Lecture 4

Definitions in Mathematics

Linear dependence

Definitions in mathematics

Linear dependence

Definitions in mathematics
Definition. A vector \vec{u} linearly depends on vectors $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}$ if

Linear dependence

Definition. A vector \vec{u} linearly depends on vectors $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}$ if
$\vec{u}=a_{1} \overrightarrow{v_{1}}+\cdots+a_{n} \overrightarrow{v_{n}}$ for some numbers a_{1}, \ldots, a_{n}.

Linear dependence

Definition. A vector \vec{u} linearly depends on vectors $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}$ if
$\vec{u}=a_{1} \overrightarrow{v_{1}}+\cdots+a_{n} \overrightarrow{v_{n}}$ for some numbers a_{1}, \ldots, a_{n}.
The description of context is omitted.

Linear dependence

Definition. A vector \vec{u} linearly depends on vectors $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}$ if
$\vec{u}=a_{1} \overrightarrow{v_{1}}+\cdots+a_{n} \overrightarrow{v_{n}}$ for some numbers a_{1}, \ldots, a_{n}.
The description of context is omitted. Recover!

Linear dependence

Definition. A vector \vec{u} linearly depends on vectors $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}$ if
$\vec{u}=a_{1} \overrightarrow{v_{1}}+\cdots+a_{n} \overrightarrow{v_{n}}$ for some numbers a_{1}, \ldots, a_{n}.
The description of context is omitted. Recover!

Definition.

Linear dependence

Definition. A vector \vec{u} linearly depends on vectors $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}$ if
$\vec{u}=a_{1} \overrightarrow{v_{1}}+\cdots+a_{n} \overrightarrow{v_{n}}$ for some numbers a_{1}, \ldots, a_{n}.
The description of context is omitted. Recover!
Definition. The vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$ are said to be linearly dependent if

Linear dependence

Definition. A vector \vec{u} linearly depends on vectors $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}$ if
$\vec{u}=a_{1} \overrightarrow{v_{1}}+\cdots+a_{n} \overrightarrow{v_{n}}$ for some numbers a_{1}, \ldots, a_{n}.
The description of context is omitted. Recover!
Definition. The vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$ are said to be linearly dependent if there exist numbers $a_{1}, a_{2}, \ldots, a_{n}$, which are not all zeros, such that $a_{1} \overrightarrow{v_{1}}+a_{2} \overrightarrow{v_{2}}+\cdots+a_{n} \overrightarrow{v_{n}}=\overrightarrow{0}$.

Definition. A vector \vec{u} linearly depends on vectors $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}$ if
$\vec{u}=a_{1} \overrightarrow{v_{1}}+\cdots+a_{n} \overrightarrow{v_{n}}$ for some numbers a_{1}, \ldots, a_{n}.
The description of context is omitted. Recover!
Definition. The vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$ are said to be linearly dependent if there exist numbers $a_{1}, a_{2}, \ldots, a_{n}$, which are not all zeros, such that $a_{1} \overrightarrow{v_{1}}+a_{2} \overrightarrow{v_{2}}+\cdots+a_{n} \overrightarrow{v_{n}}=\overrightarrow{0}$.
If \vec{u} linearly depends on $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}$, then $\vec{u}, \overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}$ are linearly dependent.

Definition. A vector \vec{u} linearly depends on vectors $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}$ if
$\vec{u}=a_{1} \overrightarrow{v_{1}}+\cdots+a_{n} \overrightarrow{v_{n}}$ for some numbers a_{1}, \ldots, a_{n}.
The description of context is omitted. Recover!
Definition. The vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$ are said to be linearly dependent if there exist numbers $a_{1}, a_{2}, \ldots, a_{n}$, which are not all zeros, such that $a_{1} \overrightarrow{v_{1}}+a_{2} \overrightarrow{v_{2}}+\cdots+a_{n} \overrightarrow{v_{n}}=\overrightarrow{0}$.
If \vec{u} linearly depends on $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}$, then $\vec{u}, \overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}$ are linearly dependent.

If vectors $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}$ are linearly dependent,

Definition. A vector \vec{u} linearly depends on vectors $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}$ if
$\vec{u}=a_{1} \overrightarrow{v_{1}}+\cdots+a_{n} \overrightarrow{v_{n}}$ for some numbers a_{1}, \ldots, a_{n}.
The description of context is omitted. Recover!
Definition. The vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$ are said to be linearly dependent if there exist numbers $a_{1}, a_{2}, \ldots, a_{n}$, which are not all zeros, such that $a_{1} \overrightarrow{v_{1}}+a_{2} \overrightarrow{v_{2}}+\cdots+a_{n} \overrightarrow{v_{n}}=\overrightarrow{0}$.
If \vec{u} linearly depends on $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}$, then $\vec{u}, \overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}$ are linearly dependent.

If vectors $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}$ are linearly dependent, then at least some of them depends on the others.

Definition. A vector \vec{u} linearly depends on vectors $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}$ if
$\vec{u}=a_{1} \overrightarrow{v_{1}}+\cdots+a_{n} \overrightarrow{v_{n}}$ for some numbers a_{1}, \ldots, a_{n}.
The description of context is omitted. Recover!
Definition. The vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$ are said to be linearly dependent if there exist numbers $a_{1}, a_{2}, \ldots, a_{n}$, which are not all zeros, such that $a_{1} \overrightarrow{v_{1}}+a_{2} \overrightarrow{v_{2}}+\cdots+a_{n} \overrightarrow{v_{n}}=\overrightarrow{0}$.
If \vec{u} linearly depends on $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}$, then $\vec{u}, \overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}$ are linearly dependent.

If vectors $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}$ are linearly dependent, then at least some of them depends on the others.

Definition.

Definition. A vector \vec{u} linearly depends on vectors $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}$ if
$\vec{u}=a_{1} \overrightarrow{v_{1}}+\cdots+a_{n} \overrightarrow{v_{n}}$ for some numbers a_{1}, \ldots, a_{n}.
The description of context is omitted. Recover!
Definition. The vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$ are said to be linearly dependent if there exist numbers $a_{1}, a_{2}, \ldots, a_{n}$, which are not all zeros, such that $a_{1} \overrightarrow{v_{1}}+a_{2} \overrightarrow{v_{2}}+\cdots+a_{n} \overrightarrow{v_{n}}=\overrightarrow{0}$.

If \vec{u} linearly depends on $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}$, then $\vec{u}, \overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}$ are linearly dependent.

If vectors $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}$ are linearly dependent, then at least some of them depends on the others.
Definition. The vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$ are said to be linearly independent if they are not linearly dependent.

Definition. A vector \vec{u} linearly depends on vectors $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}$ if
$\vec{u}=a_{1} \overrightarrow{v_{1}}+\cdots+a_{n} \overrightarrow{v_{n}}$ for some numbers a_{1}, \ldots, a_{n}.
The description of context is omitted. Recover!
Definition. The vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$ are said to be linearly dependent if there exist numbers $a_{1}, a_{2}, \ldots, a_{n}$, which are not all zeros, such that $a_{1} \overrightarrow{v_{1}}+a_{2} \overrightarrow{v_{2}}+\cdots+a_{n} \overrightarrow{v_{n}}=\overrightarrow{0}$.

If \vec{u} linearly depends on $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}$, then $\vec{u}, \overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}$ are linearly dependent.

If vectors $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}$ are linearly dependent,
then at least some of them depends on the others.
Definition. The vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$ are said to be linearly independent if they are not linearly dependent.
If vectors are linearly independent, then none of them depends on the others.

Definition. A vector \vec{u} linearly depends on vectors $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}$ if
$\vec{u}=a_{1} \overrightarrow{v_{1}}+\cdots+a_{n} \overrightarrow{v_{n}}$ for some numbers a_{1}, \ldots, a_{n}.
The description of context is omitted. Recover!
Definition. The vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$ are said to be linearly dependent if there exist numbers $a_{1}, a_{2}, \ldots, a_{n}$, which are not all zeros, such that $a_{1} \overrightarrow{v_{1}}+a_{2} \overrightarrow{v_{2}}+\cdots+a_{n} \overrightarrow{v_{n}}=\overrightarrow{0}$.
If \vec{u} linearly depends on $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}$, then $\vec{u}, \overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}$ are linearly dependent.

If vectors $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}$ are linearly dependent,
then at least some of them depends on the others.
Definition. The vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$ are said to be linearly independent if they are not linearly dependent.
If vectors are linearly independent, then none of them depends on the others.
Exrecise. Prove that vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots \overrightarrow{v_{n}}$ are linearly independent iff

$$
\forall a_{1}, a_{2}, \ldots, a_{n} \quad\left(a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{n} \vec{v}_{n}=\overrightarrow{0} \Longrightarrow a_{1}=a_{2}=\cdots=a_{n}=0\right)
$$

Definition of ring (from Algebra)

Motivation.

Motivation. We know that the set of integers is closed with respect to the operations of addition and multiplication.

Definition of ring (from Algebra)

Motivation. We know that the set of integers is closed with respect to the operations of addition and multiplication. It means that

$$
\forall a, b \in \mathbb{Z} \quad a+b \in \mathbb{Z} \quad \text { and } \quad a b \in \mathbb{Z} \text {. }
$$

Definition of ring (from Algebra)

Motivation. We know that the set of integers is closed with respect to the operations of addition and multiplication. It means that

$$
\forall a, b \in \mathbb{Z} \quad a+b \in \mathbb{Z} \quad \text { and } \quad a b \in \mathbb{Z} \text {. }
$$

Addition and multiplication in \mathbb{Z} possess several important properties,

Definition of ring (from Algebra)

Motivation. We know that the set of integers is closed with respect to the operations of addition and multiplication. It means that

$$
\forall a, b \in \mathbb{Z} \quad a+b \in \mathbb{Z} \quad \text { and } \quad a b \in \mathbb{Z} \text {. }
$$

Addition and multiplication in \mathbb{Z} possess several important properties, like associativity and distributivity.

Definition of ring (from Algebra)

Motivation. We know that the set of integers is closed with respect to the operations of addition and multiplication. It means that

$$
\forall a, b \in \mathbb{Z} \quad a+b \in \mathbb{Z} \quad \text { and } \quad a b \in \mathbb{Z} \text {. }
$$

Addition and multiplication in \mathbb{Z} possess several important properties, like associativity and distributivity.
Besides the integers,

Definition of ring (from Algebra)

Motivation. We know that the set of integers is closed with respect to the operations of addition and multiplication. It means that

$$
\forall a, b \in \mathbb{Z} \quad a+b \in \mathbb{Z} \quad \text { and } \quad a b \in \mathbb{Z} \text {. }
$$

Addition and multiplication in \mathbb{Z} possess several important properties, like associativity and distributivity.
Besides the integers, there are many other sets of mathematical objects for which there are operations of addition and multiplication

Definition of ring (from Algebra)

Motivation. We know that the set of integers is closed with respect to the operations of addition and multiplication. It means that

$$
\forall a, b \in \mathbb{Z} \quad a+b \in \mathbb{Z} \quad \text { and } \quad a b \in \mathbb{Z} \text {. }
$$

Addition and multiplication in \mathbb{Z} possess several important properties, like associativity and distributivity.
Besides the integers, there are many other sets of mathematical objects for which there are operations of addition and multiplication possessing the same properties.

Definition of ring (from Algebra)

Motivation. We know that the set of integers is closed with respect to the operations of addition and multiplication. It means that

$$
\forall a, b \in \mathbb{Z} \quad a+b \in \mathbb{Z} \quad \text { and } \quad a b \in \mathbb{Z} \text {. }
$$

Addition and multiplication in \mathbb{Z} possess several important properties, like associativity and distributivity.
Besides the integers, there are many other sets of mathematical objects for which there are operations of addition and multiplication possessing the same properties. For example, polynomials or matrices.

Definition of ring (from Algebra)

Motivation. We know that the set of integers is closed with respect to the operations of addition and multiplication. It means that

$$
\forall a, b \in \mathbb{Z} \quad a+b \in \mathbb{Z} \quad \text { and } \quad a b \in \mathbb{Z} \text {. }
$$

Addition and multiplication in \mathbb{Z} possess several important properties, like associativity and distributivity.
Besides the integers, there are many other sets of mathematical objects for which there are operations of addition and multiplication possessing the same properties. For example, polynomials or matrices.

