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Definition. A vector Ð→u linearly depends on vectors Ð→v1, . . .
Ð→vn if

Ð→u = a1
Ð→v1 + ⋅ ⋅ ⋅ + anÐ→vn for some numbers a1, . . . , an .

The description of context is omitted. Recover!

Definition. The vectors Ð→v1,
Ð→v2, . . . ,

Ð→vn are said to be linearly dependent if
there exist numbers a1, a2, . . . , an , which are not all zeros, such that

a1
Ð→v1 + a2Ð→v2 + ⋅ ⋅ ⋅ + anÐ→vn =

Ð→

0 .

If Ð→u linearly depends on Ð→v1, . . .
Ð→vn ,

then Ð→u ,Ð→v1, . . . ,
Ð→vn are linearly dependent.

If vectors Ð→v1, . . .
Ð→vn are linearly dependent,

then at least some of them depends on the others.
Definition. The vectors Ð→v1,

Ð→v2, . . . ,
Ð→vn are said to be linearly independent if

they are not linearly dependent.
If vectors are linearly independent, then none of them depends on the others.

Exrecise. Prove that vectors Ð→v1,
Ð→v 2, . . .

Ð→vn are linearly independent iff

∀ a1, a2, . . . , an (a1Ð→v 1 + a2Ð→v 2 + ⋅ ⋅ ⋅ + anÐ→v n =
Ð→

0 Ô⇒ a1 = a2 = ⋅ ⋅ ⋅ = an = 0)
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Motivation. We know that the set of integers is closed with respect to the
operations of addition and multiplication. It means that

∀a, b ∈ Z a + b ∈ Z and ab ∈ Z.

Addition and multiplication in Z possess several important properties,
like associativity and distributivity.

Besides the integers, there are many other sets of mathematical objects
for which there are operations of addition and multiplication

possessing the same properties. For example, polynomials or matrices.

It is natural to gather all such sets equipped with operations under the same roof.

It is done in the definition of ring.
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Definition. A ring R is a set with two operations, addition and multiplication,
denoted by + and ⋅ , satisfying the following properties:
1. ∀a, b ∈ R a + b ∈ R (R is closed with respect to + )
2. ∀a, b ∈ R a ⋅ b ∈ R (R is closed with respect to ⋅ )
3. ∀a, b, c ∈ R (a + b) + c = a + (b + c) (+ is associative)
4. ∀a, b ∈ R a + b = b + a (+ is commutative)
5. ∃0 ∈ R ∀a ∈ R a + 0 = a (there exists an additive identity in R )
6. ∀a ∈ R ∃ − a ∈ R a + (−a) = 0 (each element in R has an additive inverse)
7. ∀a, b, c ∈ R (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c) ( ⋅ is associative)
8. ∀a, b, c ∈ R a ⋅ (b + c) = a ⋅ b + a ⋅ c and (b + c) ⋅ a = b ⋅ a + c ⋅ a

(multiplication distributes over addition)
● If, additionally, ∀a, b ∈ R a ⋅ b = b ⋅ a ( ⋅ is commutative),

then R is called a commutative ring.
● If, additionally, ∃1 ∈ R ∀a ∈ R 1 ⋅ a = a ⋅ 1 = a
(there exists a multiplicative identity), then R is called a ring with unity.

The properties are called the axioms of a ring.
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8. ∀a, b, c ∈ R a ⋅ (b + c) = a ⋅ b + a ⋅ c and (b + c) ⋅ a = b ⋅ a + c ⋅ a

(multiplication distributes over addition)
● If, additionally, ∀a, b ∈ R a ⋅ b = b ⋅ a ( ⋅ is commutative),

then R is called a commutative ring.
● If, additionally, ∃1 ∈ R ∀a ∈ R 1 ⋅ a = a ⋅ 1 = a
(there exists a multiplicative identity), then R is called a ring with unity.

