varnothing$.
Then $\exists c \in X$ such that $c \in[a]$ and $c \in[b]$. It means that $c \sim a$ and $c \sim b$, therefore $a \sim b$.

Let us prove that $[a]=[b]$.
Take any $x \in[a]$. Then $x \sim a$, but $a \sim b$, so $x \sim b$ and, by this, $x \in[b]$.
Therefore, $[a] \subseteq[b]$.
Analogously, we prove $[b] \subseteq[a]$.
Together this gives us that $[a]=[b]$.

Definitions in mathematics

## Definition.

## Partition

## Definition. A partition of a set $X$ is

## Definition. A partition of a set $X$ is a collection $\Sigma$ of

## Partition

## Definition. A partition of a set $X$ is a collection $\Sigma$ of

 non-empty
## Definition. A partition of a set $X$ is a collection $\Sigma$ of non-empty pairwise disjoint subsets of $X$

## Definition. A partition of a set $X$ is a collection $\Sigma$ of

 non-empty pairwise disjoint subsets of $X$ which cover the whole $X$.Definition. A partition of a set $X$ is a collection $\Sigma$ of non-empty pairwise disjoint subsets of $X$ which cover the whole $X$. In other words, partition of $X$ is $\Sigma \subset \mathcal{P}(X)$ such that

Definition. A partition of a set $X$ is a collection $\Sigma$ of non-empty pairwise disjoint subsets of $X$ which cover the whole $X$. In other words, partition of $X$ is $\Sigma \subset \mathcal{P}(X)$ such that
$\forall A \in \Sigma \quad A \neq \varnothing$,

Definition. A partition of a set $X$ is a collection $\Sigma$ of non-empty pairwise disjoint subsets of $X$ which cover the whole $X$. In other words, partition of $X$ is $\Sigma \subset \mathcal{P}(X)$ such that

$$
\begin{aligned}
& \forall A \in \Sigma \quad A \neq \varnothing, \\
& \forall A, B \in \Sigma \quad A \neq B \Longrightarrow A \cap B=\varnothing,
\end{aligned}
$$

Definition. A partition of a set $X$ is a collection $\Sigma$ of non-empty pairwise disjoint subsets of $X$ which cover the whole $X$. In other words, partition of $X$ is $\Sigma \subset \mathcal{P}(X)$ such that

$$
\begin{aligned}
& \forall A \in \Sigma \quad A \neq \varnothing, \\
& \forall A, B \in \Sigma \quad A \neq B \Longrightarrow A \cap B=\varnothing \\
& X=\cup_{A \in \Sigma} A .
\end{aligned}
$$

Definition. A partition of a set $X$ is a collection $\Sigma$ of non-empty pairwise disjoint subsets of $X$ which cover the whole $X$.
In other words, partition of $X$ is $\Sigma \subset \mathcal{P}(X)$ such that

$$
\begin{aligned}
& \forall A \in \Sigma \quad A \neq \varnothing, \\
& \forall A, B \in \Sigma \quad A \neq B \Longrightarrow A \cap B=\varnothing, \\
& X=\cup_{A \in \Sigma} A .
\end{aligned}
$$

Yet one more reformulation:

Definition. A partition of a set $X$ is a collection $\Sigma$ of non-empty pairwise disjoint subsets of $X$ which cover the whole $X$.

In other words, partition of $X$ is $\Sigma \subset \mathcal{P}(X)$ such that

$$
\begin{aligned}
& \forall A \in \Sigma \quad A \neq \varnothing, \\
& \forall A, B \in \Sigma \quad A \neq B \Longrightarrow A \cap B=\varnothing, \\
& X=\cup_{A \in \Sigma} A .
\end{aligned}
$$

Yet one more reformulation:
Definition. A partition of a set is a presentation of this set as a union of non-empty pairwise disjoint sets.

Definition. A partition of a set $X$ is a collection $\Sigma$ of non-empty pairwise disjoint subsets of $X$ which cover the whole $X$.

In other words, partition of $X$ is $\Sigma \subset \mathcal{P}(X)$ such that

$$
\begin{aligned}
& \forall A \in \Sigma \quad A \neq \varnothing, \\
& \forall A, B \in \Sigma \quad A \neq B \Longrightarrow A \cap B=\varnothing, \\
& X=\cup_{A \in \Sigma} A .
\end{aligned}
$$

Yet one more reformulation:
Definition. A partition of a set is a presentation of this set as a union of non-empty pairwise disjoint sets.
These sets are called the elements of the partition.

Definition. A partition of a set $X$ is a collection $\Sigma$ of non-empty pairwise disjoint subsets of $X$ which cover the whole $X$.

In other words, partition of $X$ is $\Sigma \subset \mathcal{P}(X)$ such that

$$
\begin{aligned}
& \forall A \in \Sigma \quad A \neq \varnothing, \\
& \forall A, B \in \Sigma \quad A \neq B \Longrightarrow A \cap B=\varnothing, \\
& X=\cup_{A \in \Sigma} A .
\end{aligned}
$$

Yet one more reformulation:
Definition. A partition of a set is a presentation of this set as a union of non-empty pairwise disjoint sets.
These sets are called the elements of the partition.
Each element of the set belongs to exactly one element of the partition.

## Example of a partition

$X_{2} \quad X_{4}$
$X=X_{1} \cup X_{2} \cup X_{3} \cup X_{4}$
$X_{i} \neq \varnothing$ for $i=1,2,3,4$
$X_{i} \cap X_{j}=\varnothing$ for $i, j=1,2,3,4$

## Example of a partition

$$
\begin{array}{ccc}
X_{2} & X_{4} & X=X_{1} \cup X_{2} \cup X_{3} \cup X_{4} \\
X_{1} & X_{3} & X_{i} \neq \varnothing \text { for } i=1,2,3,4 \\
& X_{i} \cap X_{j}=\varnothing \text { for } i, j=1,2,3,4 \\
\forall x \in X & \exists!i \in\{1,2,3,4\} & x \in X_{i} .
\end{array}
$$

## Example of a partition

$$
\begin{array}{ccc}
X_{2} & X_{4} & X=X_{1} \cup X_{2} \cup X_{3} \cup X_{4} \\
X_{1} & X_{3} & X_{i} \neq \varnothing \text { for } i=1,2,3,4 \\
\forall x \in X & \exists!i \in\{1,2,3,4\} & x \in X_{i} .
\end{array}
$$

We have proven that

$$
\begin{array}{ccc}
X_{2} & X_{4} & X=X_{1} \cup X_{2} \cup X_{3} \cup X_{4} \\
X_{1} & X_{3} & X_{i} \neq \varnothing \text { for } i=1,2,3,4 \\
& X_{i} \cap X_{j}=\varnothing \text { for } i, j=1,2,3,4 \\
\forall x \in X & \exists!i \in\{1,2,3,4\} & x \in X_{i} .
\end{array}
$$

We have proven that for any equivalence relation on $X$, the equivalence classes are disjoint.

$$
\begin{array}{ccc}
X_{2} & X_{4} & X=X_{1} \cup X_{2} \cup X_{3} \cup X_{4} \\
X_{1} & X_{3} & X_{i} \neq \varnothing \text { for } i=1,2,3,4 \\
& X_{i} \cap X_{j}=\varnothing \text { for } i, j=1,2,3,4 \\
\forall x \in X & \exists!i \in\{1,2,3,4\} & x \in X_{i} .
\end{array}
$$

We have proven that for any equivalence relation on $X$, the equivalence classes are disjoint.

This means that they form a partition of $X$.

## Partition of $\mathbb{Z}$ by congruence classes

Fix an integer $m \geq 2$.
Congruence modulo $m$ gives rise to the following $m$ equivalence classes:

## Partition of $\mathbb{Z}$ by congruence classes

Fix an integer $m \geq 2$.
Congruence modulo $m$ gives rise to the following $m$ equivalence classes:
$[0]_{m}=\{x \mid x \equiv 0 \bmod m\}$

## Partition of $\mathbb{Z}$ by congruence classes

Fix an integer $m \geq 2$.
Congruence modulo $m$ gives rise to the following $m$ equivalence classes:
$[0]_{m}=\{x \mid x \equiv 0 \bmod m\}$
$[1]_{m}=\{x \mid x \equiv 1 \bmod m\}$

## Partition of $\mathbb{Z}$ by congruence classes

Fix an integer $m \geq 2$.
Congruence modulo $m$ gives rise to the following $m$ equivalence classes:
$[0]_{m}=\{x \mid x \equiv 0 \bmod m\}$
$[1]_{m}=\{x \mid x \equiv 1 \bmod m\}$
$[2]_{m}=\{x \mid x \equiv 2 \bmod m\}$

## Partition of $\mathbb{Z}$ by congruence classes

Fix an integer $m \geq 2$.
Congruence modulo $m$ gives rise to the following $m$ equivalence classes:
$[0]_{m}=\{x \mid x \equiv 0 \bmod m\}$
$[1]_{m}=\{x \mid x \equiv 1 \bmod m\}$
$[2]_{m}=\{x \mid x \equiv 2 \bmod m\}$

## Partition of $\mathbb{Z}$ by congruence classes

Fix an integer $m \geq 2$.
Congruence modulo $m$ gives rise to the following $m$ equivalence classes:
$[0]_{m}=\{x \mid x \equiv 0 \bmod m\}$
$[1]_{m}=\{x \mid x \equiv 1 \bmod m\}$
$[2]_{m}=\{x \mid x \equiv 2 \bmod m\}$
$[m-1]_{m}=\{x \mid x \equiv m-1 \bmod m\}$