It is natural to gather all such sets equipped with operations under the same roof.

Definition of ring (from Algebra)

Motivation. We know that the set of integers is closed with respect to the operations of addition and multiplication. It means that

$$
\forall a, b \in \mathbb{Z} \quad a+b \in \mathbb{Z} \quad \text { and } \quad a b \in \mathbb{Z} \text {. }
$$

Addition and multiplication in \mathbb{Z} possess several important properties, like associativity and distributivity.
Besides the integers, there are many other sets of mathematical objects for which there are operations of addition and multiplication possessing the same properties. For example, polynomials or matrices.

It is natural to gather all such sets equipped with operations under the same roof.

It is done in the definition of ring.

Definition of ring

Definitions in mathematics

Definition. A ring R is a set

Definition. A ring R is a set with two operations, addition and multiplication,

Definition of ring

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and .,

Definition of ring

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and \cdot, satisfying the following properties:

Definition of ring

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and \cdot, satisfying the following properties:

1. $\forall a, b \in R \quad a+b \in R \quad$ (R is closed with respect to +$)$

Definition of ring

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and \cdot, satisfying the following properties:

1. $\forall a, b \in R \quad a+b \in R \quad$ (R is closed with respect to +$)$
2. $\forall a, b \in R \quad a \cdot b \in R \quad$ (R is closed with respect to $\cdot)$

Definition of ring

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and \cdot, satisfying the following properties:

1. $\forall a, b \in R \quad a+b \in R \quad$ (R is closed with respect to +$)$
2. $\forall a, b \in R \quad a \cdot b \in R \quad$ (R is closed with respect to $\cdot)$
3. $\forall a, b, c \in R \quad(a+b)+c=a+(b+c) \quad$ (+ is associative)

Definition of ring

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and \cdot, satisfying the following properties:

1. $\forall a, b \in R \quad a+b \in R \quad$ (R is closed with respect to +$)$
2. $\forall a, b \in R \quad a \cdot b \in R \quad$ (R is closed with respect to $\cdot)$
3. $\forall a, b, c \in R \quad(a+b)+c=a+(b+c) \quad$ (+ is associative)
4. $\forall a, b \in R \quad a+b=b+a \quad$ (+ is commutative)

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and \cdot, satisfying the following properties:

1. $\forall a, b \in R \quad a+b \in R \quad(R$ is closed with respect to +$)$
2. $\forall a, b \in R \quad a \cdot b \in R \quad$ (R is closed with respect to $\cdot)$
3. $\forall a, b, c \in R \quad(a+b)+c=a+(b+c) \quad$ (+ is associative)
4. $\forall a, b \in R \quad a+b=b+a \quad$ (+ is commutative)
5. $\exists 0 \in R \quad \forall a \in R \quad a+0=a \quad$ (there exists an additive identity in R)

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and \cdot, satisfying the following properties:

1. $\forall a, b \in R \quad a+b \in R \quad$ (R is closed with respect to +$)$
2. $\forall a, b \in R \quad a \cdot b \in R \quad$ (R is closed with respect to $\cdot)$
3. $\forall a, b, c \in R \quad(a+b)+c=a+(b+c) \quad$ (+ is associative)
4. $\forall a, b \in R \quad a+b=b+a \quad$ (+ is commutative)
5. $\exists 0 \in R \quad \forall a \in R \quad a+0=a \quad$ (there exists an additive identity in R)
6. $\forall a \in R \quad \exists-a \in R \quad a+(-a)=0$ (each element in R has an additive inverse)

Definition of ring

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and \cdot, satisfying the following properties:

1. $\forall a, b \in R \quad a+b \in R \quad$ (R is closed with respect to +$)$
2. $\forall a, b \in R \quad a \cdot b \in R \quad$ (R is closed with respect to $\cdot)$
3. $\forall a, b, c \in R \quad(a+b)+c=a+(b+c) \quad$ (+ is associative)
4. $\forall a, b \in R \quad a+b=b+a \quad$ (+ is commutative)
5. $\exists 0 \in R \quad \forall a \in R \quad a+0=a \quad$ (there exists an additive identity in R)
6. $\forall a \in R \quad \exists-a \in R \quad a+(-a)=0$ (each element in R has an additive inverse)
7. $\forall a, b, c \in R \quad(a \cdot b) \cdot c=a \cdot(b \cdot c) \quad$ (is associative)

Definition of ring

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and \cdot, satisfying the following properties:

1. $\forall a, b \in R \quad a+b \in R \quad$ (R is closed with respect to +$)$
2. $\forall a, b \in R \quad a \cdot b \in R \quad$ (R is closed with respect to $\cdot)$
3. $\forall a, b, c \in R \quad(a+b)+c=a+(b+c) \quad$ (+ is associative)
4. $\forall a, b \in R \quad a+b=b+a \quad$ (+ is commutative)
5. $\exists 0 \in R \quad \forall a \in R \quad a+0=a \quad$ (there exists an additive identity in R)
6. $\forall a \in R \quad \exists-a \in R \quad a+(-a)=0$ (each element in R has an additive inverse)
7. $\forall a, b, c \in R \quad(a \cdot b) \cdot c=a \cdot(b \cdot c) \quad$ (is associative)
8. $\forall a, b, c \in R \quad a \cdot(b+c)=a \cdot b+a \cdot c$ and $(b+c) \cdot a=b \cdot a+c \cdot a$ (multiplication distributes over addition)

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and \cdot, satisfying the following properties:

1. $\forall a, b \in R \quad a+b \in R \quad$ (R is closed with respect to +$)$
2. $\forall a, b \in R \quad a \cdot b \in R \quad$ (R is closed with respect to $\cdot)$
3. $\forall a, b, c \in R \quad(a+b)+c=a+(b+c) \quad$ (+ is associative)
4. $\forall a, b \in R \quad a+b=b+a \quad$ (+ is commutative)
5. $\exists 0 \in R \quad \forall a \in R \quad a+0=a \quad$ (there exists an additive identity in R)
6. $\forall a \in R \quad \exists-a \in R \quad a+(-a)=0$ (each element in R has an additive inverse)
7. $\forall a, b, c \in R \quad(a \cdot b) \cdot c=a \cdot(b \cdot c) \quad$ (is associative)
8. $\forall a, b, c \in R \quad a \cdot(b+c)=a \cdot b+a \cdot c$ and $(b+c) \cdot a=b \cdot a+c \cdot a$ (multiplication distributes over addition)

- If, additionally, $\forall a, b \in R \quad a \cdot b=b \cdot a \quad$ (. is commutative),

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and \cdot, satisfying the following properties:

1. $\forall a, b \in R \quad a+b \in R \quad$ (R is closed with respect to +$)$
2. $\forall a, b \in R \quad a \cdot b \in R \quad$ (R is closed with respect to $\cdot)$
3. $\forall a, b, c \in R \quad(a+b)+c=a+(b+c) \quad$ (+ is associative)
4. $\forall a, b \in R \quad a+b=b+a \quad$ (+ is commutative)
5. $\exists 0 \in R \quad \forall a \in R \quad a+0=a \quad$ (there exists an additive identity in R)
6. $\forall a \in R \quad \exists-a \in R \quad a+(-a)=0$ (each element in R has an additive inverse)
7. $\forall a, b, c \in R \quad(a \cdot b) \cdot c=a \cdot(b \cdot c) \quad$ (is associative)
8. $\forall a, b, c \in R \quad a \cdot(b+c)=a \cdot b+a \cdot c$ and $(b+c) \cdot a=b \cdot a+c \cdot a$
(multiplication distributes over addition)

- If, additionally, $\forall a, b \in R \quad a \cdot b=b \cdot a \quad$ (. is commutative),
then R is called a commutative ring.

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and \cdot, satisfying the following properties:

1. $\forall a, b \in R \quad a+b \in R \quad$ (R is closed with respect to +$)$
2. $\forall a, b \in R \quad a \cdot b \in R \quad$ (R is closed with respect to $\cdot)$
3. $\forall a, b, c \in R \quad(a+b)+c=a+(b+c) \quad$ (+ is associative)
4. $\forall a, b \in R \quad a+b=b+a \quad$ (+ is commutative)
5. $\exists 0 \in R \quad \forall a \in R \quad a+0=a \quad$ (there exists an additive identity in R)
6. $\forall a \in R \quad \exists-a \in R \quad a+(-a)=0$ (each element in R has an additive inverse)
7. $\forall a, b, c \in R \quad(a \cdot b) \cdot c=a \cdot(b \cdot c) \quad$ (is associative)
8. $\forall a, b, c \in R \quad a \cdot(b+c)=a \cdot b+a \cdot c$ and $(b+c) \cdot a=b \cdot a+c \cdot a$
(multiplication distributes over addition)

- If, additionally, $\forall a, b \in R \quad a \cdot b=b \cdot a \quad$ (. is commutative),
then R is called a commutative ring.
- If, additionally, $\exists 1 \in R \quad \forall a \in R \quad 1 \cdot a=a \cdot 1=a$

Definition of ring

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and \cdot, satisfying the following properties:

1. $\forall a, b \in R \quad a+b \in R \quad$ (R is closed with respect to +$)$
2. $\forall a, b \in R \quad a \cdot b \in R \quad$ (R is closed with respect to $\cdot)$
3. $\forall a, b, c \in R \quad(a+b)+c=a+(b+c) \quad$ (+ is associative)
4. $\forall a, b \in R \quad a+b=b+a \quad$ (+ is commutative)
5. $\exists 0 \in R \quad \forall a \in R \quad a+0=a \quad$ (there exists an additive identity in R)
6. $\forall a \in R \quad \exists-a \in R \quad a+(-a)=0$ (each element in R has an additive inverse)
7. $\forall a, b, c \in R \quad(a \cdot b) \cdot c=a \cdot(b \cdot c) \quad$ (is associative)
8. $\forall a, b, c \in R \quad a \cdot(b+c)=a \cdot b+a \cdot c$ and $(b+c) \cdot a=b \cdot a+c \cdot a$ (multiplication distributes over addition)

- If, additionally, $\forall a, b \in R \quad a \cdot b=b \cdot a \quad$ (. is commutative),
then R is called a commutative ring.
- If, additionally, $\exists 1 \in R \quad \forall a \in R \quad 1 \cdot a=a \cdot 1=a$
(there exists a multiplicative identity), then R is called a ring with unity.

Definition of ring

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and \cdot, satisfying the following properties:

1. $\forall a, b \in R \quad a+b \in R \quad$ (R is closed with respect to +$)$
2. $\forall a, b \in R \quad a \cdot b \in R \quad$ (R is closed with respect to $\cdot)$
3. $\forall a, b, c \in R \quad(a+b)+c=a+(b+c) \quad$ (+ is associative)
4. $\forall a, b \in R \quad a+b=b+a \quad$ (+ is commutative)
5. $\exists 0 \in R \quad \forall a \in R \quad a+0=a \quad$ (there exists an additive identity in R)
6. $\forall a \in R \quad \exists-a \in R \quad a+(-a)=0$ (each element in R has an additive inverse)
7. $\forall a, b, c \in R \quad(a \cdot b) \cdot c=a \cdot(b \cdot c) \quad$ (is associative)
8. $\forall a, b, c \in R \quad a \cdot(b+c)=a \cdot b+a \cdot c$ and $(b+c) \cdot a=b \cdot a+c \cdot a$ (multiplication distributes over addition)

- If, additionally, $\forall a, b \in R \quad a \cdot b=b \cdot a \quad$ (. is commutative),
then R is called a commutative ring.
- If, additionally, $\exists 1 \in R \quad \forall a \in R \quad 1 \cdot a=a \cdot 1=a$
(there exists a multiplicative identity), then R is called a ring with unity.
The properties are called the axioms of a ring.

Examples of rings

Lecture 7
Definitions in mathematics

Examples of rings

1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are commutative rings with unity.

Examples of rings

1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are commutative rings with unity.
2. $2 \mathbb{Z}=\{2 n \mid n \in \mathbb{Z}\}$ is a ring of even integers (Commutative? With unity?)