The properties are called the axioms of a ring.
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1. Z, Q, R, C are commutative rings with unity.

2. 2Z = {2n ∣ n ∈ Z} is a ring of even integers (Commutative? With unity?)

3. Z[x] , polynomials in variable x with integer coefficients, form a ring.
(Commutative? With unity?)

4.Q[x] , R[x] , Z[x, y] , etc. are rings of polynomials.

5. Mn(R) , square n × n matrices with real coefficients form a ring.
(Commutative? With unity?)

6. Zm , residues modulo m (to be discussed later in the course) form a ring.

7. F = {f ∣f ∶ R → R} , real valued functions with the operations of
addition (f + g)(x) = f(x) + g(x) and multiplication (f ⋅ g)(x) = f(x) ⋅ g(x)
form a ring.

Important: To prove that each of the listed above objects is a ring,
we have to verify all ring axioms.
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Definition.

Let X be a set. The power set of X

is the set of all subsets of X .

Notation: P(X) By definition, P(X) = {A ∣ A ⊂X} .
Control question. Can P(X) = ∅ ?
Characteristic function of a set A ⊂ U

χA ∶ U → {0, 1} , χA(x) =
⎧⎪⎪⎨⎪⎪⎩
1, if x ∈ A

0, if x /∈ A
Control question. Have you met characteristic functions under a different name?

Example. for [2, 4] ⊂ R , χ[2,4](x) =
⎧⎪⎪⎨⎪⎪⎩
1, if x ∈ [2, 4]
0, if x /∈ [2, 4]

x

y

1

2 4

y = χ[2,4]
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⎧⎪⎪⎨⎪⎪⎩
1, if x ∈ A

0, if x /∈ A
Control question. Have you met characteristic functions under a different name?

Example. for [2, 4] ⊂ R , χ[2,4](x) =
⎧⎪⎪⎨⎪⎪⎩
1, if x ∈ [2, 4]
0, if x /∈ [2, 4]
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Theorem. There is a bijection between the power set P(X) of a set X

and the set Map (X, {0, 1}) of all maps from X to the two point set {0, 1} .
Proof. A bijection is given by P(X)→Map (X, {0, 1})

A↦ χA , where A ⊂X .

Indeed, the map above is injective,
since different subsets of X have different characteristic functions:

A ≠ B Ô⇒ χA ≠ χB for any A,B ⊂X . Why?

The map is surjective,
since any f ∈Map (X, {0, 1}) defines a set A = {f−1{1}} ⊂X,

for which f is the characteristic function: χA = f ◻

Corollary. ∣P(X)∣ = ∣Map (X, {0, 1})∣ = 2∣X ∣ , as we already know.
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Theorem. Let A, B be sets. Then A ⊂ B ⇐⇒ P(A) ⊂ P(B) .
Proof. Let A ⊂ B . We have to prove that P(A) ⊂ P(B) .
Take any X ∈ P(A) . Then X ⊂ A , but A ⊂ B .

Therefore, by the transitivity of inclusion, X ⊂ B . So X ∈ P(B) .
We have got that ∀X ∈ P(A) , X ∈ P(B) , therefore, P(A) ⊂ P(B) .

And the half of the proof is done!
Assume now that P(A) ⊂ P(B) and prove that A ⊂ B in this case.

Since A ⊂ A , we have that A ∈ P(A) .
But by the assumption, P(A) ⊂ P(B) .

Therefore, A ∈ P(B) , that is, A ⊂ B .

And the other half of the proof is done!
Overall, A ⊂ B ⇐⇒ P(A) ⊂ P(B) ◻
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Any map f ∶X → Y induces maps

f∗ ∶ P(X)→ P(Y ), A↦ f(A) for any A ⊂X and

f∗ ∶ P(Y )→ P(X), B ↦ f−1(B) for any B ⊂ Y.