## Partition of $\mathbb{Z}$ by congruence classes

Fix an integer $m \geq 2$.
Congruence modulo $m$ gives rise to the following $m$ equivalence classes:
$[0]_{m}=\{x \mid x \equiv 0 \bmod m\}$
$[1]_{m}=\{x \mid x \equiv 1 \bmod m\}$
$[2]_{m}=\{x \mid x \equiv 2 \bmod m\}$
$[m-1]_{m}=\{x \mid x \equiv m-1 \bmod m\}$
These equivalence classes form a partition of $\mathbb{Z}$ :

## Partition of $\mathbb{Z}$ by congruence classes

Fix an integer $m \geq 2$.
Congruence modulo $m$ gives rise to the following $m$ equivalence classes:
$[0]_{m}=\{x \mid x \equiv 0 \bmod m\}$
$[1]_{m}=\{x \mid x \equiv 1 \bmod m\}$
$[2]_{m}=\{x \mid x \equiv 2 \bmod m\}$
$[m-1]_{m}=\{x \mid x \equiv m-1 \bmod m\}$
These equivalence classes form a partition of $\mathbb{Z}$ :
$\mathbb{Z}=[0] \cup[1] \cup[2] \cup \cdots \cup[m-1]$,

## Partition of $\mathbb{Z}$ by congruence classes

Fix an integer $m \geq 2$.
Congruence modulo $m$ gives rise to the following $m$ equivalence classes:
$[0]_{m}=\{x \mid x \equiv 0 \bmod m\}$
$[1]_{m}=\{x \mid x \equiv 1 \bmod m\}$
$[2]_{m}=\{x \mid x \equiv 2 \bmod m\}$
$[m-1]_{m}=\{x \mid x \equiv m-1 \bmod m\}$
These equivalence classes form a partition of $\mathbb{Z}$ :
$\mathbb{Z}=[0] \cup[1] \cup[2] \cup \cdots \cup[m-1]$,
since each equivalence class is non-empty

Fix an integer $m \geq 2$.
Congruence modulo $m$ gives rise to the following $m$ equivalence classes:
$[0]_{m}=\{x \mid x \equiv 0 \bmod m\}$
$[1]_{m}=\{x \mid x \equiv 1 \bmod m\}$
$[2]_{m}=\{x \mid x \equiv 2 \bmod m\}$
$[m-1]_{m}=\{x \mid x \equiv m-1 \bmod m\}$
These equivalence classes form a partition of $\mathbb{Z}$ :
$\mathbb{Z}=[0] \cup[1] \cup[2] \cup \cdots \cup[m-1]$,
since each equivalence class is non-empty and the equivalence classes are pairwise disjoint.

## Equivalence relations and partitions

Definitions in mathematics

## Equivalence relations and partitions

Definitions in mathematics

## Theorem.

## Equivalence relations and partitions

Theorem. There is a natural one-to-one correspondence (bijection)

## Equivalence relations and partitions

Theorem. There is a natural one-to-one correspondence (bijection)
between the set of all equivalence relations on a set $X$

## Equivalence relations and partitions

Theorem. There is a natural one-to-one correspondence (bijection)
between the set of all equivalence relations on a set $X$ and the set of all partitions on $X$.

## Equivalence relations and partitions

Theorem. There is a natural one-to-one correspondence (bijection)
between the set of all equivalence relations on a set $X$ and the set of all partitions on $X$.
More precisely,

## Equivalence relations and partitions

Theorem. There is a natural one-to-one correspondence (bijection)
between the set of all equivalence relations on a set $X$ and the set of all partitions on $X$.
More precisely, each equivalence relation on $X$

## Equivalence relations and partitions

Theorem. There is a natural one-to-one correspondence (bijection)
between the set of all equivalence relations on a set $X$ and the set of all partitions on $X$.

More precisely, each equivalence relation on $X$
gives rise to the partition of $X$ into equivalence classes.

## Equivalence relations and partitions

Theorem. There is a natural one-to-one correspondence (bijection)
between the set of all equivalence relations on a set $X$ and the set of all partitions on $X$.
More precisely, each equivalence relation on $X$
gives rise to the partition of $X$ into equivalence classes.
Proof.

## Equivalence relations and partitions

Theorem. There is a natural one-to-one correspondence (bijection)
between the set of all equivalence relations on a set $X$ and the set of all partitions on $X$.
More precisely, each equivalence relation on $X$
gives rise to the partition of $X$ into equivalence classes.
Proof. We have already seen that for any equivalence relation on a set $X$, equivalence classes form a partition of $X$.

## Equivalence relations and partitions

Theorem. There is a natural one-to-one correspondence (bijection)
between the set of all equivalence relations on a set $X$ and the set of all partitions on $X$.
More precisely, each equivalence relation on $X$
gives rise to the partition of $X$ into equivalence classes.
Proof. We have already seen that for any equivalence relation on a set $X$, equivalence classes form a partition of $X$.

This gives a map \{equivalence relations on $X\} \longrightarrow\{$ partitions of $X\}$.

## Equivalence relations and partitions

Theorem. There is a natural one-to-one correspondence (bijection)
between the set of all equivalence relations on a set $X$ and the set of all partitions on $X$.

More precisely, each equivalence relation on $X$
gives rise to the partition of $X$ into equivalence classes.
Proof. We have already seen that for any equivalence relation on a set $X$, equivalence classes form a partition of $X$.
This gives a map \{equivalence relations on $X\} \longrightarrow\{$ partitions of $X\}$.
To any partition of $X$, the inverse map assigns the equivalence relation

## Equivalence relations and partitions

Theorem. There is a natural one-to-one correspondence (bijection)
between the set of all equivalence relations on a set $X$ and the set of all partitions on $X$.
More precisely, each equivalence relation on $X$
gives rise to the partition of $X$ into equivalence classes.
Proof. We have already seen that for any equivalence relation on a set $X$, equivalence classes form a partition of $X$.

This gives a map \{equivalence relations on $X\} \longrightarrow\{$ partitions of $X\}$.
To any partition of $X$, the inverse map assigns the equivalence relation in which two elements are equivalent if and only if

## Equivalence relations and partitions

Theorem. There is a natural one-to-one correspondence (bijection)
between the set of all equivalence relations on a set $X$ and the set of all partitions on $X$.

More precisely, each equivalence relation on $X$
gives rise to the partition of $X$ into equivalence classes.
Proof. We have already seen that for any equivalence relation on a set $X$, equivalence classes form a partition of $X$.

This gives a map \{equivalence relations on $X\} \longrightarrow\{$ partitions of $X\}$.
To any partition of $X$, the inverse map assigns the equivalence relation
in which two elements are equivalent if and only if they belong to the same element of the partition.

## Equivalence relations and partitions

Theorem. There is a natural one-to-one correspondence (bijection)
between the set of all equivalence relations on a set $X$ and the set of all partitions on $X$.
More precisely, each equivalence relation on $X$
gives rise to the partition of $X$ into equivalence classes.
Proof. We have already seen that for any equivalence relation on a set $X$, equivalence classes form a partition of $X$.

This gives a map \{equivalence relations on $X\} \longrightarrow\{$ partitions of $X\}$.
To any partition of $X$, the inverse map assigns the equivalence relation
in which two elements are equivalent if and only if they belong to the same element of the partition.
This is indeed an equivalence relation,

## Equivalence relations and partitions

Theorem. There is a natural one-to-one correspondence (bijection)
between the set of all equivalence relations on a set $X$ and the set of all partitions on $X$.

More precisely, each equivalence relation on $X$
gives rise to the partition of $X$ into equivalence classes.
Proof. We have already seen that for any equivalence relation on a set $X$, equivalence classes form a partition of $X$.

This gives a map \{equivalence relations on $X\} \longrightarrow\{$ partitions of $X\}$.
To any partition of $X$, the inverse map assigns the equivalence relation
in which two elements are equivalent if and only if they belong to the same element of the partition.
This is indeed an equivalence relation,
because it is reflexive, symmetric and transitive.

## Quotient set

Definitions in mathematics

## Quotient set

Definitions in mathematics

## Definition.

## Definition. Let $\sim$ be an equivalence relation on a set $X$.

[^0]
## Quotient set

[^1]Definition. Let $\sim$ be an equivalence relation on a set $X$. The set of all equivalence classes is called
the quotient set of $X$ with respect to ~
and denoted by $X / \sim$.

## Quotient set

Definition. Let $\sim$ be an equivalence relation on a set $X$. The set of all equivalence classes is called
the quotient set of $X$ with respect to ~
and denoted by $X / \sim$.
By definition, $\quad X / \sim=\{[x] \mid x \in X\}$.

## Quotient set

Definition. Let $\sim$ be an equivalence relation on a set $X$. The set of all equivalence classes is called
the quotient set of $X$ with respect to ~ and denoted by $X / \sim$.
By definition, $\quad X / \sim=\{[x] \mid x \in X\}$.
In other words, the quotient set $X / \sim$
is the partition of $X$ to equivalence classes for $\sim$.

## Quotient set

Definition. Let $\sim$ be an equivalence relation on a set $X$.
The set of all equivalence classes is called
the quotient set of $X$ with respect to ~ and denoted by $X / \sim$.
By definition, $\quad X / \sim=\{[x] \mid x \in X\}$.
In other words, the quotient set $X / \sim$
is the partition of $X$ to equivalence classes for $\sim$.
Indeed, the partition and the quotient set are sets which consist of the same elements,

## Quotient set

Definition. Let $\sim$ be an equivalence relation on a set $X$.
The set of all equivalence classes is called
the quotient set of $X$ with respect to $\sim$ and denoted by $X / \sim$.
By definition, $\quad X / \sim=\{[x] \mid x \in X\}$.
In other words, the quotient set $X / \sim$
is the partition of $X$ to equivalence classes for $\sim$.
Indeed, the partition and the quotient set are sets which consist of the same elements, hence they coincide.