Examples of rings

1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are commutative rings with unity.
2. $2 \mathbb{Z}=\{2 n \mid n \in \mathbb{Z}\}$ is a ring of even integers (Commutative? With unity?)
3. $\mathbb{Z}[x]$, polynomials in variable x with integer coefficients, form a ring.
4. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are commutative rings with unity.
5. $2 \mathbb{Z}=\{2 n \mid n \in \mathbb{Z}\}$ is a ring of even integers (Commutative? With unity?)
6. $\mathbb{Z}[x]$, polynomials in variable x with integer coefficients, form a ring.
(Commutative? With unity?)
7. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are commutative rings with unity.
8. $2 \mathbb{Z}=\{2 n \mid n \in \mathbb{Z}\}$ is a ring of even integers (Commutative? With unity?)
9. $\mathbb{Z}[x]$, polynomials in variable x with integer coefficients, form a ring.
(Commutative? With unity?)
10. $\mathbb{Q}[x], \quad \mathbb{R}[x], \quad \mathbb{Z}[x, y]$, etc. are rings of polynomials.
11. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are commutative rings with unity.
12. $2 \mathbb{Z}=\{2 n \mid n \in \mathbb{Z}\}$ is a ring of even integers (Commutative? With unity?)
13. $\mathbb{Z}[x]$, polynomials in variable x with integer coefficients, form a ring.
(Commutative? With unity?)
14. $\mathbb{Q}[x], \mathbb{R}[x], \mathbb{Z}[x, y]$, etc. are rings of polynomials.
15. $M_{n}(\mathbb{R})$, square $n \times n$ matrices with real coefficients form a ring.
16. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are commutative rings with unity.
17. $2 \mathbb{Z}=\{2 n \mid n \in \mathbb{Z}\}$ is a ring of even integers (Commutative? With unity?)
18. $\mathbb{Z}[x]$, polynomials in variable x with integer coefficients, form a ring.
(Commutative? With unity?)
19. $\mathbb{Q}[x], \quad \mathbb{R}[x], \quad \mathbb{Z}[x, y]$, etc. are rings of polynomials.
20. $M_{n}(\mathbb{R})$, square $n \times n$ matrices with real coefficients form a ring. (Commutative? With unity?)
21. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are commutative rings with unity.
22. $2 \mathbb{Z}=\{2 n \mid n \in \mathbb{Z}\}$ is a ring of even integers (Commutative? With unity?)
23. $\mathbb{Z}[x]$, polynomials in variable x with integer coefficients, form a ring.
(Commutative? With unity?)
24. $\mathbb{Q}[x], \quad \mathbb{R}[x], \quad \mathbb{Z}[x, y]$, etc. are rings of polynomials.
25. $M_{n}(\mathbb{R})$, square $n \times n$ matrices with real coefficients form a ring.
(Commutative? With unity?)
26. \mathbb{Z}_{m}, residues modulo m (to be discussed later in the course) form a ring.
27. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are commutative rings with unity.
28. $2 \mathbb{Z}=\{2 n \mid n \in \mathbb{Z}\}$ is a ring of even integers (Commutative? With unity?)
29. $\mathbb{Z}[x]$, polynomials in variable x with integer coefficients, form a ring.
(Commutative? With unity?)
30. $\mathbb{Q}[x], \mathbb{R}[x], \mathbb{Z}[x, y]$, etc. are rings of polynomials.
31. $M_{n}(\mathbb{R})$, square $n \times n$ matrices with real coefficients form a ring. (Commutative? With unity?)
32. \mathbb{Z}_{m}, residues modulo m (to be discussed later in the course) form a ring.
33. $\mathcal{F}=\{f \mid f: \mathbb{R} \rightarrow \mathbb{R}\}$, real valued functions with the operations of addition $(f+g)(x)=f(x)+g(x)$ and multiplication $(f \cdot g)(x)=f(x) \cdot g(x)$ form a ring.
34. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are commutative rings with unity.
35. $2 \mathbb{Z}=\{2 n \mid n \in \mathbb{Z}\}$ is a ring of even integers (Commutative? With unity?)
36. $\mathbb{Z}[x]$, polynomials in variable x with integer coefficients, form a ring.
(Commutative? With unity?)
37. $\mathbb{Q}[x], \mathbb{R}[x], \mathbb{Z}[x, y]$, etc. are rings of polynomials.
38. $M_{n}(\mathbb{R})$, square $n \times n$ matrices with real coefficients form a ring. (Commutative? With unity?)
39. \mathbb{Z}_{m}, residues modulo m (to be discussed later in the course) form a ring.
40. $\mathcal{F}=\{f \mid f: \mathbb{R} \rightarrow \mathbb{R}\}$, real valued functions with the operations of addition $(f+g)(x)=f(x)+g(x)$ and multiplication $(f \cdot g)(x)=f(x) \cdot g(x)$ form a ring.

Important: To prove that each of the listed above objects is a ring, we have to verify all ring axioms.

Definition.

Definition. Let X be a set.

Definition. Let X be a set. The power set of X

Definition. Let X be a set. The power set of X

is the set of all subsets of X.

Definition. Let X be a set. The power set of X

 is the set of all subsets of X.Notation: $\mathcal{P}(X)$

Definition. Let X be a set. The power set of X

is the set of all subsets of X.
Notation: $\mathcal{P}(X)$
By definition,

Definition. Let X be a set. The power set of X

 is the set of all subsets of X.Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$.

Definition. Let X be a set. The power set of X is the set of all subsets of X.

Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$.
Control question. Can $\mathcal{P}(X)=\varnothing$?

Definition. Let X be a set. The power set of X is the set of all subsets of X.

Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$.
Control question. Can $\mathcal{P}(X)=\varnothing$?
Characteristic function of a set

Definition. Let X be a set. The power set of X is the set of all subsets of X.

Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$.
Control question. Can $\mathcal{P}(X)=\varnothing$?
Characteristic function of a set $A \subset U$

Definition. Let X be a set. The power set of X is the set of all subsets of X.

Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$.
Control question. Can $\mathcal{P}(X)=\varnothing$?
Characteristic function of a set $A \subset U$
$\chi_{A}: U \rightarrow\{0,1\}$,

Definition. Let X be a set. The power set of X is the set of all subsets of X.

Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$.
Control question. Can $\mathcal{P}(X)=\varnothing$?
Characteristic function of a set $A \subset U$
$\chi_{A}: U \rightarrow\{0,1\}, \quad \chi_{A}(x)= \begin{cases}1, & \text { if } x \in A \\ 0, & \text { if } x \notin A\end{cases}$

Definition. Let X be a set. The power set of X is the set of all subsets of X.

Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$.
Control question. Can $\mathcal{P}(X)=\varnothing$?
Characteristic function of a set $A \subset U$
$\chi_{A}: U \rightarrow\{0,1\}, \quad \chi_{A}(x)= \begin{cases}1, & \text { if } x \in A \\ 0, & \text { if } x \notin A\end{cases}$
Control question. Have you met characteristic functions under a different name?

Definition. Let X be a set. The power set of X is the set of all subsets of X.

Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$.
Control question. Can $\mathcal{P}(X)=\varnothing$?
Characteristic function of a set $A \subset U$
$\chi_{A}: U \rightarrow\{0,1\}, \quad \chi_{A}(x)= \begin{cases}1, & \text { if } x \in A \\ 0, & \text { if } x \notin A\end{cases}$
Control question. Have you met characteristic functions under a different name?
Example.

Definition. Let X be a set. The power set of X is the set of all subsets of X.

Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$.
Control question. Can $\mathcal{P}(X)=\varnothing$?
Characteristic function of a set $A \subset U$
$\chi_{A}: U \rightarrow\{0,1\}, \quad \chi_{A}(x)= \begin{cases}1, & \text { if } x \in A \\ 0, & \text { if } x \notin A\end{cases}$
Control question. Have you met characteristic functions under a different name?
Example. for $[2,4] \subset \mathbb{R}$,

Definition. Let X be a set. The power set of X
is the set of all subsets of X.
Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$.
Control question. Can $\mathcal{P}(X)=\varnothing$?
Characteristic function of a set $A \subset U$
$\chi_{A}: U \rightarrow\{0,1\}, \quad \chi_{A}(x)= \begin{cases}1, & \text { if } x \in A \\ 0, & \text { if } x \notin A\end{cases}$
Control question. Have you met characteristic functions under a different name?
Example. for $[2,4] \subset \mathbb{R}, \quad \chi_{[2,4]}(x)= \begin{cases}1, & \text { if } x \in[2,4] \\ 0, & \text { if } x \notin[2,4]\end{cases}$

Definition. Let X be a set. The power set of X
is the set of all subsets of X.
Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$.
Control question. Can $\mathcal{P}(X)=\varnothing$?
Characteristic function of a set $A \subset U$
$\chi_{A}: U \rightarrow\{0,1\}, \quad \chi_{A}(x)= \begin{cases}1, & \text { if } x \in A \\ 0, & \text { if } x \notin A\end{cases}$
Control question. Have you met characteristic functions under a different name?
Example. for $[2,4] \subset \mathbb{R}, \quad \chi_{[2,4]}(x)= \begin{cases}1, & \text { if } x \in[2,4] \\ 0, & \text { if } x \notin[2,4]\end{cases}$

Theorem.

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.

Power set and a set of characteristic functions

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$. Proof.

Power set and a set of characteristic functions

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$. Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M a p}(X,\{0,1\})$

Power set and a set of characteristic functions

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.

Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M a p}(X,\{0,1\})$

$$
A \mapsto \chi_{A},
$$

Power set and a set of characteristic functions

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.

Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M a p}(X,\{0,1\})$ $A \mapsto \chi_{A}$, where $A \subset X$.

Power set and a set of characteristic functions

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.

Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M a p}(X,\{0,1\})$

$$
A \mapsto \chi_{A} \text {, where } A \subset X .
$$

Indeed, the map above is injective,

Power set and a set of characteristic functions

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.

Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M a p}(X,\{0,1\})$ $A \mapsto \chi_{A}$, where $A \subset X$.

Indeed, the map above is injective,
since different subsets of X have different characteristic functions:

Power set and a set of characteristic functions

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.

Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M a p}(X,\{0,1\})$

$$
A \mapsto \chi_{A} \text {, where } A \subset X .
$$

Indeed, the map above is injective,
since different subsets of X have different characteristic functions:

$$
A \neq B \Longrightarrow \chi_{A} \neq \chi_{B} \text { for any } A, B \subset X .
$$

Power set and a set of characteristic functions

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.

Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M a p}(X,\{0,1\})$

$$
A \mapsto \chi_{A} \text {, where } A \subset X .
$$

Indeed, the map above is injective,
since different subsets of X have different characteristic functions:

$$
A \neq B \Longrightarrow \chi_{A} \neq \chi_{B} \text { for any } A, B \subset X . \text { Why? }
$$

Power set and a set of characteristic functions

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.
Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M a p}(X,\{0,1\})$ $A \mapsto \chi_{A}$, where $A \subset X$.

Indeed, the map above is injective,
since different subsets of X have different characteristic functions:

$$
A \neq B \Longrightarrow \chi_{A} \neq \chi_{B} \text { for any } A, B \subset X . \text { Why? }
$$

The map is surjective,

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.
Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M a p}(X,\{0,1\})$ $A \mapsto \chi_{A}$, where $A \subset X$.
Indeed, the map above is injective,
since different subsets of X have different characteristic functions:

$$
A \neq B \Longrightarrow \chi_{A} \neq \chi_{B} \text { for any } A, B \subset X . \text { Why? }
$$

The map is surjective,
since any $f \in \mathcal{M a p}(X,\{0,1\})$ defines a set $A=\left\{f^{-1}\{1\}\right\} \subset X$,

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.
Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M a p}(X,\{0,1\})$ $A \mapsto \chi_{A}$, where $A \subset X$.
Indeed, the map above is injective,
since different subsets of X have different characteristic functions:

$$
A \neq B \Longrightarrow \chi_{A} \neq \chi_{B} \text { for any } A, B \subset X . \text { Why? }
$$

The map is surjective,
since any $f \in \mathcal{M a p}(X,\{0,1\})$ defines a set $A=\left\{f^{-1}\{1\}\right\} \subset X$, for which f is the characteristic function:

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.
Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M a p}(X,\{0,1\})$ $A \mapsto \chi_{A}$, where $A \subset X$.
Indeed, the map above is injective,
since different subsets of X have different characteristic functions:

$$
A \neq B \Longrightarrow \chi_{A} \neq \chi_{B} \text { for any } A, B \subset X . \text { Why? }
$$

The map is surjective,
since any $f \in \mathcal{M a p}(X,\{0,1\})$ defines a set $A=\left\{f^{-1}\{1\}\right\} \subset X$, for which f is the characteristic function: $\chi_{A}=f$

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.
Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M a p}(X,\{0,1\})$

$$
A \mapsto \chi_{A} \text {, where } A \subset X .
$$

Indeed, the map above is injective,
since different subsets of X have different characteristic functions:

$$
A \neq B \Longrightarrow \chi_{A} \neq \chi_{B} \text { for any } A, B \subset X . \text { Why? }
$$

The map is surjective,

$$
\text { since any } f \in \mathcal{M a p}(X,\{0,1\}) \text { defines a set } A=\left\{f^{-1}\{1\}\right\} \subset X \text {, }
$$

for which f is the characteristic function: $\chi_{A}=f$
Corollary.

