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Since there are three congruence classes modulo 3, namely, [0], [1], [2],
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e For symmetry, we have to show that
V(x1,u1), (22,92) €R® (21,91) ~ (22,52) = (w2,92) ~ (21,91) .
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Therefore, ~ is an equivalence relation.
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2. Let us find the equivalence class of (1,2):
[(1,2)] = {(2,9) e R | (z,y) ~ (1,2)} = {(2,y) e R* |z - 1 =y - 2}
={(z,y) e R*|y =2 + 1} a line on the xy-plane.

Yy A [(172)]
11/ (1,2)
/ .
-1

This line contains the point (1,2) ¢ R?.
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g, (221 [(12)
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slope is 1 and the y-interceptis c=b-a.

The partition of R? into equivalence classes is R?= U L.
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The quotient projection is pr:R? - R?/., (a,b) = [(a,b)] = Ly_q .
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Let f:R? > R be the required map. Then

(z1,y1) ~f (z2,y2) <= (z1,y1) ~ (T2,42) == T1 -T2 =Y1 — Y2
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