## Quotient set

Definition. Let $\sim$ be an equivalence relation on a set $X$.
The set of all equivalence classes is called
the quotient set of $X$ with respect to ~ and denoted by $X / \sim$.
By definition, $\quad X / \sim=\{[x] \mid x \in X\}$.
In other words, the quotient set $X / \sim$
is the partition of $X$ to equivalence classes for $\sim$.
Indeed, the partition and the quotient set are sets which consist of the same elements, hence they coincide.
There is a stillistical difference between usage of these terms.

## Quotient set

Definition. Let ~ be an equivalence relation on a set $X$.
The set of all equivalence classes is called the quotient set of $X$ with respect to ~ and denoted by $X / \sim$.
By definition, $\quad X / \sim=\{[x] \mid x \in X\}$.
In other words, the quotient set $X / \sim$
is the partition of $X$ to equivalence classes for $\sim$.
Indeed, the partition and the quotient set are sets which consist of the same elements, hence they coincide.
There is a stillistical difference between usage of these terms.
If we remember that the equivalence classes are subsets of $X$ and keep track of their internal structure, then we speak on a partition.

## Quotient set

Definition. Let $\sim$ be an equivalence relation on a set $X$.
The set of all equivalence classes is called the quotient set of $X$ with respect to ~ and denoted by $X / \sim$.
By definition, $\quad X / \sim=\{[x] \mid x \in X\}$.
In other words, the quotient set $X / \sim$
is the partition of $X$ to equivalence classes for $\sim$.
Indeed, the partition and the quotient set are sets which consist of the same elements, hence they coincide.
There is a stillistical difference between usage of these terms.
If we remember that the equivalence classes are subsets of $X$ and keep track of their internal structure, then we speak on a partition.

If we think of them as atoms, ignoring their possible internal structure, then we speak about a quotient set.

## Quotient set

Definition. Let $\sim$ be an equivalence relation on a set $X$.
The set of all equivalence classes is called the quotient set of $X$ with respect to ~ and denoted by $X / \sim$.
By definition, $\quad X / \sim=\{[x] \mid x \in X\}$.
In other words, the quotient set $X / \sim$
is the partition of $X$ to equivalence classes for $\sim$.
Indeed, the partition and the quotient set are sets which consist of the same elements, hence they coincide.
There is a stillistical difference between usage of these terms.
If we remember that the equivalence classes are subsets of $X$ and keep track of their internal structure, then we speak on a partition.

If we think of them as atoms, ignoring their possible internal structure, then we speak about a quotient set.

Moreover, for a partition $\Sigma$ of $X$, we denote the quotient set by $X / \Sigma$.

## Example of a quotient set

Definitions in mathematics

## Example of a quotient set

Definitions in mathematics

What is the quotient set of $\mathbb{Z}$

## Example of a quotient set

What is the quotient set of $\mathbb{Z}$ with respect to the congruence modulo 3 ?

## Example of a quotient set

What is the quotient set of $\mathbb{Z}$ with respect to the congruence modulo 3 ?
Since there are three congruence classes modulo 3 ,

## Example of a quotient set

What is the quotient set of $\mathbb{Z}$ with respect to the congruence modulo 3 ?
Since there are three congruence classes modulo 3 , namely, [0], [1], [2],

## Example of a quotient set

What is the quotient set of $\mathbb{Z}$ with respect to the congruence modulo 3 ?
Since there are three congruence classes modulo 3, namely, [0], [1], [2], the quotient set is

## Example of a quotient set

What is the quotient set of $\mathbb{Z}$ with respect to the congruence modulo 3 ?
Since there are three congruence classes modulo 3 , namely, [0], [1], [2], the quotient set is $\{[0],[1],[2]\}$.

## Example of a quotient set

What is the quotient set of $\mathbb{Z}$ with respect to the congruence modulo 3 ?
Since there are three congruence classes modulo 3 , namely, [0], [1], [2], the quotient set is $\{[0],[1],[2]\}$. It is denoted by $\mathbb{Z} / 3$ or $\mathbb{Z}_{3}$.

## Example of a quotient set

What is the quotient set of $\mathbb{Z}$ with respect to the congruence modulo 3 ?
Since there are three congruence classes modulo 3 , namely, [0], [1], [2], the quotient set is $\{[0],[1],[2]\}$. It is denoted by $\mathbb{Z} / 3$ or $\mathbb{Z}_{3}$.

The partition of $\mathbb{Z}$,

## Example of a quotient set

What is the quotient set of $\mathbb{Z}$ with respect to the congruence modulo 3 ?
Since there are three congruence classes modulo 3 , namely, [0], [1], [2], the quotient set is $\{[0],[1],[2]\}$. It is denoted by $\mathbb{Z} / 3$ or $\mathbb{Z}_{3}$.

The partition of $\mathbb{Z}$, associated with congruence modulo 3 is

## Example of a quotient set

What is the quotient set of $\mathbb{Z}$ with respect to the congruence modulo 3 ?
Since there are three congruence classes modulo 3 , namely, [0], [1], [2], the quotient set is $\{[0],[1],[2]\}$. It is denoted by $\mathbb{Z} / 3$ or $\mathbb{Z}_{3}$.
The partition of $\mathbb{Z}$, associated with congruence modulo 3 is
$\mathbb{Z}=[0] \cup[1] \cup[2]$.

## Example of a quotient set

What is the quotient set of $\mathbb{Z}$ with respect to the congruence modulo 3 ?
Since there are three congruence classes modulo 3 , namely, [0], [1], [2], the quotient set is $\{[0],[1],[2]\}$. It is denoted by $\mathbb{Z} / 3$ or $\mathbb{Z}_{3}$.
The partition of $\mathbb{Z}$, associated with congruence modulo 3 is
$\mathbb{Z}=[0] \cup[1] \cup[2]$. The elements $\{[0],[1],[2]\}$ of this partition are the elements of the quotient set.

## Quotient projection

Definitions in mathematics

## Quotient projection

Definitions in mathematics

Let $\sim$ be an equivalence relation on a set $X$.

## Quotient projection

Let $\sim$ be an equivalence relation on a set $X$. It defines the quotient set $X / \sim$,

## Quotient projection

Let $\sim$ be an equivalence relation on a set $X$. It defines the quotient set $X / \sim$, whose elements are the equivalence classes.

## Quotient projection

Let $\sim$ be an equivalence relation on a set $X$. It defines the quotient set $X / \sim$, whose elements are the equivalence classes.

The map $\mathrm{pr}_{\sim}: X \rightarrow X / \sim$

## Quotient projection

Let $\sim$ be an equivalence relation on a set $X$. It defines the quotient set $X / \sim$, whose elements are the equivalence classes.

The map $\mathrm{pr}_{\sim}: X \rightarrow X / \sim$ defined by $x \mapsto[x]$

## Quotient projection

Let $\sim$ be an equivalence relation on a set $X$. It defines the quotient set $X / \sim$, whose elements are the equivalence classes.

The map $\mathrm{pr}_{\sim}: X \rightarrow X / \sim$ defined by $x \mapsto[x]$ is called the quotient projection.

## Quotient projection

Let $\sim$ be an equivalence relation on a set $X$. It defines the quotient set $X / \sim$, whose elements are the equivalence classes.

The map $\mathrm{pr}_{\sim}: X \rightarrow X / \sim$ defined by $x \mapsto[x]$ is called the quotient projection. The quotient projection is surjective.

Let $\sim$ be an equivalence relation on a set $X$. It defines the quotient set $X / \sim$, whose elements are the equivalence classes.

The map $\mathrm{pr}_{\sim}: X \rightarrow X / \sim$ defined by $x \mapsto[x]$ is called the quotient projection. The quotient projection is surjective.

## Example.

Let $\sim$ be an equivalence relation on a set $X$. It defines the quotient set $X / \sim$, whose elements are the equivalence classes.

The map $\mathrm{pr}_{\sim}: X \rightarrow X / \sim$ defined by $x \mapsto[x]$ is called the quotient projection. The quotient projection is surjective.

Example. The quotient projection $\mathbb{Z} \rightarrow \mathbb{Z}_{m}, x \mapsto x \bmod m$

Let $\sim$ be an equivalence relation on a set $X$. It defines the quotient set $X / \sim$, whose elements are the equivalence classes.

The map $\mathrm{pr}_{\sim}: X \rightarrow X / \sim$ defined by $x \mapsto[x]$ is called the quotient projection.
The quotient projection is surjective.
Example. The quotient projection $\mathbb{Z} \rightarrow \mathbb{Z}_{m}, x \mapsto x \bmod m$
is called the reduction modulo $m$.

## Quotient maps

Definitions in mathematics

## Quotient maps

Let $f: X \rightarrow Y$ be a map, and $\sim$ be an equivalence relation in $X$.

## Quotient maps

Let $f: X \rightarrow Y$ be a map, and $\sim$ be an equivalence relation in $X$.

$$
\text { Assume that } \forall x_{1}, x_{2} \in X \quad x_{1} \sim x_{2} \Longrightarrow f\left(x_{1}\right)=f\left(x_{2}\right) .
$$

Let $f: X \rightarrow Y$ be a map, and $\sim$ be an equivalence relation in $X$.

$$
\text { Assume that } \forall x_{1}, x_{2} \in X \quad x_{1} \sim x_{2} \Longrightarrow f\left(x_{1}\right)=f\left(x_{2}\right) .
$$

Then $f$ is constant on every equivalence class.