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.
Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M a p}(X,\{0,1\})$

$$
A \mapsto \chi_{A} \text {, where } A \subset X .
$$

Indeed, the map above is injective,
since different subsets of X have different characteristic functions:

$$
A \neq B \Longrightarrow \chi_{A} \neq \chi_{B} \text { for any } A, B \subset X . \text { Why? }
$$

The map is surjective,

$$
\text { since any } f \in \mathcal{M a p}(X,\{0,1\}) \text { defines a set } A=\left\{f^{-1}\{1\}\right\} \subset X \text {, }
$$

for which f is the characteristic function: $\chi_{A}=f$
Corollary. $|\mathcal{P}(X)|$

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.
Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M a p}(X,\{0,1\})$

$$
A \mapsto \chi_{A} \text {, where } A \subset X .
$$

Indeed, the map above is injective,
since different subsets of X have different characteristic functions:

$$
A \neq B \Longrightarrow \chi_{A} \neq \chi_{B} \text { for any } A, B \subset X . \text { Why? }
$$

The map is surjective,

$$
\text { since any } f \in \mathcal{M a p}(X,\{0,1\}) \text { defines a set } A=\left\{f^{-1}\{1\}\right\} \subset X,
$$

for which f is the characteristic function: $\chi_{A}=f$
Corollary. $|\mathcal{P}(X)|=|\mathcal{M a p}(X,\{0,1\})|$

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.
Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M a p}(X,\{0,1\})$

$$
A \mapsto \chi_{A} \text {, where } A \subset X .
$$

Indeed, the map above is injective,
since different subsets of X have different characteristic functions:

$$
A \neq B \Longrightarrow \chi_{A} \neq \chi_{B} \text { for any } A, B \subset X . \text { Why? }
$$

The map is surjective,

$$
\text { since any } f \in \mathcal{M a p}(X,\{0,1\}) \text { defines a set } A=\left\{f^{-1}\{1\}\right\} \subset X,
$$

for which f is the characteristic function: $\chi_{A}=f$
Corollary. $|\mathcal{P}(X)|=|\mathcal{M a p}(X,\{0,1\})|=2^{|X|}$,

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.
Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M a p}(X,\{0,1\})$

$$
A \mapsto \chi_{A} \text {, where } A \subset X .
$$

Indeed, the map above is injective,
since different subsets of X have different characteristic functions:

$$
A \neq B \Longrightarrow \chi_{A} \neq \chi_{B} \text { for any } A, B \subset X . \text { Why? }
$$

The map is surjective,

$$
\text { since any } f \in \mathcal{M a p}(X,\{0,1\}) \text { defines a set } A=\left\{f^{-1}\{1\}\right\} \subset X \text {, }
$$ for which f is the characteristic function: $\chi_{A}=f$

Corollary. $|\mathcal{P}(X)|=|\mathcal{M a p}(X,\{0,1\})|=2^{|X|}$, as we already know.

Working with power set

Definitions in mathematics

Working with power set

Definitions in mathematics

Theorem. Let A, B be sets.

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$. Proof. Let $A \subset B$.

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$. Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$. Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Take any $X \in \mathcal{P}(A)$.

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion,

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion, $X \subset B$.

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.
We have got that $\forall X \in \mathcal{P}(A), X \in \mathcal{P}(B)$,

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.
We have got that $\forall X \in \mathcal{P}(A), X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.
We have got that $\forall X \in \mathcal{P}(A), X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.
And the half of the proof is done!

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.
We have got that $\forall X \in \mathcal{P}(A), X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Assume now that $\mathcal{P}(A) \subset \mathcal{P}(B)$

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.
We have got that $\forall X \in \mathcal{P}(A), X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Assume now that $\mathcal{P}(A) \subset \mathcal{P}(B)$ and prove that $A \subset B$ in this case.

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.
We have got that $\forall X \in \mathcal{P}(A), X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Assume now that $\mathcal{P}(A) \subset \mathcal{P}(B)$ and prove that $A \subset B$ in this case.
Since $A \subset A$,

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.
We have got that $\forall X \in \mathcal{P}(A), X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Assume now that $\mathcal{P}(A) \subset \mathcal{P}(B)$ and prove that $A \subset B$ in this case.
Since $A \subset A$, we have that $A \in \mathcal{P}(A)$.

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.
We have got that $\forall X \in \mathcal{P}(A), X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Assume now that $\mathcal{P}(A) \subset \mathcal{P}(B)$ and prove that $A \subset B$ in this case.
Since $A \subset A$, we have that $A \in \mathcal{P}(A)$.
But by the assumption, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.
We have got that $\forall X \in \mathcal{P}(A), X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Assume now that $\mathcal{P}(A) \subset \mathcal{P}(B)$ and prove that $A \subset B$ in this case.
Since $A \subset A$, we have that $A \in \mathcal{P}(A)$.
But by the assumption, $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Therefore, $A \in \mathcal{P}(B)$,

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.
We have got that $\forall X \in \mathcal{P}(A), X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Assume now that $\mathcal{P}(A) \subset \mathcal{P}(B)$ and prove that $A \subset B$ in this case.
Since $A \subset A$, we have that $A \in \mathcal{P}(A)$.
But by the assumption, $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Therefore, $A \in \mathcal{P}(B)$, that is, $A \subset B$.

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.
We have got that $\forall X \in \mathcal{P}(A), X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Assume now that $\mathcal{P}(A) \subset \mathcal{P}(B)$ and prove that $A \subset B$ in this case.
Since $A \subset A$, we have that $A \in \mathcal{P}(A)$.
But by the assumption, $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Therefore, $A \in \mathcal{P}(B)$, that is, $A \subset B$.
And the other half of the proof is done!

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.
We have got that $\forall X \in \mathcal{P}(A), X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Assume now that $\mathcal{P}(A) \subset \mathcal{P}(B)$ and prove that $A \subset B$ in this case.
Since $A \subset A$, we have that $A \in \mathcal{P}(A)$.
But by the assumption, $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Therefore, $A \in \mathcal{P}(B)$, that is, $A \subset B$.

Overall, $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$

Induced maps

Definitions in mathematics

Any map $f: X \rightarrow Y$ induces maps

Induced maps

Any map $f: X \rightarrow Y$ induces maps

$$
f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y),
$$

Induced maps

Any map $f: X \rightarrow Y$ induces maps

$$
f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X
$$

Induced maps

Any map $f: X \rightarrow Y$ induces maps

$$
f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X \text { and }
$$

Induced maps

Any map $f: X \rightarrow Y$ induces maps

$$
\begin{aligned}
& f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X \text { and } \\
& f^{*}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X),
\end{aligned}
$$

Induced maps

Any map $f: X \rightarrow Y$ induces maps

$$
\begin{aligned}
& f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X \text { and } \\
& f^{*}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X), \quad B \mapsto f^{-1}(B) \text { for any } B \subset Y .
\end{aligned}
$$

Induced maps

Any map $f: X \rightarrow Y$ induces maps

$$
\begin{aligned}
& f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X \text { and } \\
& f^{*}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X), B \mapsto f^{-1}(B) \text { for any } B \subset Y .
\end{aligned}
$$

(We remember that $f^{-1}(B)=\{x \in X \mid f(x) \in B\}$ is the preimage of B,

Any map $f: X \rightarrow Y$ induces maps

$$
\begin{aligned}
& f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X \text { and } \\
& f^{*}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X), \quad B \mapsto f^{-1}(B) \text { for any } B \subset Y .
\end{aligned}
$$

(We remember that $f^{-1}(B)=\{x \in X \mid f(x) \in B\}$ is the preimage of B, and not the result of applying the inverse map f^{-1}.)

Any map $f: X \rightarrow Y$ induces maps

$$
\begin{aligned}
& f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X \text { and } \\
& f^{*}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X), \quad B \mapsto f^{-1}(B) \text { for any } B \subset Y .
\end{aligned}
$$

(We remember that $f^{-1}(B)=\{x \in X \mid f(x) \in B\}$ is the preimage of B, and not the result of applying the inverse map f^{-1}.)
The maps f_{*} and f^{*} are well defined

Any map $f: X \rightarrow Y$ induces maps

$$
\begin{aligned}
& f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X \text { and } \\
& f^{*}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X), \quad B \mapsto f^{-1}(B) \text { for any } B \subset Y .
\end{aligned}
$$

(We remember that $f^{-1}(B)=\{x \in X \mid f(x) \in B\}$ is the preimage of B, and not the result of applying the inverse map f^{-1}.)
The maps f_{*} and f^{*} are well defined since for any $A \subset X$,

Any map $f: X \rightarrow Y$ induces maps

$$
\begin{aligned}
& f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X \text { and } \\
& f^{*}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X), \quad B \mapsto f^{-1}(B) \text { for any } B \subset Y .
\end{aligned}
$$

(We remember that $f^{-1}(B)=\{x \in X \mid f(x) \in B\}$ is the preimage of B, and not the result of applying the inverse map f^{-1}.)
The maps f_{*} and f^{*} are well defined since for any $A \subset X, f(A) \subset Y$ and, therefore, $f(A) \in \mathcal{P}(Y)$

Any map $f: X \rightarrow Y$ induces maps

$$
\begin{aligned}
& f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X \text { and } \\
& f^{*}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X), \quad B \mapsto f^{-1}(B) \text { for any } B \subset Y .
\end{aligned}
$$

(We remember that $f^{-1}(B)=\{x \in X \mid f(x) \in B\}$ is the preimage of B, and not the result of applying the inverse map f^{-1}.)
The maps f_{*} and f^{*} are well defined since for any $A \subset X, f(A) \subset Y$ and, therefore, $f(A) \in \mathcal{P}(Y)$ and for any $B \subset Y$,

Any map $f: X \rightarrow Y$ induces maps

$$
\begin{aligned}
& f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X \text { and } \\
& f^{*}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X), \quad B \mapsto f^{-1}(B) \text { for any } B \subset Y .
\end{aligned}
$$

(We remember that $f^{-1}(B)=\{x \in X \mid f(x) \in B\}$ is the preimage of B, and not the result of applying the inverse map f^{-1}.)
The maps f_{*} and f^{*} are well defined since for any $A \subset X, f(A) \subset Y$ and, therefore, $f(A) \in \mathcal{P}(Y)$ and for any $B \subset Y, f^{-1}(B) \subset X$ and, therefore, $f^{-1}(B) \in \mathcal{P}(X)$.

Any map $f: X \rightarrow Y$ induces maps

$$
\begin{aligned}
& f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X \text { and } \\
& f^{*}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X), \quad B \mapsto f^{-1}(B) \text { for any } B \subset Y .
\end{aligned}
$$

(We remember that $f^{-1}(B)=\{x \in X \mid f(x) \in B\}$ is the preimage of B, and not the result of applying the inverse map f^{-1}.)
The maps f_{*} and f^{*} are well defined since for any $A \subset X, f(A) \subset Y$ and, therefore, $f(A) \in \mathcal{P}(Y)$ and for any $B \subset Y, f^{-1}(B) \subset X$ and, therefore, $f^{-1}(B) \in \mathcal{P}(X)$.

Exercise 1.