(We remember that f−1(B) = {x ∈X ∣ f(x) ∈ B} is the preimage of B ,

and not the result of applying the inverse map f−1. )

The maps f∗ and f∗ are well defined since

for any A ⊂X, f(A) ⊂ Y and, therefore, f(A) ∈ P(Y ) and

for any B ⊂ Y, f−1(B) ⊂X and, therefore, f−1(B) ∈ P(X).
Exercise 1. Prove that if f ∶X → Y and g ∶ Y → Z are maps, then

(g ○ f)∗ = g∗ ○ f∗ .
Exercise 2. Formulate and prove a similar identity for (g ○ f)∗ .
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and not the result of applying the inverse map f−1. )

The maps f∗ and f∗ are well defined since

for any A ⊂X, f(A) ⊂ Y and, therefore, f(A) ∈ P(Y )

and

for any B ⊂ Y, f−1(B) ⊂X and, therefore, f−1(B) ∈ P(X).
Exercise 1. Prove that if f ∶X → Y and g ∶ Y → Z are maps, then

(g ○ f)∗ = g∗ ○ f∗ .
Exercise 2. Formulate and prove a similar identity for (g ○ f)∗ .
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Definition. Let X,Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y

is the set of all ordered pairs X × Y = {(x, y) ∣ x ∈X, y ∈ Y } .
For ordered pairs, (x1, y1) = (x2, y2) ⇐⇒ x1 = x2 and y1 = y2 .

So if x ≠ y , then (x, y) ≠ (y, x) , and if X ≠ Y then X × Y ≠ Y ×X .

Example 1. Let X = {1, 2, 3} and Y = {a, b}. Then

X × Y = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)} .
1 2 3

X

a

b

Y
X × Y

Theorem. If X has p elements, and Y has q elements,
then X × Y has pq elements.
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Theorem.

If X has p elements, and Y has q elements,
then X × Y has pq elements.
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Example 2. Let X = Y = R . Then

X × Y = R ×R = R2
= {(x, y) ∣ x ∈ R, y ∈ R} Cartesian plane

Example 3. Let X = [1, 2] ∪ [3, 5) , Y = (4, 6] . X × Y =?

X × Y = {(x, y) ∣ x ∈X, y ∈ Y } = {(x, y) ∣ x ∈ [1, 2] ∪ [3, 5), y ∈ (4, 6] }
Since X ⊂ R and Y ⊂ R , then X × Y ⊂ R2 .
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Example 4. Let X = {(x, y) ∈ R2 ∣ x2 + y2 ≤ 1} (a disk on a plane)

Y = [0, 1] (a line segment)

X × Y =?

X × Y = {((x, y), z) ∣ (x, y) ∈X, z ∈ Y }
= {(x, y, z) ∣ x2 + y2 ≤ 1, 0 ≤ z ≤ 1} ⊂ R3 .
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X × Y is a solid cylinder in R3
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Let X,Y be sets. The maps
projX ∶ X × Y →X , (x, y)↦ x and
projY ∶ X × Y → Y , (x, y)↦ y

are called the coordinate projections.

The subsets {x} × Y and X × {y} of X × Y are called fibers.

X

Y

X × Y

x

fi
b
er projY ∣

{x}×Y
∶ {x} × Y → Y is a bijection

Similarly, projX ∣
X×{y}

∶X × {y}→X is a bijection.
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Let f ∶ A → B and g ∶X → Y be maps. Define a map

f × g ∶ A ×X → B × Y by (f × g) ((a, x)) = (f(a), g(x)).
This map is called the direct product of maps f and g .

Let f ∶ Z →X and g ∶ Z → Y be maps. Define a map

f ⊙ g ∶ Z →X × Y by (f ⊙ g)(z) = (f(z), g(z)).
When X = Y = Z and f = g = idX , then
idX ⊙ idX ∶X →X ×X and (idX ⊙ idX)(x) = (x, x).
The subset ∆ = {(x, x) ∣ x ∈X} ⊂X ×X is called the diagonal of X ×X .