Let $f: X \rightarrow Y$ be a map, and $\sim$ be an equivalence relation in $X$.

$$
\text { Assume that } \forall x_{1}, x_{2} \in X \quad x_{1} \sim x_{2} \Longrightarrow f\left(x_{1}\right)=f\left(x_{2}\right) .
$$

Then $f$ is constant on every equivalence class.
Define $f / \sim: X / \sim \rightarrow Y$

Let $f: X \rightarrow Y$ be a map, and $\sim$ be an equivalence relation in $X$.

$$
\text { Assume that } \forall x_{1}, x_{2} \in X \quad x_{1} \sim x_{2} \Longrightarrow f\left(x_{1}\right)=f\left(x_{2}\right) .
$$

Then $f$ is constant on every equivalence class. Define $f / \sim: X / \sim \rightarrow Y:[x] \mapsto f(x)$,

Let $f: X \rightarrow Y$ be a map, and $\sim$ be an equivalence relation in $X$.

$$
\text { Assume that } \forall x_{1}, x_{2} \in X \quad x_{1} \sim x_{2} \Longrightarrow f\left(x_{1}\right)=f\left(x_{2}\right) .
$$

Then $f$ is constant on every equivalence class.
Define $f / \sim: X / \sim \rightarrow Y:[x] \mapsto f(x)$,
where $[\mathrm{x}]$ denotes the equivalence class that contains $x$.

Let $f: X \rightarrow Y$ be a map, and $\sim$ be an equivalence relation in $X$.

$$
\text { Assume that } \forall x_{1}, x_{2} \in X \quad x_{1} \sim x_{2} \Longrightarrow f\left(x_{1}\right)=f\left(x_{2}\right) .
$$

Then $f$ is constant on every equivalence class.
Define $f / \sim: X / \sim \rightarrow Y:[x] \mapsto f(x)$,
where $[\mathrm{x}]$ denotes the equivalence class that contains $x$.
Notice that $f / \sim([x])$ does not depend on the choice of $x$ from $[x]$.

Let $f: X \rightarrow Y$ be a map, and $\sim$ be an equivalence relation in $X$.

$$
\text { Assume that } \forall x_{1}, x_{2} \in X \quad x_{1} \sim x_{2} \Longrightarrow f\left(x_{1}\right)=f\left(x_{2}\right) .
$$

Then $f$ is constant on every equivalence class.
Define $f / \sim: X / \sim \rightarrow Y:[x] \mapsto f(x)$,
where $[\mathrm{x}]$ denotes the equivalence class that contains $x$.
Notice that $f / \sim([x])$ does not depend on the choice of $x$ from $[x]$.
The map $f / \sim$ is called a quotient map of $f$.

## Injective quotient map

Let $f: X \rightarrow Y$ be a map.

## Injective quotient map

Let $f: X \rightarrow Y$ be a map. Consider the relation on $X$ defined as follows:

## Injective quotient map

Let $f: X \rightarrow Y$ be a map. Consider the relation on $X$ defined as follows:
$x_{1} \sim_{f} x_{2} \Longleftrightarrow f\left(x_{1}\right)=f\left(x_{2}\right)$ for $x_{1}, x_{2} \in X$.

## Injective quotient map

Let $f: X \rightarrow Y$ be a map. Consider the relation on $X$ defined as follows:
$x_{1} \sim_{f} x_{2} \Longleftrightarrow f\left(x_{1}\right)=f\left(x_{2}\right)$ for $x_{1}, x_{2} \in X$.
Obviously, $\sim_{f}$ is an equivalence relation.

## Injective quotient map

Let $f: X \rightarrow Y$ be a map. Consider the relation on $X$ defined as follows:
$x_{1} \sim_{f} x_{2} \Longleftrightarrow f\left(x_{1}\right)=f\left(x_{2}\right)$ for $x_{1}, x_{2} \in X$.
Obviously, $\sim_{f}$ is an equivalence relation. What is the quotient set $X / /_{\sim_{f}}$ ?

## Injective quotient map

Let $f: X \rightarrow Y$ be a map. Consider the relation on $X$ defined as follows:
$x_{1} \sim_{f} x_{2} \Longleftrightarrow f\left(x_{1}\right)=f\left(x_{2}\right)$ for $x_{1}, x_{2} \in X$.
Obviously, $\sim_{f}$ is an equivalence relation. What is the quotient set $X / \sim_{\sim_{f}}$ ?
Its elements are equivalence classes,

## Injective quotient map

Let $f: X \rightarrow Y$ be a map. Consider the relation on $X$ defined as follows:
$x_{1} \sim_{f} x_{2} \Longleftrightarrow f\left(x_{1}\right)=f\left(x_{2}\right)$ for $x_{1}, x_{2} \in X$.
Obviously, $\sim_{f}$ is an equivalence relation. What is the quotient set $X / \sim_{\sim_{f}}$ ?
Its elements are equivalence classes,
the representatives of each class are mapped to the same element in $Y$.

## Injective quotient map

Let $f: X \rightarrow Y$ be a map. Consider the relation on $X$ defined as follows:
$x_{1} \sim_{f} x_{2} \Longleftrightarrow f\left(x_{1}\right)=f\left(x_{2}\right)$ for $x_{1}, x_{2} \in X$.
Obviously, $\sim_{f}$ is an equivalence relation. What is the quotient set $X / /_{\sim_{f}}$ ?
Its elements are equivalence classes,
the representatives of each class are mapped to the same element in $Y$.
That is, $[x]=f^{-1} f(x)$.

## Injective quotient map

Let $f: X \rightarrow Y$ be a map. Consider the relation on $X$ defined as follows:
$x_{1} \sim_{f} x_{2} \Longleftrightarrow f\left(x_{1}\right)=f\left(x_{2}\right)$ for $x_{1}, x_{2} \in X$.
Obviously, $\sim_{f}$ is an equivalence relation. What is the quotient set $X / /_{\sim_{f}}$ ?
Its elements are equivalence classes,
the representatives of each class are mapped to the same element in $Y$.
That is, $[x]=f^{-1} f(x)$.
Therefore, the map $f /: X / /_{\sim_{f}} \rightarrow Y$

## Injective quotient map

Let $f: X \rightarrow Y$ be a map. Consider the relation on $X$ defined as follows:
$x_{1} \sim_{f} x_{2} \Longleftrightarrow f\left(x_{1}\right)=f\left(x_{2}\right)$ for $x_{1}, x_{2} \in X$.
Obviously, $\sim_{f}$ is an equivalence relation. What is the quotient set $X / /_{\sim_{f}}$ ?
Its elements are equivalence classes,
the representatives of each class are mapped to the same element in $Y$.
That is, $[x]=f^{-1} f(x)$.
Therefore, the map $f /: X / /_{\sim_{f}} \rightarrow Y$ defined by $[x] \mapsto f(x)$

## Injective quotient map

Let $f: X \rightarrow Y$ be a map. Consider the relation on $X$ defined as follows:
$x_{1} \sim_{f} x_{2} \Longleftrightarrow f\left(x_{1}\right)=f\left(x_{2}\right)$ for $x_{1}, x_{2} \in X$.
Obviously, $\sim_{f}$ is an equivalence relation. What is the quotient set $X / /_{\sim_{f}}$ ?
Its elements are equivalence classes,
the representatives of each class are mapped to the same element in $Y$.
That is, $[x]=f^{-1} f(x)$.
Therefore, the map $f /: X /_{\sim_{f}} \rightarrow Y$ defined by $[x] \mapsto f(x)$ is an injection.

## Injective quotient map

Let $f: X \rightarrow Y$ be a map. Consider the relation on $X$ defined as follows:
$x_{1} \sim_{f} x_{2} \Longleftrightarrow f\left(x_{1}\right)=f\left(x_{2}\right)$ for $x_{1}, x_{2} \in X$.
Obviously, $\sim_{f}$ is an equivalence relation. What is the quotient set $X / \sim_{\sim_{f}}$ ?
Its elements are equivalence classes,
the representatives of each class are mapped to the same element in $Y$.
That is, $[x]=f^{-1} f(x)$.
Therefore, the map $f /: X /_{\sim_{f}} \rightarrow Y$ defined by $[x] \mapsto f(x)$ is an injection. It is called the injective quotient of $f$.

Canonical factorization of a map

## Canonical factorization of a map

Let us put all pieces together.

## Canonical factorization of a map

Let us put all pieces together. Given a map $f: X \rightarrow Y$,

## Canonical factorization of a map

Let us put all pieces together.
Given a map $f: X \rightarrow Y$, one can define the quotients set $X / \sim_{\sim_{f}}$

## Canonical factorization of a map

Let us put all pieces together. Given a map $f: X \rightarrow Y$, one can define the quotients set $X / \sim_{f}$ and the quotient $\operatorname{map} f /: X / \sim_{f} \rightarrow \operatorname{Im} f$.

## Canonical factorization of a map

Let us put all pieces together.
Given a map $f: X \rightarrow Y$, one can define the quotients set $X / \sim_{\sim_{f}}$ and the quotient map $f /: X /_{\sim_{f}} \rightarrow \operatorname{Im} f$.
Beside this, there is the quotient projection $\mathrm{pr}_{\sim_{f}}: X \rightarrow X / /_{\sim_{f}}$

## Canonical factorization of a map

Let us put all pieces together.
Given a map $f: X \rightarrow Y$, one can define the quotients set $X / \sim_{\sim_{f}}$ and the quotient map $f /: X / \sim_{\sim_{f}} \rightarrow \operatorname{Im} f$.
Beside this, there is the quotient projection $\mathrm{pr}_{\sim_{f}}: X \rightarrow X /{\sim_{f}}$ and the inclusion map $\operatorname{Im} f \rightarrow Y$.