Any map $f: X \rightarrow Y$ induces maps

$$
\begin{aligned}
& f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X \text { and } \\
& f^{*}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X), \quad B \mapsto f^{-1}(B) \text { for any } B \subset Y .
\end{aligned}
$$

(We remember that $f^{-1}(B)=\{x \in X \mid f(x) \in B\}$ is the preimage of B, and not the result of applying the inverse map f^{-1}.)
The maps f_{*} and f^{*} are well defined since for any $A \subset X, f(A) \subset Y$ and, therefore, $f(A) \in \mathcal{P}(Y)$ and for any $B \subset Y, f^{-1}(B) \subset X$ and, therefore, $f^{-1}(B) \in \mathcal{P}(X)$.

Exercise 1. Prove that if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are maps,

Any map $f: X \rightarrow Y$ induces maps

$$
\begin{aligned}
& f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X \text { and } \\
& f^{*}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X), \quad B \mapsto f^{-1}(B) \text { for any } B \subset Y .
\end{aligned}
$$

(We remember that $f^{-1}(B)=\{x \in X \mid f(x) \in B\}$ is the preimage of B, and not the result of applying the inverse map f^{-1}.)
The maps f_{*} and f^{*} are well defined since for any $A \subset X, f(A) \subset Y$ and, therefore, $f(A) \in \mathcal{P}(Y)$ and for any $B \subset Y, f^{-1}(B) \subset X$ and, therefore, $f^{-1}(B) \in \mathcal{P}(X)$.

Exercise 1. Prove that if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are maps, then

$$
(g \circ f)_{*}=g_{*} \circ f_{*} .
$$

Any map $f: X \rightarrow Y$ induces maps

$$
\begin{aligned}
& f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X \text { and } \\
& f^{*}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X), \quad B \mapsto f^{-1}(B) \text { for any } B \subset Y .
\end{aligned}
$$

(We remember that $f^{-1}(B)=\{x \in X \mid f(x) \in B\}$ is the preimage of B, and not the result of applying the inverse map f^{-1}.)
The maps f_{*} and f^{*} are well defined since for any $A \subset X, f(A) \subset Y$ and, therefore, $f(A) \in \mathcal{P}(Y)$ and for any $B \subset Y, f^{-1}(B) \subset X$ and, therefore, $f^{-1}(B) \in \mathcal{P}(X)$.

Exercise 1. Prove that if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are maps, then

$$
(g \circ f)_{*}=g_{*} \circ f_{*} .
$$

Exercise 2. Formulate and prove a similar identity for $(g \circ f)^{*}$.

Cartesian product

Definitions in mathematics

Cartesian product

Definition.

Cartesian product

Definition. Let X, Y be sets.

Cartesian product

Definitions in mathematics

Definition. Let X, Y be sets.
The Cartesian product

Cartesian product

Definitions in mathematics

Definition. Let X, Y be sets.
The Cartesian product (or cross product

Cartesian product

[^0]
Cartesian product

[^1]
Cartesian product

[^2]
Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs,

Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$

Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}=x_{2} \quad$ and $y_{1}=y_{2}$.

Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product) of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}=x_{2} \quad$ and $y_{1}=y_{2}$.
So if $x \neq y$,

Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}=x_{2} \quad$ and $y_{1}=y_{2}$.
So if $x \neq y$, then $(x, y) \neq(y, x)$,

Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}=x_{2} \quad$ and $y_{1}=y_{2}$.
So if $x \neq y$, then $(x, y) \neq(y, x)$, and if $X \neq Y$

Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}=x_{2} \quad$ and $y_{1}=y_{2}$.
So if $x \neq y$, then $(x, y) \neq(y, x)$, and if $X \neq Y$ then $X \times Y$

Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}=x_{2} \quad$ and $y_{1}=y_{2}$.
So if $x \neq y$, then $(x, y) \neq(y, x)$, and if $X \neq Y$ then $X \times Y \neq Y \times X$.

Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}=x_{2} \quad$ and $y_{1}=y_{2}$.
So if $x \neq y$, then $(x, y) \neq(y, x)$, and if $X \neq Y$ then $X \times Y \neq Y \times X$.

Example 1. Let $X=\{1,2,3\}$ and $Y=\{a, b\}$.

Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}=x_{2} \quad$ and $y_{1}=y_{2}$.
So if $x \neq y$, then $(x, y) \neq(y, x)$, and if $X \neq Y$ then $X \times Y \neq Y \times X$.

Example 1. Let $X=\{1,2,3\}$ and $Y=\{a, b\}$. Then $X \times Y=\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}$.

Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}=x_{2} \quad$ and $y_{1}=y_{2}$.
So if $x \neq y$, then $(x, y) \neq(y, x)$, and if $X \neq Y$ then $X \times Y \neq Y \times X$.

Example 1. Let $X=\{1,2,3\}$ and $Y=\{a, b\}$. Then $X \times Y=\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}$.

However, there is a natural bijection $X \times Y \rightarrow Y \times X:(x, y) \mapsto(y, x)$.

Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}=x_{2} \quad$ and $y_{1}=y_{2}$.
So if $x \neq y$, then $(x, y) \neq(y, x)$, and if $X \neq Y$ then $X \times Y \neq Y \times X$.

Example 1. Let $X=\{1,2,3\}$ and $Y=\{a, b\}$. Then $X \times Y=\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}$.

However, there is a natural bijection $X \times Y \rightarrow Y \times X:(x, y) \mapsto(y, x)$. In this sense, the Cartesian product is commutative.

Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}=x_{2} \quad$ and $y_{1}=y_{2}$.
So if $x \neq y$, then $(x, y) \neq(y, x)$, and if $X \neq Y$ then $X \times Y \neq Y \times X$.

Example 1. Let $X=\{1,2,3\}$ and $Y=\{a, b\}$. Then $X \times Y=\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}$.

However, there is a natural bijection $X \times Y \rightarrow Y \times X:(x, y) \mapsto(y, x)$. In this sense, the Cartesian product is commutative.

Theorem.

Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}=x_{2} \quad$ and $y_{1}=y_{2}$.
So if $x \neq y$, then $(x, y) \neq(y, x)$, and if $X \neq Y$ then $X \times Y \neq Y \times X$.

Example 1. Let $X=\{1,2,3\}$ and $Y=\{a, b\}$. Then $X \times Y=\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}$.

However, there is a natural bijection $X \times Y \rightarrow Y \times X:(x, y) \mapsto(y, x)$. In this sense, the Cartesian product is commutative.

Theorem. If X has p elements,

Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}=x_{2} \quad$ and $y_{1}=y_{2}$.
So if $x \neq y$, then $(x, y) \neq(y, x)$, and if $X \neq Y$ then $X \times Y \neq Y \times X$.

Example 1. Let $X=\{1,2,3\}$ and $Y=\{a, b\}$. Then $X \times Y=\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}$.

However, there is a natural bijection $X \times Y \rightarrow Y \times X:(x, y) \mapsto(y, x)$.
In this sense, the Cartesian product is commutative.
Theorem. If X has p elements, and Y has q elements,

Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}=x_{2} \quad$ and $y_{1}=y_{2}$.
So if $x \neq y$, then $(x, y) \neq(y, x)$, and if $X \neq Y$ then $X \times Y \neq Y \times X$.

Example 1. Let $X=\{1,2,3\}$ and $Y=\{a, b\}$. Then $X \times Y=\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}$.

However, there is a natural bijection $X \times Y \rightarrow Y \times X:(x, y) \mapsto(y, x)$.
In this sense, the Cartesian product is commutative.
Theorem. If X has p elements, and Y has q elements, then $X \times Y$ has $p q$ elements.

Examples of Cartesian product

Examples of Cartesian product

Definitions in mathematics

Example 2.

Examples of Cartesian product

Definitions in mathematics

Example 2. Let $X=Y=\mathbb{R}$.

Examples of Cartesian product

Example 2. Let $X=Y=\mathbb{R}$. Then

$X \times Y=$

Examples of Cartesian product

Example 2. Let $X=Y=\mathbb{R}$. Then
$X \times Y=\mathbb{R} \times \mathbb{R}=$

Examples of Cartesian product

Example 2. Let $X=Y=\mathbb{R}$. Then
$$
X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}
$$

Examples of Cartesian product

Example 2. Let $X=Y=\mathbb{R}$. Then

$$
X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\}
$$

Examples of Cartesian product

Example 2. Let $X=Y=\mathbb{R}$. Then

$X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\} \quad$ Cartesian plane

Examples of Cartesian product

Example 2. Let $X=Y=\mathbb{R}$. Then

$X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\} \quad$ Cartesian plane

Example 3.

Examples of Cartesian product

Example 2. Let $X=Y=\mathbb{R}$. Then

$X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\} \quad$ Cartesian plane
Example 3. Let $X=[1,2] \cup[3,5)$,

Examples of Cartesian product

Example 2. Let $X=Y=\mathbb{R}$. Then

$X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\} \quad$ Cartesian plane
Example 3. Let $X=[1,2] \cup[3,5), \quad Y=(4,6]$.

Examples of Cartesian product

Example 2. Let $X=Y=\mathbb{R}$. Then
$X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\} \quad$ Cartesian plane
Example 3. Let $X=[1,2] \cup[3,5), \quad Y=(4,6] . \quad X \times Y=$?

Examples of Cartesian product

Example 2. Let $X=Y=\mathbb{R}$. Then
$X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\} \quad$ Cartesian plane
Example 3. Let $X=[1,2] \cup[3,5), \quad Y=(4,6] . \quad X \times Y=$?
$X \times Y=\{(x, y) \mid x \in X, y \in Y\}$

Examples of Cartesian product

Example 2. Let $X=Y=\mathbb{R}$. Then
$X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\} \quad$ Cartesian plane
Example 3. Let $X=[1,2] \cup[3,5), \quad Y=(4,6] . \quad X \times Y=$?
$X \times Y=\{(x, y) \mid x \in X, y \in Y\}=\{(x, y) \mid x \in[1,2] \cup[3,5), y \in(4,6]\}$

Examples of Cartesian product

Example 2. Let $X=Y=\mathbb{R}$. Then
$X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\} \quad$ Cartesian plane
Example 3. Let $X=[1,2] \cup[3,5), \quad Y=(4,6] . \quad X \times Y=$?
$X \times Y=\{(x, y) \mid x \in X, y \in Y\}=\{(x, y) \mid x \in[1,2] \cup[3,5), y \in(4,6]\}$
Since $X \subset \mathbb{R}$ and $Y \subset \mathbb{R}$,

Examples of Cartesian product

Example 2. Let $X=Y=\mathbb{R}$. Then
$X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\} \quad$ Cartesian plane
Example 3. Let $X=[1,2] \cup[3,5), \quad Y=(4,6] . \quad X \times Y=$?
$X \times Y=\{(x, y) \mid x \in X, y \in Y\}=\{(x, y) \mid x \in[1,2] \cup[3,5), y \in(4,6]\}$
Since $X \subset \mathbb{R}$ and $Y \subset \mathbb{R}$, then $X \times Y \subset \mathbb{R}^{2}$.

Examples of Cartesian product

Example 2. Let $X=Y=\mathbb{R}$. Then
$X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\} \quad$ Cartesian plane
Example 3. Let $X=[1,2] \cup[3,5), \quad Y=(4,6] . \quad X \times Y=$?
$X \times Y=\{(x, y) \mid x \in X, y \in Y\}=\{(x, y) \mid x \in[1,2] \cup[3,5), y \in(4,6]\}$
Since $X \subset \mathbb{R}$ and $Y \subset \mathbb{R}$, then $X \times Y \subset \mathbb{R}^{2}$.

Examples of Cartesian product

Example 2. Let $X=Y=\mathbb{R}$. Then
$X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\} \quad$ Cartesian plane
Example 3. Let $X=[1,2] \cup[3,5), \quad Y=(4,6] . \quad X \times Y=$?
$X \times Y=\{(x, y) \mid x \in X, y \in Y\}=\{(x, y) \mid x \in[1,2] \cup[3,5), y \in(4,6]\}$
Since $X \subset \mathbb{R}$ and $Y \subset \mathbb{R}$, then $X \times Y \subset \mathbb{R}^{2}$.