X

X

X ×X

∆

The diagonal is the image of idX ⊙ idX .
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The graph of a map f ∶X → Y is the set

Γf = {(x, y) ∣ x ∈X, y = f(x)} ⊂X × Y
Example. Let f ∶ R→ R be a map defined by f(x) = x2 .
The domain of f is R , the codomain is R , the range is

I(f) = {y ∣ y = x2 ∧ x ∈ R} = [0,∞) .
The graph f is Γf = {(x, y) ∣ x ∈ R, y = x2} ⊂ R ×R = R2.

x

y

domain

range Γf
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Example. Let f ∶ R2
→ R be a function

given by f(x, y) = x2 + y2 , or z = x2 + y2 .

Its graph is the set Γf = {(x, y, z) ∈ R2 ×R ∣ z = x2 + y2} ⊂ R3 .

z

y

x

z = x2 + y2

paraboloid
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Example. Let f ∶ R→ R2 be a function given by f(t) = (cos t, sin t) .
What does this function do?

t

domain R

0

π/2

x

y

codomain R
2

x(t) = cos t
y(t) = sin t
x2 + y2 = 1f(0)

f(π/2)
f

range

f reels up the line on the circle.

The graph of f is the set Γf = {(t, cos t, sin t) ∈ R ×R2} ⊂ R3 .

Γf is a curve in R3 . It is called helix.
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The graph of f ∶ R→ R2 , f(t) = (cos t, sin t)
is the helix {(x, y, z) ∈ R3 ∣ x = t ∈ R, y = cos t, z = sin t} :

x

y

z
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Definition. A metric (or distance function) on a set X is a map

d ∶X ×X → R≥0 = [0,∞)
satisfying the following conditions for all x, y, z ∈X :

1. d(x, y) = 0 ⇐⇒ x = y coincidence axiom

2. d(x, y) = d(y, x) symmetry

3. d(x, z) ≤ d(x, y) + d(y, z) triangle inequality

A pair (X,d) is called a metric space.

The conditions 1,2,3 are called the axioms of metric space.
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Theorem. A map d ∶ R ×R→ R≥0 , defined by

d(x, y) = ∣x − y∣ for any x, y ∈ R , is a metric.

x y

d(x, y)

Proof. Check the axioms of metric space.

Let x, y, z be any real numbers. Then

1. ∣x − y∣ = 0 ⇐⇒ x = y since ∣x − y∣ = 0 ⇐⇒ x − y = 0 ⇐⇒ x = y .

2. ∣x − y∣ = ∣y − x∣ since ∣a∣ = ∣ − a∣ for any real a .

3. ∣x − z∣ ≤ ∣x − y∣ + ∣y − z∣
since ∣x − z∣ = ∣(x − y) + (y − z)∣ ≤ ∣x − y∣ + ∣y − z∣ by the triangle inequality

( ∣a + b∣ ≤ ∣a∣ + ∣b∣ for all a, b ∈ R )

Therefore, all axioms are satisfied and the map d is a metric.
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Theorem. A map d ∶ R2 ×R2
→ R≥0 , defined by

d((x1, y1), (x2, y2)) =√(x1 − x2)2 + (y1 − y2)2 for any (x1, y1), (x2, y2) ∈ R2 ,
is a metric.

x

y

(x1, y1)

(x2, y2)

d

This metric is called Euclidean.

Proof will be given in a course of Linear Algebra.
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is defined by

d((x1, y1), (x2, y2)) = ∣x2 − x1∣ + ∣y2 − y1∣
for any (x1, y1), (x2, y2) ∈ R2

x

y

(x1, y1)

(x2, y2)

∣y2 − y1∣

∣x2 − x1∣

It’s easy to check that this is a metric indeed.

The plane with Euclidean metric
and the plane with taxi driver metric

are different metric spaces.
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