Let us put all pieces together.
Given a map $f: X \rightarrow Y$, one can define the quotients set $X / \sim_{\sim_{f}}$ and the quotient map $f /: X / \sim_{\sim_{f}} \rightarrow \operatorname{Im} f$.
Beside this, there is the quotient projection $\mathrm{pr}_{\sim_{f}}: X \rightarrow X /{\sim_{f}}$ and the inclusion map $\operatorname{Im} f \rightarrow Y$.
These maps are organized in the following commutative diagram:

Let us put all pieces together.
Given a map $f: X \rightarrow Y$, one can define the quotients set $X / \sim_{\sim_{f}}$
and the quotient map $f /: X / \sim_{\sim_{f}} \rightarrow \operatorname{Im} f$.
Beside this, there is the quotient projection $\mathrm{pr}_{\sim_{f}}: X \rightarrow X /{\sim_{f}}$ and the inclusion map $\operatorname{Im} f \rightarrow Y$.
These maps are organized in the following commutative diagram:


Let us put all pieces together.
Given a map $f: X \rightarrow Y$, one can define the quotients set $X / \sim_{\sim_{f}}$ and the quotient map $f /: X / \sim_{\sim_{f}} \rightarrow \operatorname{Im} f$.
Beside this, there is the quotient projection $\mathrm{pr}_{\sim_{f}}: X \rightarrow X /{\sim_{f}}$ and the inclusion map $\operatorname{Im} f \rightarrow Y$.
These maps are organized in the following commutative diagram:

$$
\begin{aligned}
& \underset{\mathrm{pr}_{\sim_{f}} \downarrow}{X} \xrightarrow{f} \underset{{ }_{\text {in }}}{Y} \quad f=\mathrm{in} \circ f / \circ \mathrm{pr}_{\sim_{\sim_{f}}} \\
& X / \sim_{f} \xrightarrow[f / \sim]{ } \operatorname{Im} f
\end{aligned}
$$

## Canonical factorization of a map

Let us put all pieces together.
Given a map $f: X \rightarrow Y$, one can define the quotients set $X / \sim_{\sim_{f}}$
and the quotient map $f /: X /{\sim_{f}} \rightarrow \operatorname{Im} f$.
Beside this, there is the quotient projection $\mathrm{pr}_{\sim_{f}}: X \rightarrow X /{\sim_{f}}$ and the inclusion map $\operatorname{Im} f \rightarrow Y$.
These maps are organized in the following commutative diagram:

$$
\begin{aligned}
& \underset{\operatorname{pr}_{\sim_{f}} \downarrow}{X} \xrightarrow{f} \xlongequal{Y} \quad \uparrow_{\text {in }} \quad f=\text { in } \circ f / \circ \mathrm{pr}_{\sim_{f}} \\
& X /_{\sim_{f}} \xrightarrow[f /_{\sim}]{ } \operatorname{Im} f
\end{aligned}
$$

Therefore, any map can be presented

Let us put all pieces together.
Given a map $f: X \rightarrow Y$, one can define the quotients set $X / \sim_{\sim_{f}}$ and the quotient map $f /: X / \sim_{f} \rightarrow \operatorname{Im} f$.
Beside this, there is the quotient projection $\mathrm{pr}_{\sim_{f}}: X \rightarrow X /{\sim_{f}}$ and the inclusion map $\operatorname{Im} f \rightarrow Y$.
These maps are organized in the following commutative diagram:

$$
\begin{aligned}
& \underset{\operatorname{pr}_{\sim_{f}} \downarrow}{X} \xrightarrow{f} \xlongequal{Y} \uparrow_{\text {in }} \quad f=\text { in } \circ f / \circ \operatorname{pr}_{\sim_{f}} \\
& X / \sim_{f} \xrightarrow[f / \sim]{ } \operatorname{Im} f
\end{aligned}
$$

Therefore, any map can be presented as a composition of a surjection, bijection and injection:

Let us put all pieces together.
Given a map $f: X \rightarrow Y$, one can define the quotients set $X / \sim_{\sim_{f}}$ and the quotient map $f /: X / \sim_{f} \rightarrow \operatorname{Im} f$.
Beside this, there is the quotient projection $\mathrm{pr}_{\sim_{f}}: X \rightarrow X /{\sim_{f}}$ and the inclusion map $\operatorname{Im} f \rightarrow Y$.
These maps are organized in the following commutative diagram:

$$
\begin{aligned}
& \underset{\text { pr }_{\sim_{f}} \downarrow}{X} \xrightarrow{f} \underset{{ }_{\text {in }}}{Y} \quad f=\text { in } \circ f / \circ \mathrm{pr}_{\sim_{\sim_{f}}} \\
& X /_{\sim_{f}} \xrightarrow[f / \sim]{ } \operatorname{Im} f
\end{aligned}
$$

Therefore, any map can be presented as a composition of a surjection, bijection and injection:

$$
f=\underbrace{\text { in }}_{\text {injection }} \circ \underbrace{f /}_{\text {bijection }} \circ \underbrace{\mathrm{pr}_{\sim_{f}}}_{\text {surjection }}
$$

Let us put all pieces together.
Given a map $f: X \rightarrow Y$, one can define the quotients set $X / \sim_{\sim_{f}}$ and the quotient map $f /: X / \sim_{f} \rightarrow \operatorname{Im} f$.
Beside this, there is the quotient projection $\mathrm{pr}_{\sim_{f}}: X \rightarrow X /{\sim_{f}}$
and the inclusion map $\operatorname{Im} f \rightarrow Y$.
These maps are organized in the following commutative diagram:

$$
\begin{aligned}
& \underset{\operatorname{pr}_{\sim_{f}} \downarrow}{X} \xrightarrow{f} \xlongequal{Y} \uparrow_{\text {in }} \quad f=\text { in } \circ f / \circ \operatorname{pr}_{\sim_{f}} \\
& X /_{\sim_{f}} \xrightarrow[f /_{\sim}]{ } \operatorname{Im} f
\end{aligned}
$$

Therefore, any map can be presented as a composition of a surjection, bijection and injection:

$$
f=\underbrace{\text { in }}_{\text {injection }} \circ \underbrace{f /}_{\text {bijection }} \circ \underbrace{\mathrm{pr}_{\sim_{f}}}_{\text {surjection }}
$$

This presentation is called the canonical factorization of $f$.

## Example

Lecture 7
Definitions in mathematics

## Example

Lecture 7
Definitions in mathematics

## Problem.

## Example

Definitions in mathematics

Problem. Define the following relation $\sim$ on $\mathbb{R}^{2}$ :

## Example

Problem. Define the following relation $\sim$ on $\mathbb{R}^{2}$ :
$\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2}$ for $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$.

## Example

Problem. Define the following relation $\sim$ on $\mathbb{R}^{2}$ :
$\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2}$ for $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$

1. Prove that $\sim$ is an equivalence relation on $\mathbb{R}^{2}$.

Problem. Define the following relation $\sim$ on $\mathbb{R}^{2}$ :
$\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2}$ for $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$

1. Prove that $\sim$ is an equivalence relation on $\mathbb{R}^{2}$.
2. Find the equivalence class of $(1,2) \in \mathbb{R}^{2}$.

Problem. Define the following relation $\sim$ on $\mathbb{R}^{2}$ :
$\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2}$ for $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$.

1. Prove that $\sim$ is an equivalence relation on $\mathbb{R}^{2}$.
2. Find the equivalence class of $(1,2) \in \mathbb{R}^{2}$. Draw its graph on the plane $\mathbb{R}^{2}$.

Problem. Define the following relation $\sim$ on $\mathbb{R}^{2}$ :
$\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2}$ for $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$.

1. Prove that $\sim$ is an equivalence relation on $\mathbb{R}^{2}$.
2. Find the equivalence class of $(1,2) \in \mathbb{R}^{2}$. Draw its graph on the plane $\mathbb{R}^{2}$.
3. How many equivalence classes are there?

Problem. Define the following relation $\sim$ on $\mathbb{R}^{2}$ :
$\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2}$ for $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$.

1. Prove that $\sim$ is an equivalence relation on $\mathbb{R}^{2}$.
2. Find the equivalence class of $(1,2) \in \mathbb{R}^{2}$. Draw its graph on the plane $\mathbb{R}^{2}$.
3. How many equivalence classes are there? Draw their graphs on the plane.

Problem. Define the following relation $\sim$ on $\mathbb{R}^{2}$ :

$$
\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2} \text { for }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} .
$$

1. Prove that $\sim$ is an equivalence relation on $\mathbb{R}^{2}$.
2. Find the equivalence class of $(1,2) \in \mathbb{R}^{2}$. Draw its graph on the plane $\mathbb{R}^{2}$.
3. How many equivalence classes are there? Draw their graphs on the plane.
4. Find the quotient set and the quotient projection.

Problem. Define the following relation $\sim$ on $\mathbb{R}^{2}$ :

$$
\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2} \text { for }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} .
$$

1. Prove that $\sim$ is an equivalence relation on $\mathbb{R}^{2}$.
2. Find the equivalence class of $(1,2) \in \mathbb{R}^{2}$. Draw its graph on the plane $\mathbb{R}^{2}$.
3. How many equivalence classes are there? Draw their graphs on the plane.
4. Find the quotient set and the quotient projection.
5. Find a map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that the equivalence relation $\sim$ is $\sim_{f}$.

Find the quotient map $f / \sim$.

Problem. Define the following relation $\sim$ on $\mathbb{R}^{2}$ :

$$
\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2} \text { for }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} .
$$

1. Prove that $\sim$ is an equivalence relation on $\mathbb{R}^{2}$.
2. Find the equivalence class of $(1,2) \in \mathbb{R}^{2}$. Draw its graph on the plane $\mathbb{R}^{2}$.
3. How many equivalence classes are there? Draw their graphs on the plane.
4. Find the quotient set and the quotient projection.
5. Find a map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that the equivalence relation $\sim$ is $\sim_{f}$.

Find the quotient map $f / \sim$.