Examples of Cartesian product

Example 2. Let $X=Y=\mathbb{R}$. Then
$X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\} \quad$ Cartesian plane
Example 3. Let $X=[1,2] \cup[3,5), \quad Y=(4,6] . \quad X \times Y=$?
$X \times Y=\{(x, y) \mid x \in X, y \in Y\}=\{(x, y) \mid x \in[1,2] \cup[3,5), y \in(4,6]\}$
Since $X \subset \mathbb{R}$ and $Y \subset \mathbb{R}$, then $X \times Y \subset \mathbb{R}^{2}$.

Examples of Cartesian product

Example 2. Let $X=Y=\mathbb{R}$. Then
$X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\} \quad$ Cartesian plane
Example 3. Let $X=[1,2] \cup[3,5), \quad Y=(4,6] . \quad X \times Y=$?
$X \times Y=\{(x, y) \mid x \in X, y \in Y\}=\{(x, y) \mid x \in[1,2] \cup[3,5), y \in(4,6]\}$
Since $X \subset \mathbb{R}$ and $Y \subset \mathbb{R}$, then $X \times Y \subset \mathbb{R}^{2}$.

Examples of Cartesian product

Examples of Cartesian product

Definitions in mathematics

Example 4.

Examples of Cartesian product

Example 4. Let $X=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\}$

Examples of Cartesian product

Example 4. Let $X=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\} \quad$ (a disk on a plane)

Examples of Cartesian product

$$
\text { Example 4. Let } \begin{aligned}
X & =\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\} \quad \text { (a disk on a plane) } \\
Y & =[0,1]
\end{aligned}
$$

Examples of Cartesian product

$$
\text { Example 4. Let } \begin{aligned}
X & =\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\} \quad \text { (a disk on a plane) } \\
Y & =[0,1] \text { (a line segment) }
\end{aligned}
$$

Examples of Cartesian product

$$
\text { Example 4. Let } \begin{aligned}
X & =\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\} \quad \text { (a disk on a plane) } \\
Y & =[0,1] \text { (a line segment) } \\
X & \times Y=?
\end{aligned}
$$

Examples of Cartesian product

$$
\text { Example 4. Let } \begin{aligned}
X & =\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\} \quad \text { (a disk on a plane) } \\
Y & =[0,1] \text { (a line segment) } \\
X & \times Y=?
\end{aligned}
$$

$X \times Y=$

Examples of Cartesian product

$$
\begin{aligned}
& \text { Example 4. Let } X=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\} \quad \text { (a disk on a plane) } \\
& Y=[0,1] \text { (a line segment) } \\
& X \times Y=? \\
& X \times Y=\{((x, y), z) \mid(x, y) \in X, z \in Y\}
\end{aligned}
$$

Examples of Cartesian product

$$
\begin{aligned}
& \text { Example 4. Let } X=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\} \quad \text { (a disk on a plane) } \\
& Y=[0,1] \text { (a line segment) } \\
& X \times Y=? \\
& X \times Y=\{((x, y), z) \mid(x, y) \in X, z \in Y\} \\
& =\left\{(x, y, z) \mid x^{2}+y^{2} \leq 1,0 \leq z \leq 1\right\}
\end{aligned}
$$

Examples of Cartesian product

$$
\begin{aligned}
& \text { Example 4. Let } X=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\} \quad \text { (a disk on a plane) } \\
& Y=[0,1] \text { (a line segment) } \\
& X \times Y=? \\
& X \times Y=\{((x, y), z) \mid(x, y) \in X, z \in Y\} \\
& =\left\{(x, y, z) \mid x^{2}+y^{2} \leq 1,0 \leq z \leq 1\right\} \subset \mathbb{R}^{3} .
\end{aligned}
$$

Examples of Cartesian product

$$
\begin{aligned}
& \text { Example 4. Let } X=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\} \quad \text { (a disk on a plane) } \\
& \qquad Y=[0,1] \text { (a line segment) } \\
& X \times Y=? \\
& \begin{array}{c}
X \times Y=\{((x, y), z) \mid(x, y) \in X, z \in Y\} \\
=\left\{(x, y, z) \mid x^{2}+y^{2} \leq 1,0 \leq z \leq 1\right\} \subset \mathbb{R}^{3}
\end{array}
\end{aligned}
$$

Examples of Cartesian product

$$
\begin{aligned}
& \text { Example 4. Let } X=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\} \quad \text { (a disk on a plane) } \\
& \qquad Y=[0,1] \text { (a line segment) } \\
& X \times Y=? \\
& \begin{array}{c}
X \times Y=\{((x, y), z) \mid(x, y) \in X, z \in Y\} \\
=\left\{(x, y, z) \mid x^{2}+y^{2} \leq 1,0 \leq z \leq 1\right\} \subset \mathbb{R}^{3}
\end{array}
\end{aligned}
$$

Examples of Cartesian product

$$
\begin{aligned}
& \text { Example 4. Let } X=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\} \quad \text { (a disk on a plane) } \\
& \qquad Y=[0,1] \text { (a line segment) } \\
& X \times Y=? \\
& \begin{array}{c}
X \times Y=\{((x, y), z) \mid(x, y) \in X, z \in Y\} \\
=\left\{(x, y, z) \mid x^{2}+y^{2} \leq 1,0 \leq z \leq 1\right\} \subset \mathbb{R}^{3}
\end{array}
\end{aligned}
$$

Examples of Cartesian product

$$
\begin{aligned}
& \text { Example 4. Let } X=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\} \quad \text { (a disk on a plane) } \\
& Y=[0,1] \text { (a line segment) } \\
& X \times Y=? \\
& X \times Y=\{((x, y), z) \mid(x, y) \in X, z \in Y\} \\
& =\left\{(x, y, z) \mid x^{2}+y^{2} \leq 1,0 \leq z \leq 1\right\} \subset \mathbb{R}^{3} .
\end{aligned}
$$

Coordinate projections
Definitions in mathematics

Coordinate projections

Let X, Y be sets.

Coordinate projections

Let X, Y be sets. The maps

Coordinate projections

Let X, Y be sets. The maps
$\operatorname{proj}_{X}: X \times Y \rightarrow X$,

Coordinate projections

Let X, Y be sets. The maps

$$
\operatorname{proj}_{X}: X \times Y \rightarrow X, \quad(x, y) \mapsto x
$$

Coordinate projections

Let X, Y be sets. The maps

$$
\begin{aligned}
& \operatorname{proj}_{X}: X \times Y \rightarrow X, \quad(x, y) \mapsto x \text { and } \\
& \operatorname{proj}_{Y}: X \times Y \rightarrow Y,
\end{aligned}
$$

Coordinate projections

Let X, Y be sets. The maps

$$
\begin{array}{ll}
\operatorname{proj}_{X}: X \times Y \rightarrow X, & (x, y) \mapsto x \text { and } \\
\operatorname{proj}_{Y}: X \times Y \rightarrow Y, & (x, y) \mapsto y
\end{array}
$$

Coordinate projections

Let X, Y be sets. The maps

$$
\begin{array}{ll}
\operatorname{proj}_{X}: X \times Y \rightarrow X, & (x, y) \mapsto x \text { and } \\
\operatorname{proj}_{Y}: X \times Y \rightarrow Y, & (x, y) \mapsto y
\end{array}
$$

are called the coordinate projections.

Coordinate projections

Let X, Y be sets. The maps

$$
\begin{array}{ll}
\operatorname{proj}_{X}: X \times Y \rightarrow X, & (x, y) \mapsto x \text { and } \\
\operatorname{proj}_{Y}: X \times Y \rightarrow Y, & (x, y) \mapsto y
\end{array}
$$

are called the coordinate projections.
The subsets $\{x\} \times Y$ and $X \times\{y\}$ of $X \times Y$ are called fibers.

Coordinate projections

Let X, Y be sets. The maps

$$
\begin{array}{ll}
\operatorname{proj}_{X}: X \times Y \rightarrow X, & (x, y) \mapsto x \text { and } \\
\operatorname{proj}_{Y}: X \times Y \rightarrow Y, & (x, y) \mapsto y
\end{array}
$$

are called the coordinate projections.
The subsets $\{x\} \times Y$ and $X \times\{y\}$ of $X \times Y$ are called fibers.

Coordinate projections

Let X, Y be sets. The maps

$$
\begin{array}{ll}
\operatorname{proj}_{X}: X \times Y \rightarrow X, & (x, y) \mapsto x \text { and } \\
\operatorname{proj}_{Y}: X \times Y \rightarrow Y, & (x, y) \mapsto y
\end{array}
$$

are called the coordinate projections.
The subsets $\{x\} \times Y$ and $X \times\{y\}$ of $X \times Y$ are called fibers.

Coordinate projections

Let X, Y be sets. The maps

$$
\begin{array}{ll}
\operatorname{proj}_{X}: X \times Y \rightarrow X, & (x, y) \mapsto x \text { and } \\
\operatorname{proj}_{Y}: X \times Y \rightarrow Y, & (x, y) \mapsto y
\end{array}
$$

are called the coordinate projections.
The subsets $\{x\} \times Y$ and $X \times\{y\}$ of $X \times Y$ are called fibers.

Coordinate projections

Let X, Y be sets. The maps

$$
\begin{array}{ll}
\operatorname{proj}_{X}: X \times Y \rightarrow X, & (x, y) \mapsto x \text { and } \\
\operatorname{proj}_{Y}: X \times Y \rightarrow Y, & (x, y) \mapsto y
\end{array}
$$

are called the coordinate projections.
The subsets $\{x\} \times Y$ and $X \times\{y\}$ of $X \times Y$ are called fibers.

Coordinate projections

Let X, Y be sets. The maps

$$
\begin{array}{ll}
\operatorname{proj}_{X}: X \times Y \rightarrow X, & (x, y) \mapsto x \text { and } \\
\operatorname{proj}_{Y}: X \times Y \rightarrow Y, & (x, y) \mapsto y
\end{array}
$$

are called the coordinate projections.
The subsets $\{x\} \times Y$ and $X \times\{y\}$ of $X \times Y$ are called fibers.

$$
\left.\operatorname{proj}_{Y}\right|_{\{x\} \times Y}:\{x\} \times Y \rightarrow Y \text { is a bijection }
$$

Coordinate projections

Let X, Y be sets. The maps

$$
\begin{aligned}
& \operatorname{proj}_{X}: X \times Y \rightarrow X, \quad(x, y) \mapsto x \text { and } \\
& \operatorname{proj}_{Y}: X \times Y \rightarrow Y, \quad(x, y) \mapsto y
\end{aligned}
$$

are called the coordinate projections.
The subsets $\{x\} \times Y$ and $X \times\{y\}$ of $X \times Y$ are called fibers.

$\left.\operatorname{proj}_{Y}\right|_{\{x\} \times Y}:\{x\} \times Y \rightarrow Y$ is a bijection

Similarly, $\left.\operatorname{proj}_{X}\right|_{X \times\{y\}}: X \times\{y\} \rightarrow X$ is a bijection.

Products of maps

Definitions in mathematics

Products of maps

Definitions in mathematics

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps.

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map
$f \times g: A \times X \rightarrow B \times Y$ by $(f \times g)((a, x))=(f(a), g(x))$.

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map
$f \times g: A \times X \rightarrow B \times Y$ by $(f \times g)((a, x))=(f(a), g(x))$.
This map is called the direct product of maps f and g.

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map
$f \times g: A \times X \rightarrow B \times Y$ by $(f \times g)((a, x))=(f(a), g(x))$.
This map is called the direct product of maps f and g.
Let $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ be maps.

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map
$f \times g: A \times X \rightarrow B \times Y$ by $(f \times g)((a, x))=(f(a), g(x))$.
This map is called the direct product of maps f and g.
Let $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ be maps. Define a map

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map
$f \times g: A \times X \rightarrow B \times Y$ by $(f \times g)((a, x))=(f(a), g(x))$.
This map is called the direct product of maps f and g.
Let $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ be maps. Define a map
$f \odot g: Z \rightarrow X \times Y$ by $(f \odot g)(z)=(f(z), g(z))$.