## Solution.

Problem. Define the following relation $\sim$ on $\mathbb{R}^{2}$ :

$$
\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2} \text { for }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} .
$$

1. Prove that $\sim$ is an equivalence relation on $\mathbb{R}^{2}$.
2. Find the equivalence class of $(1,2) \in \mathbb{R}^{2}$. Draw its graph on the plane $\mathbb{R}^{2}$.
3. How many equivalence classes are there? Draw their graphs on the plane.
4. Find the quotient set and the quotient projection.
5. Find a map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that the equivalence relation $\sim$ is $\sim_{f}$.

Find the quotient map $f / \sim$.

## Solution.

1. Let us prove that $\sim$ is an equivalence relation.

Problem. Define the following relation $\sim$ on $\mathbb{R}^{2}$ :

$$
\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2} \text { for }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} .
$$

1. Prove that $\sim$ is an equivalence relation on $\mathbb{R}^{2}$.
2. Find the equivalence class of $(1,2) \in \mathbb{R}^{2}$. Draw its graph on the plane $\mathbb{R}^{2}$.
3. How many equivalence classes are there? Draw their graphs on the plane.
4. Find the quotient set and the quotient projection.
5. Find a map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that the equivalence relation $\sim$ is $\sim_{f}$.

Find the quotient map $f / \sim$.

## Solution.

1. Let us prove that $\sim$ is an equivalence relation.

- For reflexivity,

Problem. Define the following relation $\sim$ on $\mathbb{R}^{2}$ :

$$
\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2} \text { for }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} .
$$

1. Prove that $\sim$ is an equivalence relation on $\mathbb{R}^{2}$.
2. Find the equivalence class of $(1,2) \in \mathbb{R}^{2}$. Draw its graph on the plane $\mathbb{R}^{2}$.
3. How many equivalence classes are there? Draw their graphs on the plane.
4. Find the quotient set and the quotient projection.
5. Find a map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that the equivalence relation $\sim$ is $\sim_{f}$.

Find the quotient map $f / \sim$.

## Solution.

1. Let us prove that $\sim$ is an equivalence relation.

- For reflexivity, we have to show that $\forall(x, y) \in \mathbb{R}^{2} \quad(x, y) \sim(x, y)$.

Problem. Define the following relation $\sim$ on $\mathbb{R}^{2}$ :

$$
\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2} \text { for }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} .
$$

1. Prove that $\sim$ is an equivalence relation on $\mathbb{R}^{2}$.
2. Find the equivalence class of $(1,2) \in \mathbb{R}^{2}$. Draw its graph on the plane $\mathbb{R}^{2}$.
3. How many equivalence classes are there? Draw their graphs on the plane.
4. Find the quotient set and the quotient projection.
5. Find a map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that the equivalence relation $\sim$ is $\sim_{f}$.

Find the quotient map $f / \sim$.

## Solution.

1. Let us prove that $\sim$ is an equivalence relation.

- For reflexivity, we have to show that $\forall(x, y) \in \mathbb{R}^{2} \quad(x, y) \sim(x, y)$. $(x, y) \sim(x, y)$

Problem. Define the following relation $\sim$ on $\mathbb{R}^{2}$ :

$$
\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2} \text { for }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} .
$$

1. Prove that $\sim$ is an equivalence relation on $\mathbb{R}^{2}$.
2. Find the equivalence class of $(1,2) \in \mathbb{R}^{2}$. Draw its graph on the plane $\mathbb{R}^{2}$.
3. How many equivalence classes are there? Draw their graphs on the plane.
4. Find the quotient set and the quotient projection.
5. Find a map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that the equivalence relation $\sim$ is $\sim_{f}$.

Find the quotient map $f / \sim$.

## Solution.

1. Let us prove that $\sim$ is an equivalence relation.

- For reflexivity, we have to show that $\forall(x, y) \in \mathbb{R}^{2} \quad(x, y) \sim(x, y)$.
$(x, y) \sim(x, y) \Longleftrightarrow x-x=y-y \Longleftrightarrow 0=0$,

Problem. Define the following relation $\sim$ on $\mathbb{R}^{2}$ :

$$
\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2} \text { for }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} .
$$

1. Prove that $\sim$ is an equivalence relation on $\mathbb{R}^{2}$.
2. Find the equivalence class of $(1,2) \in \mathbb{R}^{2}$. Draw its graph on the plane $\mathbb{R}^{2}$.
3. How many equivalence classes are there? Draw their graphs on the plane.
4. Find the quotient set and the quotient projection.
5. Find a map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that the equivalence relation $\sim$ is $\sim_{f}$.

Find the quotient map $f / \sim$.

## Solution.

1. Let us prove that $\sim$ is an equivalence relation.

- For reflexivity, we have to show that $\forall(x, y) \in \mathbb{R}^{2} \quad(x, y) \sim(x, y)$. $(x, y) \sim(x, y) \Longleftrightarrow x-x=y-y \Longleftrightarrow 0=0$, which is the case.


## Example

Lecture 7
Definitions in mathematics

## - For symmetry,

## Example

- For symmetry, we have to show that $\forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} \quad\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longrightarrow\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right)$.


## Example

- For symmetry, we have to show that $\forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} \quad\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longrightarrow\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right)$. By the definition of $\sim$,


## Example

- For symmetry, we have to show that $\forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} \quad\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longrightarrow\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right)$. By the definition of $\sim,\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2}$


## Example

- For symmetry, we have to show that $\forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} \quad\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longrightarrow\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right)$. By the definition of $\sim,\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2}$ and $\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right) \Longleftrightarrow x_{2}-x_{1}=y_{2}-y_{1}$.


## Example

- For symmetry, we have to show that $\forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} \quad\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longrightarrow\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right)$. By the definition of $\sim,\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2}$ and $\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right) \Longleftrightarrow x_{2}-x_{1}=y_{2}-y_{1}$.
Since $x_{1}-x_{2}=y_{1}-y_{2} \Longrightarrow x_{2}-x_{1}=y_{2}-y_{1}$,


## Example

- For symmetry, we have to show that $\forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} \quad\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longrightarrow\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right)$.
By the definition of $\sim,\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2}$ and $\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right) \Longleftrightarrow x_{2}-x_{1}=y_{2}-y_{1}$.

Since $x_{1}-x_{2}=y_{1}-y_{2} \Longrightarrow x_{2}-x_{1}=y_{2}-y_{1}$, the symmetry takes place.

## Example

- For symmetry, we have to show that

$$
\forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} \quad\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longrightarrow\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right) .
$$

By the definition of $\sim,\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2}$ and $\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right) \Longleftrightarrow x_{2}-x_{1}=y_{2}-y_{1}$.
Since $x_{1}-x_{2}=y_{1}-y_{2} \Longrightarrow x_{2}-x_{1}=y_{2}-y_{1}$, the symmetry takes place.

- For transitivity,


## Example

- For symmetry, we have to show that

$$
\forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} \quad\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longrightarrow\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right) .
$$

By the definition of $\sim,\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2}$ and $\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right) \Longleftrightarrow x_{2}-x_{1}=y_{2}-y_{1}$.
Since $x_{1}-x_{2}=y_{1}-y_{2} \Longrightarrow x_{2}-x_{1}=y_{2}-y_{1}$, the symmetry takes place.

- For transitivity, we have to show that


## Example

- For symmetry, we have to show that

$$
\forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} \quad\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longrightarrow\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right) .
$$

By the definition of $\sim,\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2}$ and $\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right) \Longleftrightarrow x_{2}-x_{1}=y_{2}-y_{1}$.

Since $x_{1}-x_{2}=y_{1}-y_{2} \Longrightarrow x_{2}-x_{1}=y_{2}-y_{1}$, the symmetry takes place.

- For transitivity, we have to show that

$$
\forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in \mathbb{R}^{2}
$$

## Example

- For symmetry, we have to show that

$$
\forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} \quad\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longrightarrow\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right) .
$$

By the definition of $\sim,\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2}$ and $\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right) \Longleftrightarrow x_{2}-x_{1}=y_{2}-y_{1}$.

Since $x_{1}-x_{2}=y_{1}-y_{2} \Longrightarrow x_{2}-x_{1}=y_{2}-y_{1}$, the symmetry takes place.

- For transitivity, we have to show that

$$
\begin{aligned}
& \forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in \mathbb{R}^{2} \\
& \left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)
\end{aligned}
$$

## Example

- For symmetry, we have to show that

$$
\forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} \quad\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longrightarrow\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right) .
$$

By the definition of $\sim,\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2}$ and $\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right) \Longleftrightarrow x_{2}-x_{1}=y_{2}-y_{1}$.

Since $x_{1}-x_{2}=y_{1}-y_{2} \Longrightarrow x_{2}-x_{1}=y_{2}-y_{1}$, the symmetry takes place.

- For transitivity, we have to show that

$$
\begin{aligned}
& \forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in \mathbb{R}^{2} \\
& \left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \wedge\left(x_{2}, y_{2}\right) \sim\left(x_{3}, y_{3}\right)
\end{aligned}
$$

## Example

- For symmetry, we have to show that

$$
\forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} \quad\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longrightarrow\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right) .
$$

By the definition of $\sim,\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2}$ and $\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right) \Longleftrightarrow x_{2}-x_{1}=y_{2}-y_{1}$.
Since $x_{1}-x_{2}=y_{1}-y_{2} \Longrightarrow x_{2}-x_{1}=y_{2}-y_{1}$, the symmetry takes place.

- For transitivity, we have to show that

$$
\begin{aligned}
& \forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in \mathbb{R}^{2} \\
& \left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \wedge\left(x_{2}, y_{2}\right) \sim\left(x_{3}, y_{3}\right) \Longrightarrow\left(x_{1}, y_{1}\right) \sim\left(x_{3}, y_{3}\right) .
\end{aligned}
$$

## Example

- For symmetry, we have to show that

$$
\forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} \quad\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longrightarrow\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right) .
$$

By the definition of $\sim,\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2}$
and $\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right) \Longleftrightarrow x_{2}-x_{1}=y_{2}-y_{1}$.
Since $x_{1}-x_{2}=y_{1}-y_{2} \Longrightarrow x_{2}-x_{1}=y_{2}-y_{1}$, the symmetry takes place.

- For transitivity, we have to show that

$$
\begin{aligned}
& \forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in \mathbb{R}^{2} \\
& \underbrace{\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)}_{x_{1}-x_{2}=y_{1}-y_{2}} \wedge \underbrace{\left(x_{2}, y_{2}\right) \sim\left(x_{3}, y_{3}\right)}_{x_{2}-x_{3}=y_{2}-y_{3}} \Longrightarrow \underbrace{\left(x_{1}, y_{1}\right) \sim\left(x_{3}, y_{3}\right)}_{x_{1}-x_{3}=y_{1}-y_{3}}
\end{aligned}
$$

## Example

- For symmetry, we have to show that

$$
\forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} \quad\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longrightarrow\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right) .
$$

By the definition of $\sim,\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2}$ and $\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right) \Longleftrightarrow x_{2}-x_{1}=y_{2}-y_{1}$.

Since $x_{1}-x_{2}=y_{1}-y_{2} \Longrightarrow x_{2}-x_{1}=y_{2}-y_{1}$, the symmetry takes place.

- For transitivity, we have to show that

$$
\begin{aligned}
& \forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in \mathbb{R}^{2} \\
& \underbrace{\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)}_{x_{1}-x_{2}=y_{1}-y_{2}} \wedge \underbrace{\left(x_{2}, y_{2}\right) \sim\left(x_{3}, y_{3}\right)}_{x_{2}-x_{3}=y_{2}-y_{3}} \Longrightarrow \underbrace{\left(x_{1}, y_{1}\right) \sim\left(x_{3}, y_{3}\right)}_{x_{1}-x_{3}=y_{1}-y_{3}} \\
& x_{1}-x_{3}
\end{aligned}
$$

## Example

- For symmetry, we have to show that

$$
\forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} \quad\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longrightarrow\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right) .
$$

By the definition of $\sim,\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2}$ and $\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right) \Longleftrightarrow x_{2}-x_{1}=y_{2}-y_{1}$.

Since $x_{1}-x_{2}=y_{1}-y_{2} \Longrightarrow x_{2}-x_{1}=y_{2}-y_{1}$, the symmetry takes place.

- For transitivity, we have to show that

$$
\begin{aligned}
& \forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in \mathbb{R}^{2} \\
& \underbrace{\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)}_{x_{1}-x_{2}=y_{1}-y_{2}} \wedge \underbrace{\left(x_{2}, y_{2}\right) \sim\left(x_{3}, y_{3}\right)}_{x_{2}-x_{3}=y_{2}-y_{3}} \Longrightarrow \underbrace{\left(x_{1}, y_{1}\right) \sim\left(x_{3}, y_{3}\right)}_{x_{1}-x_{3}=y_{1}-y_{3}} \\
& x_{1}-x_{3}=\left(x_{1}-x_{2}\right)+\left(x_{2}-x_{3}\right)
\end{aligned}
$$

## Example

- For symmetry, we have to show that

$$
\forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} \quad\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longrightarrow\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right) .
$$

By the definition of $\sim,\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2}$ and $\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right) \Longleftrightarrow x_{2}-x_{1}=y_{2}-y_{1}$.

Since $x_{1}-x_{2}=y_{1}-y_{2} \Longrightarrow x_{2}-x_{1}=y_{2}-y_{1}$, the symmetry takes place.

- For transitivity, we have to show that

$$
\begin{aligned}
& \forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in \mathbb{R}^{2} \\
& \underbrace{\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)}_{x_{1}-x_{2}=y_{1}-y_{2}} \wedge \underbrace{\left(x_{2}, y_{2}\right) \sim\left(x_{3}, y_{3}\right)}_{x_{2}-x_{3}=y_{2}-y_{3}} \Longrightarrow \underbrace{\left(x_{1}, y_{1}\right) \sim\left(x_{3}, y_{3}\right)}_{x_{1}-x_{3}=y_{1}-y_{3}} \\
& x_{1}-x_{3}=\left(x_{1}-x_{2}\right)+\left(x_{2}-x_{3}\right)=\left(y_{1}-y_{2}\right)+\left(y_{2}-y_{3}\right)
\end{aligned}
$$

## Example

- For symmetry, we have to show that

$$
\forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} \quad\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longrightarrow\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right) .
$$

By the definition of $\sim,\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2}$ and $\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right) \Longleftrightarrow x_{2}-x_{1}=y_{2}-y_{1}$.

Since $x_{1}-x_{2}=y_{1}-y_{2} \Longrightarrow x_{2}-x_{1}=y_{2}-y_{1}$, the symmetry takes place.

- For transitivity, we have to show that

$$
\begin{aligned}
& \forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in \mathbb{R}^{2} \\
& \underbrace{\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)}_{x_{1}-x_{2}=y_{1}-y_{2}} \wedge \underbrace{\left(x_{2}, y_{2}\right) \sim\left(x_{3}, y_{3}\right)}_{x_{2}-x_{3}=y_{2}-y_{3}} \Longrightarrow \underbrace{\left(x_{1}, y_{1}\right) \sim\left(x_{3}, y_{3}\right)}_{x_{1}-x_{3}=y_{1}-y_{3}} . \\
& x_{1}-x_{3}=\left(x_{1}-x_{2}\right)+\left(x_{2}-x_{3}\right)=\left(y_{1}-y_{2}\right)+\left(y_{2}-y_{3}\right)=y_{1}-y_{3}, \\
& \text { as required for transitivity. }
\end{aligned}
$$

## Example

- For symmetry, we have to show that

$$
\forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} \quad\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longrightarrow\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right) .
$$

By the definition of $\sim,\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2}$ and $\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right) \Longleftrightarrow x_{2}-x_{1}=y_{2}-y_{1}$.

Since $x_{1}-x_{2}=y_{1}-y_{2} \Longrightarrow x_{2}-x_{1}=y_{2}-y_{1}$, the symmetry takes place.

- For transitivity, we have to show that

$$
\begin{aligned}
& \forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in \mathbb{R}^{2} \\
& \underbrace{\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)}_{x_{1}-x_{2}=y_{1}-y_{2}} \wedge \underbrace{\left(x_{2}, y_{2}\right) \sim\left(x_{3}, y_{3}\right)}_{x_{2}-x_{3}=y_{2}-y_{3}} \Longrightarrow \underbrace{\left(x_{1}, y_{1}\right) \sim\left(x_{3}, y_{3}\right)}_{x_{1}-x_{3}=y_{1}-y_{3}} . \\
& x_{1}-x_{3}=\left(x_{1}-x_{2}\right)+\left(x_{2}-x_{3}\right)=\left(y_{1}-y_{2}\right)+\left(y_{2}-y_{3}\right)=y_{1}-y_{3}, \\
& \text { as required for transitivity. }
\end{aligned}
$$

Therefore, $\sim$ is an equivalence relation.

## Example

Lecture 7
Definitions in mathematics

## Example

2. Let us find the equivalence class of $(1,2)$ :

## Example

2. Let us find the equivalence class of $(1,2)$ :
[(1,2)]

## Example

2. Let us find the equivalence class of $(1,2)$ :
$[(1,2)]=\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y) \sim(1,2)\right\}$

## Example

2. Let us find the equivalence class of $(1,2)$ :
$[(1,2)]=\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y) \sim(1,2)\right\}=\left\{(x, y) \in \mathbb{R}^{2} \mid x-1=y-2\right\}$

## Example

2. Let us find the equivalence class of $(1,2)$ :
$[(1,2)]=\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y) \sim(1,2)\right\}=\left\{(x, y) \in \mathbb{R}^{2} \mid x-1=y-2\right\}$
$=\left\{(x, y) \in \mathbb{R}^{2} \mid y=x+1\right\}$

## Example

2. Let us find the equivalence class of $(1,2)$ :

$$
[(1,2)]=\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y) \sim(1,2)\right\}=\left\{(x, y) \in \mathbb{R}^{2} \mid x-1=y-2\right\}
$$

$=\left\{(x, y) \in \mathbb{R}^{2} \mid y=x+1\right\}$ a line on the $x y$-plane.

## Example

2. Let us find the equivalence class of $(1,2)$ :

$$
[(1,2)]=\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y) \sim(1,2)\right\}=\left\{(x, y) \in \mathbb{R}^{2} \mid x-1=y-2\right\}
$$

$=\left\{(x, y) \in \mathbb{R}^{2} \mid y=x+1\right\}$ a line on the $x y$-plane.

2. Let us find the equivalence class of $(1,2)$ :
$[(1,2)]=\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y) \sim(1,2)\right\}=\left\{(x, y) \in \mathbb{R}^{2} \mid x-1=y-2\right\}$
$=\left\{(x, y) \in \mathbb{R}^{2} \mid y=x+1\right\}$ a line on the $x y$-plane.


This line contains the point $(1,2) \in \mathbb{R}^{2}$.

## Example

Lecture 7
Definitions in mathematics
3. What are other equivalence classes?

## Example

Definitions in mathematics
3. What are other equivalence classes? Let $(a, b) \in \mathbb{R}^{2}$.