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map
$f \times g: A \times X \rightarrow B \times Y$ by $(f \times g)((a, x))=(f(a), g(x))$.
This map is called the direct product of maps f and g.
Let $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ be maps. Define a map
$f \odot g: Z \rightarrow X \times Y$ by $(f \odot g)(z)=(f(z), g(z))$.
When $X=Y=Z$ and $f=g=\operatorname{id}_{X}$,

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map
$f \times g: A \times X \rightarrow B \times Y$ by $(f \times g)((a, x))=(f(a), g(x))$.
This map is called the direct product of maps f and g.
Let $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ be maps. Define a map
$f \odot g: Z \rightarrow X \times Y$ by $(f \odot g)(z)=(f(z), g(z))$.
When $X=Y=Z$ and $f=g=\operatorname{id}_{X}$, then

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map
$f \times g: A \times X \rightarrow B \times Y$ by $(f \times g)((a, x))=(f(a), g(x))$.
This map is called the direct product of maps f and g.
Let $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ be maps. Define a map
$f \odot g: Z \rightarrow X \times Y$ by $(f \odot g)(z)=(f(z), g(z))$.
When $X=Y=Z$ and $f=g=\operatorname{id}_{X}$, then $\operatorname{id}_{X} \odot \mathrm{id}_{X}: X \rightarrow X \times X$

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map
$f \times g: A \times X \rightarrow B \times Y$ by $(f \times g)((a, x))=(f(a), g(x))$.
This map is called the direct product of maps f and g.
Let $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ be maps. Define a map
$f \odot g: Z \rightarrow X \times Y$ by $(f \odot g)(z)=(f(z), g(z))$.
When $X=Y=Z$ and $f=g=\operatorname{id}_{X}$, then $\operatorname{id}_{X} \odot \mathrm{id}_{X}: X \rightarrow X \times X$ and $\left(\mathrm{id}_{X} \odot \mathrm{id}_{X}\right)(x)=(x, x)$.

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map
$f \times g: A \times X \rightarrow B \times Y$ by $(f \times g)((a, x))=(f(a), g(x))$.
This map is called the direct product of maps f and g.
Let $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ be maps. Define a map
$f \odot g: Z \rightarrow X \times Y$ by $(f \odot g)(z)=(f(z), g(z))$.
When $X=Y=Z$ and $f=g=\operatorname{id}_{X}$, then $\operatorname{id}_{X} \odot \mathrm{id}_{X}: X \rightarrow X \times X$ and $\left(\mathrm{id}_{X} \odot \operatorname{id}_{X}\right)(x)=(x, x)$.
The subset $\Delta=\{(x, x) \mid x \in X\} \subset X \times X$ is called the diagonal of $X \times X$.

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map
$f \times g: A \times X \rightarrow B \times Y$ by $(f \times g)((a, x))=(f(a), g(x))$.
This map is called the direct product of maps f and g.
Let $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ be maps. Define a map
$f \odot g: Z \rightarrow X \times Y$ by $(f \odot g)(z)=(f(z), g(z))$.
When $X=Y=Z$ and $f=g=\operatorname{id}_{X}$, then $\operatorname{id}_{X} \odot \mathrm{id}_{X}: X \rightarrow X \times X$ and $\left(\mathrm{id}_{X} \odot \operatorname{id}_{X}\right)(x)=(x, x)$.
The subset $\Delta=\{(x, x) \mid x \in X\} \subset X \times X$ is called the diagonal of $X \times X$.

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map
$f \times g: A \times X \rightarrow B \times Y$ by $(f \times g)((a, x))=(f(a), g(x))$.
This map is called the direct product of maps f and g.
Let $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ be maps. Define a map
$f \odot g: Z \rightarrow X \times Y$ by $(f \odot g)(z)=(f(z), g(z))$.
When $X=Y=Z$ and $f=g=\operatorname{id}_{X}$, then $\operatorname{id}_{X} \odot \mathrm{id}_{X}: X \rightarrow X \times X$ and $\left(\mathrm{id}_{X} \odot \operatorname{id}_{X}\right)(x)=(x, x)$.
The subset $\Delta=\{(x, x) \mid x \in X\} \subset X \times X$ is called the diagonal of $X \times X$.

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map
$f \times g: A \times X \rightarrow B \times Y$ by $(f \times g)((a, x))=(f(a), g(x))$.
This map is called the direct product of maps f and g.
Let $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ be maps. Define a map
$f \odot g: Z \rightarrow X \times Y$ by $(f \odot g)(z)=(f(z), g(z))$.
When $X=Y=Z$ and $f=g=\operatorname{id}_{X}$, then $\operatorname{id}_{X} \odot \mathrm{id}_{X}: X \rightarrow X \times X$ and $\left(\mathrm{id}_{X} \odot \operatorname{id}_{X}\right)(x)=(x, x)$.
The subset $\Delta=\{(x, x) \mid x \in X\} \subset X \times X$ is called the diagonal of $X \times X$.

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map
$f \times g: A \times X \rightarrow B \times Y$ by $(f \times g)((a, x))=(f(a), g(x))$.
This map is called the direct product of maps f and g.
Let $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ be maps. Define a map
$f \odot g: Z \rightarrow X \times Y$ by $(f \odot g)(z)=(f(z), g(z))$.
When $X=Y=Z$ and $f=g=\operatorname{id}_{X}$, then $\operatorname{id}_{X} \odot \mathrm{id}_{X}: X \rightarrow X \times X$ and $\left(\mathrm{id}_{X} \odot \mathrm{id}_{X}\right)(x)=(x, x)$.

The subset $\Delta=\{(x, x) \mid x \in X\} \subset X \times X$ is called the diagonal of $X \times X$.

The diagonal is the image of $\operatorname{id}_{X} \odot \mathrm{id}_{X}$.

Graph of a map

Lecture 7
Definitions in mathematics

Graph of a map

The graph of a map $f: X \rightarrow Y$

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example.

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is \mathbb{R},

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is \mathbb{R}, the codomain is

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is \mathbb{R}, the codomain is \mathbb{R},

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is \mathbb{R}, the codomain is \mathbb{R}, the range is

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is \mathbb{R}, the codomain is \mathbb{R}, the range is

$$
\mathfrak{I}(f)=\left\{y \mid y=x^{2} \wedge x \in \mathbb{R}\right\}
$$

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is \mathbb{R}, the codomain is \mathbb{R}, the range is

$$
\mathfrak{I}(f)=\left\{y \mid y=x^{2} \wedge x \in \mathbb{R}\right\}=[0, \infty) .
$$

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is \mathbb{R}, the codomain is \mathbb{R}, the range is

$$
\mathfrak{I}(f)=\left\{y \mid y=x^{2} \wedge x \in \mathbb{R}\right\}=[0, \infty) .
$$

The graph f is

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is \mathbb{R}, the codomain is \mathbb{R}, the range is

$$
\mathfrak{I}(f)=\left\{y \mid y=x^{2} \wedge x \in \mathbb{R}\right\}=[0, \infty) .
$$

The graph f is $\Gamma_{f}=\left\{(x, y) \mid x \in \mathbb{R}, y=x^{2}\right\}$

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is \mathbb{R}, the codomain is \mathbb{R}, the range is

$$
\mathfrak{I}(f)=\left\{y \mid y=x^{2} \wedge x \in \mathbb{R}\right\}=[0, \infty) .
$$

The graph f is $\Gamma_{f}=\left\{(x, y) \mid x \in \mathbb{R}, y=x^{2}\right\} \subset \mathbb{R} \times \mathbb{R}$

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is \mathbb{R}, the codomain is \mathbb{R}, the range is

$$
\mathfrak{I}(f)=\left\{y \mid y=x^{2} \wedge x \in \mathbb{R}\right\}=[0, \infty) .
$$

The graph f is $\Gamma_{f}=\left\{(x, y) \mid x \in \mathbb{R}, y=x^{2}\right\} \subset \mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}$.

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is \mathbb{R}, the codomain is \mathbb{R}, the range is

$$
\mathfrak{I}(f)=\left\{y \mid y=x^{2} \wedge x \in \mathbb{R}\right\}=[0, \infty) .
$$

The graph f is $\Gamma_{f}=\left\{(x, y) \mid x \in \mathbb{R}, y=x^{2}\right\} \subset \mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}$.

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is \mathbb{R}, the codomain is \mathbb{R}, the range is

$$
\mathfrak{I}(f)=\left\{y \mid y=x^{2} \wedge x \in \mathbb{R}\right\}=[0, \infty)
$$

The graph f is $\Gamma_{f}=\left\{(x, y) \mid x \in \mathbb{R}, y=x^{2}\right\} \subset \mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}$.

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is \mathbb{R}, the codomain is \mathbb{R}, the range is

$$
\mathfrak{I}(f)=\left\{y \mid y=x^{2} \wedge x \in \mathbb{R}\right\}=[0, \infty)
$$

The graph f is $\Gamma_{f}=\left\{(x, y) \mid x \in \mathbb{R}, y=x^{2}\right\} \subset \mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}$.

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is \mathbb{R}, the codomain is \mathbb{R}, the range is

$$
\mathfrak{I}(f)=\left\{y \mid y=x^{2} \wedge x \in \mathbb{R}\right\}=[0, \infty)
$$

The graph f is $\Gamma_{f}=\left\{(x, y) \mid x \in \mathbb{R}, y=x^{2}\right\} \subset \mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}$.

When the graph is a surface

Definitions in mathematics

When the graph is a surface

Definitions in mathematics

Example.

When the graph is a surface

Definitions in mathematics

Example. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function

When the graph is a surface

Example. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function

$$
\text { given by } f(x, y)=x^{2}+y^{2} \text {, or } z=x^{2}+y^{2} .
$$

When the graph is a surface

Example. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function

$$
\text { given by } f(x, y)=x^{2}+y^{2} \text {, or } z=x^{2}+y^{2} .
$$

Its graph is the set $\Gamma_{f}=\left\{(x, y, z) \in \mathbb{R}^{2} \times \mathbb{R} \mid z=x^{2}+y^{2}\right\}$

When the graph is a surface

Example. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function

$$
\text { given by } f(x, y)=x^{2}+y^{2} \text {, or } z=x^{2}+y^{2} .
$$

Its graph is the set $\Gamma_{f}=\left\{(x, y, z) \in \mathbb{R}^{2} \times \mathbb{R} \mid z=x^{2}+y^{2}\right\} \subset \mathbb{R}^{3}$.

When the graph is a surface

Example. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function

$$
\text { given by } f(x, y)=x^{2}+y^{2} \text {, or } z=x^{2}+y^{2}
$$

Its graph is the set $\Gamma_{f}=\left\{(x, y, z) \in \mathbb{R}^{2} \times \mathbb{R} \mid z=x^{2}+y^{2}\right\} \subset \mathbb{R}^{3}$.

Vector-valued functions

Definitions in mathematics

Vector-valued functions

Definitions in mathematics

Example.

Vector-valued functions

Definitions in mathematics

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be a function

Vector-valued functions

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be a function given by $f(t)=(\cos t, \sin t)$.

Vector-valued functions

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be a function given by $f(t)=(\cos t, \sin t)$.

What does this function do?

Vector-valued functions

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be a function given by $f(t)=(\cos t, \sin t)$.
What does this function do?

Vector-valued functions

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be a function given by $f(t)=(\cos t, \sin t)$.
What does this function do?

$$
\begin{aligned}
& x(t)=\cos t \\
& y(t)=\sin t \\
& x^{2}+y^{2}=1
\end{aligned}
$$

f reels up the line on the circle.

Vector-valued functions

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be a function given by $f(t)=(\cos t, \sin t)$.
What does this function do?

f reels up the line on the circle.
The graph of f is the set $\Gamma_{f}=\left\{(t, \cos t, \sin t) \in \mathbb{R} \times \mathbb{R}^{2}\right\}$

Vector-valued functions

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be a function given by $f(t)=(\cos t, \sin t)$.
What does this function do?

f reels up the line on the circle.
The graph of f is the set $\Gamma_{f}=\left\{(t, \cos t, \sin t) \in \mathbb{R} \times \mathbb{R}^{2}\right\} \subset \mathbb{R}^{3}$.

Vector-valued functions

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be a function given by $f(t)=(\cos t, \sin t)$.
What does this function do?

f reels up the line on the circle.
The graph of f is the set $\Gamma_{f}=\left\{(t, \cos t, \sin t) \in \mathbb{R} \times \mathbb{R}^{2}\right\} \subset \mathbb{R}^{3}$.
Γ_{f} is a curve in \mathbb{R}^{3}. It is called helix.