## Example

3. What are other equivalence classes? Let $(a, b) \in \mathbb{R}^{2}$. Then $[(a, b)]$

## Example

3. What are other equivalence classes? Let $(a, b) \in \mathbb{R}^{2}$. Then $[(a, b)]=\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y) \sim(a, b)\right\}$

## Example

3. What are other equivalence classes? Let $(a, b) \in \mathbb{R}^{2}$. Then

$$
[(a, b)]=\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y) \sim(a, b)\right\}=\left\{(x, y) \in \mathbb{R}^{2} \mid x-a=y-b\right\}
$$

## Example

3. What are other equivalence classes? Let $(a, b) \in \mathbb{R}^{2}$. Then

$$
\begin{aligned}
{[(a, b)] } & =\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y) \sim(a, b)\right\}=\left\{(x, y) \in \mathbb{R}^{2} \mid x-a=y-b\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{2} \mid y=x+(b-a)\right\}
\end{aligned}
$$

## Example

3. What are other equivalence classes? Let $(a, b) \in \mathbb{R}^{2}$. Then

$$
\begin{aligned}
{[(a, b)] } & =\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y) \sim(a, b)\right\}=\left\{(x, y) \in \mathbb{R}^{2} \mid x-a=y-b\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{2} \mid y=x+(b-a)\right\} \text { a line on the } x y \text {-plane. }
\end{aligned}
$$

## Example

3. What are other equivalence classes? Let $(a, b) \in \mathbb{R}^{2}$. Then

$$
\begin{aligned}
{[(a, b)] } & =\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y) \sim(a, b)\right\}=\left\{(x, y) \in \mathbb{R}^{2} \mid x-a=y-b\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{2} \mid y=x+(b-a)\right\} \text { a line on the } x y \text {-plane. }
\end{aligned}
$$

So the equivalence class $[(a, b)]$

## Example

3. What are other equivalence classes? Let $(a, b) \in \mathbb{R}^{2}$. Then

$$
\begin{aligned}
{[(a, b)] } & =\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y) \sim(a, b)\right\}=\left\{(x, y) \in \mathbb{R}^{2} \mid x-a=y-b\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{2} \mid y=x+(b-a)\right\} \text { a line on the } x y \text {-plane } .
\end{aligned}
$$

So the equivalence class [ $(a, b)$ ]
is the line with the slope of 1 passing through the point $(a, b)$.

## Example

3. What are other equivalence classes? Let $(a, b) \in \mathbb{R}^{2}$. Then

$$
\begin{aligned}
{[(a, b)] } & =\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y) \sim(a, b)\right\}=\left\{(x, y) \in \mathbb{R}^{2} \mid x-a=y-b\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{2} \mid y=x+(b-a)\right\} \text { a line on the } x y \text {-plane. }
\end{aligned}
$$

So the equivalence class [ $(a, b)$ ]
is the line with the slope of 1 passing through the point $(a, b)$.
Here are several equivalence classes:
3. What are other equivalence classes? Let $(a, b) \in \mathbb{R}^{2}$. Then

$$
\begin{aligned}
{[(a, b)] } & =\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y) \sim(a, b)\right\}=\left\{(x, y) \in \mathbb{R}^{2} \mid x-a=y-b\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{2} \mid y=x+(b-a)\right\} \text { a line on the } x y \text {-plane. }
\end{aligned}
$$

So the equivalence class [ $a, b)$ ]
is the line with the slope of 1 passing through the point $(a, b)$. Here are several equivalence classes:


## Example

4. The quotient set is $\mathbb{R}^{2} / \sim$ consists of the lines $L_{c}$, where $L_{c}$ is the line whose slope is 1 and the $y$-intercept is $c=b-a$.

## Example

4. The quotient set is $\mathbb{R}^{2} / \sim$ consists of the lines $L_{c}$, where $L_{c}$ is the line whose slope is 1 and the $y$-intercept is $c=b-a$.
The partition of $\mathbb{R}^{2}$ into equivalence classes is

## Example

4. The quotient set is $\mathbb{R}^{2} / \sim$ consists of the lines $L_{c}$, where $L_{c}$ is the line whose slope is 1 and the $y$-intercept is $c=b-a$.
The partition of $\mathbb{R}^{2}$ into equivalence classes is $\mathbb{R}^{2}=\bigcup_{c \in \mathbb{R}} L_{c}$

## Example

4. The quotient set is $\mathbb{R}^{2} / \sim$ consists of the lines $L_{c}$, where $L_{c}$ is the line whose slope is 1 and the $y$-intercept is $c=b-a$.
The partition of $\mathbb{R}^{2}$ into equivalence classes is $\quad \mathbb{R}^{2}=\bigcup_{c \in \mathbb{R}} L_{c}$


The quotient projection is $\mathrm{pr}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} / \sim$,

## Example

4. The quotient set is $\mathbb{R}^{2} / \sim$ consists of the lines $L_{c}$, where $L_{c}$ is the line whose slope is 1 and the $y$-intercept is $c=b-a$.
The partition of $\mathbb{R}^{2}$ into equivalence classes is $\mathbb{R}^{2}=\bigcup_{c \in \mathbb{R}} L_{c}$


The quotient projection is $\mathrm{pr}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} / \sim,(a, b) \mapsto[(a, b)]=L_{b-a}$.

## Example

5. Find a map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that the equivalence relation $\sim$ is $\sim_{f}$.

Find the quotient map $f / \sim$.

## Example

5. Find a map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that the equivalence relation $\sim$ is $\sim_{f}$.

Find the quotient map $f / \sim$.
Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the required map.

## Example

5. Find a map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that the equivalence relation $\sim$ is $\sim_{f}$.

Find the quotient map $f / \sim$.
Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the required map. Then

$$
\begin{aligned}
\left(x_{1}, y_{1}\right) \sim_{f}\left(x_{2}, y_{2}\right) \Longleftrightarrow\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) & \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2} \\
& \Longleftrightarrow x_{1}-y_{1}=x_{2}-y_{2}
\end{aligned}
$$

## Example

5. Find a map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that the equivalence relation $\sim$ is $\sim_{f}$.

Find the quotient map $f / \sim$.
Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the required map. Then

$$
\begin{aligned}
\left(x_{1}, y_{1}\right) \sim_{f}\left(x_{2}, y_{2}\right) \Longleftrightarrow\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) & \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2} \\
& \Longleftrightarrow x_{1}-y_{1}=x_{2}-y_{2} .
\end{aligned}
$$

But

$$
\left(x_{1}, y_{1}\right) \sim_{f}\left(x_{2}, y_{2}\right) \Longleftrightarrow f\left(x_{1}, y_{1}\right)=f\left(x_{2}, y_{2}\right) .
$$

## Example

5. Find a map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that the equivalence relation $\sim$ is $\sim_{f}$.

Find the quotient map $f / \sim$.
Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the required map. Then

$$
\begin{aligned}
\left(x_{1}, y_{1}\right) \sim_{f}\left(x_{2}, y_{2}\right) \Longleftrightarrow\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) & \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2} \\
& \Longleftrightarrow x_{1}-y_{1}=x_{2}-y_{2} .
\end{aligned}
$$

But
$\left(x_{1}, y_{1}\right) \sim_{f}\left(x_{2}, y_{2}\right) \Longleftrightarrow f\left(x_{1}, y_{1}\right)=f\left(x_{2}, y_{2}\right)$.
Therefore, we can take $f(x, y)=x-y$.

## Example

5. Find a map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that the equivalence relation $\sim$ is $\sim_{f}$.

Find the quotient map $f / \sim$.
Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the required map. Then

$$
\begin{aligned}
\left(x_{1}, y_{1}\right) \sim_{f}\left(x_{2}, y_{2}\right) \Longleftrightarrow\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) & \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2} \\
& \Longleftrightarrow x_{1}-y_{1}=x_{2}-y_{2} .
\end{aligned}
$$

But
$\left(x_{1}, y_{1}\right) \sim_{f}\left(x_{2}, y_{2}\right) \Longleftrightarrow f\left(x_{1}, y_{1}\right)=f\left(x_{2}, y_{2}\right)$.
Therefore, we can take $f(x, y)=x-y$.
The quotient map is

## Example

5. Find a map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that the equivalence relation $\sim$ is $\sim_{f}$.

Find the quotient map $f / \sim$.
Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the required map. Then

$$
\begin{aligned}
\left(x_{1}, y_{1}\right) \sim_{f}\left(x_{2}, y_{2}\right) \Longleftrightarrow\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) & \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2} \\
& \Longleftrightarrow x_{1}-y_{1}=x_{2}-y_{2} .
\end{aligned}
$$

But

$$
\left(x_{1}, y_{1}\right) \sim_{f}\left(x_{2}, y_{2}\right) \Longleftrightarrow f\left(x_{1}, y_{1}\right)=f\left(x_{2}, y_{2}\right) .
$$

Therefore, we can take $f(x, y)=x-y$.
The quotient map is
$f / \sim: \mathbb{R}^{2} /_{\sim_{f}} \rightarrow \mathbb{R}$,

## Example

5. Find a map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that the equivalence relation $\sim$ is $\sim_{f}$.

Find the quotient map $f / \sim$.
Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the required map. Then

$$
\begin{aligned}
\left(x_{1}, y_{1}\right) \sim_{f}\left(x_{2}, y_{2}\right) \Longleftrightarrow\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) & \Longleftrightarrow x_{1}-x_{2}=y_{1}-y_{2} \\
& \Longleftrightarrow x_{1}-y_{1}=x_{2}-y_{2} .
\end{aligned}
$$

But

$$
\left(x_{1}, y_{1}\right) \sim_{f}\left(x_{2}, y_{2}\right) \Longleftrightarrow f\left(x_{1}, y_{1}\right)=f\left(x_{2}, y_{2}\right) .
$$

Therefore, we can take $f(x, y)=x-y$.
The quotient map is
$f /_{\sim}: \mathbb{R}^{2} /{\sim_{f}} \rightarrow \mathbb{R},[(x, y)] \mapsto x-y$.


[^0]:    Definition. Let $\sim$ be an equivalence relation on a set $X$. The set of all equivalence classes is called

[^1]:    Definition. Let $\sim$ be an equivalence relation on a set $X$. The set of all equivalence classes is called
    the quotient set of $X$ with respect to $\sim$