Helix

Helix

The graph of $f: \mathbb{R} \rightarrow \mathbb{R}^{2}, \quad f(t)=(\cos t, \sin t)$

Helix

The graph of $f: \mathbb{R} \rightarrow \mathbb{R}^{2}, \quad f(t)=(\cos t, \sin t)$
is the helix $\left\{(x, y, z) \in \mathbb{R}^{3} \mid x=t \in \mathbb{R}, y=\cos t, z=\sin t\right\}$:

The graph of $f: \mathbb{R} \rightarrow \mathbb{R}^{2}, \quad f(t)=(\cos t, \sin t)$
is the helix $\left\{(x, y, z) \in \mathbb{R}^{3} \mid x=t \in \mathbb{R}, y=\cos t, z=\sin t\right\}$:

Metric

Metric

Definitions in mathematics

Definition.

Definition. A metric

Definition. A metric (or distance function) on a set X

Metric

Definition. A metric (or distance function) on a set X is a map

Metric

Definition. A metric (or distance function) on a set X is a map

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}
$$

Metric

Definition. A metric (or distance function) on a set X is a map

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}=[0, \infty)
$$

Metric

Definition. A metric (or distance function) on a set X is a map

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}=[0, \infty)
$$

satisfying the following conditions

Metric

Definition. A metric (or distance function) on a set X is a map

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}=[0, \infty)
$$

satisfying the following conditions for all $x, y, z \in X$:

Metric

Definition. A metric (or distance function) on a set X is a map

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}=[0, \infty)
$$

satisfying the following conditions for all $x, y, z \in X$:

1. $d(x, y)=0 \Longleftrightarrow x=y$

Metric

Definition. A metric (or distance function) on a set X is a map

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}=[0, \infty)
$$

satisfying the following conditions for all $x, y, z \in X$:

1. $d(x, y)=0 \Longleftrightarrow x=y$
2. $d(x, y)=d(y, x)$

Metric

Definition. A metric (or distance function) on a set X is a map

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}=[0, \infty)
$$

satisfying the following conditions for all $x, y, z \in X$:

1. $d(x, y)=0 \Longleftrightarrow x=y$
2. $d(x, y)=d(y, x)$
3. $d(x, z) \leq d(x, y)+d(y, z)$

Definition. A metric (or distance function) on a set X is a map

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}=[0, \infty)
$$

satisfying the following conditions for all $x, y, z \in X$:

1. $d(x, y)=0 \Longleftrightarrow x=y$
2. $d(x, y)=d(y, x)$
3. $d(x, z) \leq d(x, y)+d(y, z)$

A pair (X, d) is called a metric space.

Definition. A metric (or distance function) on a set X is a map

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}=[0, \infty)
$$

satisfying the following conditions for all $x, y, z \in X$:

1. $d(x, y)=0 \Longleftrightarrow x=y$
2. $d(x, y)=d(y, x)$
3. $d(x, z) \leq d(x, y)+d(y, z)$

A pair (X, d) is called a metric space.
The conditions $\mathbf{1 , 2 , 3}$ are called the axioms of metric space.

Definition. A metric (or distance function) on a set X is a map

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}=[0, \infty)
$$

satisfying the following conditions for all $x, y, z \in X$:

1. $d(x, y)=0 \Longleftrightarrow x=y \quad$ coincidence axiom
2. $d(x, y)=d(y, x)$
3. $d(x, z) \leq d(x, y)+d(y, z)$

A pair (X, d) is called a metric space.
The conditions $\mathbf{1 , 2 , 3}$ are called the axioms of metric space.

Definition. A metric (or distance function) on a set X is a map

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}=[0, \infty)
$$

satisfying the following conditions for all $x, y, z \in X$:

1. $d(x, y)=0 \Longleftrightarrow x=y \quad$ coincidence axiom
2. $d(x, y)=d(y, x)$ symmetry
3. $d(x, z) \leq d(x, y)+d(y, z)$

A pair (X, d) is called a metric space.
The conditions $\mathbf{1 , 2 , 3}$ are called the axioms of metric space.

Definition. A metric (or distance function) on a set X is a map

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}=[0, \infty)
$$

satisfying the following conditions for all $x, y, z \in X$:

1. $d(x, y)=0 \Longleftrightarrow x=y \quad$ coincidence axiom
2. $d(x, y)=d(y, x)$ symmetry
3. $d(x, z) \leq d(x, y)+d(y, z) \quad$ triangle inequality

A pair (X, d) is called a metric space.
The conditions $\mathbf{1 , 2 , 3}$ are called the axioms of metric space.

Euclidean metric on a line

Euclidean metric on a line

Theorem.

Euclidean metric on a line

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$,

Euclidean metric on a line

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

Euclidean metric on a line

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y|
$$

Euclidean metric on a line

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R},
$$

Euclidean metric on a line

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Euclidean metric on a line

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Euclidean metric on a line

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Proof.

Euclidean metric on a line

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Proof. Check the axioms of metric space.

Euclidean metric on a line

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Proof. Check the axioms of metric space.
Let x, y, z be any real numbers.

Euclidean metric on a line

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Proof. Check the axioms of metric space.
Let x, y, z be any real numbers. Then

Euclidean metric on a line

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Proof. Check the axioms of metric space.
Let x, y, z be any real numbers. Then

1. $|x-y|=0 \Longleftrightarrow x=y$

Euclidean metric on a line

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Proof. Check the axioms of metric space.
Let x, y, z be any real numbers. Then

1. $|x-y|=0 \Longleftrightarrow x=y$ since $|x-y|=0 \Longleftrightarrow x-y=0 \Longleftrightarrow x=y$.

Euclidean metric on a line

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Proof. Check the axioms of metric space.
Let x, y, z be any real numbers. Then

1. $|x-y|=0 \Longleftrightarrow x=y$ since $|x-y|=0 \Longleftrightarrow x-y=0 \Longleftrightarrow x=y$.
2. $|x-y|=|y-x|$

Euclidean metric on a line

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Proof. Check the axioms of metric space.
Let x, y, z be any real numbers. Then

1. $|x-y|=0 \Longleftrightarrow x=y$ since $|x-y|=0 \Longleftrightarrow x-y=0 \Longleftrightarrow x=y$.
2. $|x-y|=|y-x|$ since $|a|=|-a|$

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Proof. Check the axioms of metric space.
Let x, y, z be any real numbers. Then

1. $|x-y|=0 \Longleftrightarrow x=y$ since $|x-y|=0 \Longleftrightarrow x-y=0 \Longleftrightarrow x=y$.
2. $|x-y|=|y-x|$ since $|a|=|-a|$ for any real a.

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Proof. Check the axioms of metric space.
Let x, y, z be any real numbers. Then

1. $|x-y|=0 \Longleftrightarrow x=y$ since $|x-y|=0 \Longleftrightarrow x-y=0 \Longleftrightarrow x=y$.
2. $|x-y|=|y-x|$ since $|a|=|-a|$ for any real a.
3. $|x-z| \leq|x-y|+|y-z|$

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Proof. Check the axioms of metric space.
Let x, y, z be any real numbers. Then

1. $|x-y|=0 \Longleftrightarrow x=y$ since $|x-y|=0 \Longleftrightarrow x-y=0 \Longleftrightarrow x=y$.
2. $|x-y|=|y-x|$ since $|a|=|-a|$ for any real a.
3. $|x-z| \leq|x-y|+|y-z|$
since $|x-z|=$

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Proof. Check the axioms of metric space.
Let x, y, z be any real numbers. Then

1. $|x-y|=0 \Longleftrightarrow x=y$ since $|x-y|=0 \Longleftrightarrow x-y=0 \Longleftrightarrow x=y$.
2. $|x-y|=|y-x|$ since $|a|=|-a|$ for any real a.
3. $|x-z| \leq|x-y|+|y-z|$
since $|x-z|=|(x-y)+(y-z)|$

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Proof. Check the axioms of metric space.
Let x, y, z be any real numbers. Then

1. $|x-y|=0 \Longleftrightarrow x=y$ since $|x-y|=0 \Longleftrightarrow x-y=0 \Longleftrightarrow x=y$.
2. $|x-y|=|y-x|$ since $|a|=|-a|$ for any real a.
3. $|x-z| \leq|x-y|+|y-z|$
since $|x-z|=|(x-y)+(y-z)| \leq|x-y|+|y-z|$

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Proof. Check the axioms of metric space.
Let x, y, z be any real numbers. Then

1. $|x-y|=0 \Longleftrightarrow x=y$ since $|x-y|=0 \Longleftrightarrow x-y=0 \Longleftrightarrow x=y$.
2. $|x-y|=|y-x|$ since $|a|=|-a|$ for any real a.
3. $|x-z| \leq|x-y|+|y-z|$
since $|x-z|=|(x-y)+(y-z)| \leq|x-y|+|y-z|$ by the triangle inequality

$$
(|a+b| \leq|a|+|b| \text { for all } a, b \in \mathbb{R})
$$

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Proof. Check the axioms of metric space.
Let x, y, z be any real numbers. Then

1. $|x-y|=0 \Longleftrightarrow x=y$ since $|x-y|=0 \Longleftrightarrow x-y=0 \Longleftrightarrow x=y$.
2. $|x-y|=|y-x|$ since $|a|=|-a|$ for any real a.
3. $|x-z| \leq|x-y|+|y-z|$
since $|x-z|=|(x-y)+(y-z)| \leq|x-y|+|y-z|$ by the triangle inequality

$$
(|a+b| \leq|a|+|b| \text { for all } a, b \in \mathbb{R})
$$

Therefore, all axioms are satisfied and the map d is a metric.

Euclidean metric on a plane

Euclidean metric on a plane

Theorem.

Euclidean metric on a plane

Theorem. A map $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}$,

Euclidean metric on a plane

Theorem. A map $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}$, defined by

Euclidean metric on a plane

Theorem. A map $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

Euclidean metric on a plane

Theorem. A map $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \text { for any }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2},
$$

Euclidean metric on a plane

Theorem. A map $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}$, defined by
is a metric: $\left.\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$ for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$,

Euclidean metric on a plane

Theorem. A map $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}$, defined by
is a metric: $\left.\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$ for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$,

Euclidean metric on a plane

Theorem. A map $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}$, defined by
is a metric: $\left(\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$ for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$,

Euclidean metric on a plane

Theorem. A map $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}$, defined by
is a metric: $\left(\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$ for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$,

Euclidean metric on a plane

Theorem. A map $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}$, defined by
is a metric: $\left.\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$ for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$,

Euclidean metric on a plane

Theorem. A map $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}$, defined by
is a metrit: $\left.\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$ for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$,

Theorem. A map $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}$, defined by
is a metrit: $\left.\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$ for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$,

This metric is called Euclidean.

Theorem. A map $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}$, defined by
is a metrit: $\left.\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$ for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$,

This metric is called Euclidean.
Proof will be given in a course of Linear Algebra.

Taxi driver metric on a plane

is defined by
$d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|$

$$
\text { for any }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}
$$

is defined by
$d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|$

$$
\text { for any }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}
$$

is defined by
$d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|$

$$
\text { for any }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}
$$

is defined by
$d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|$

$$
\text { for any }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}
$$

is defined by
$d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|$

$$
\text { for any }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}
$$

is defined by
$d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|$

$$
\text { for any }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}
$$

is defined by
$d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|$

$$
\text { for any }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}
$$

It's easy to check that this is a metric indeed.
is defined by
$d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|$

$$
\text { for any }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}
$$

It's easy to check that this is a metric indeed.
The plane with Euclidean metric
is defined by
$d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|$

$$
\text { for any }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}
$$

It's easy to check that this is a metric indeed.
The plane with Euclidean metric
and the plane with taxi driver metric
is defined by
$d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|$

$$
\text { for any }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}
$$

It's easy to check that this is a metric indeed.
The plane with Euclidean metric
and the plane with taxi driver metric are different metric spaces.

[^0]: Definition. Let X, Y be sets.
 The Cartesian product (or cross product, or direct product)

[^1]: Definition. Let X, Y be sets.
 The Cartesian product (or cross product, or direct product) of X and Y

[^2]: Definition. Let X, Y be sets.
 The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs

