MAT 220, Vector Geometry and Algebra Homework 7
due $4 / 6$

Name \qquad
Score \qquad

1. State necessary and sufficient conditions for the lines defined by the equations $\mathbf{r}=\mathbf{r}_{1}+\mathbf{a}_{1} t$ and $\mathbf{r}=\mathbf{r}_{2}+\mathbf{a}_{2} t$
(1) to intersect in a unique point;
(2) to be parallel, but not coinciding;
(3) to coincide.
2. Two lines are given by their equations $\mathbf{r} \cdot \mathbf{n}=D$ and $\mathbf{r}=\mathbf{r}_{0}+\mathbf{a} t$. Find a formula for the position vector of their intersection point.
3. Given a point with a position vector \mathbf{r}_{0} and a line $\mathbf{r} \cdot \mathbf{n}=d$. Find the position vector of the projection of the point to the line.
4. Find the formula for the distance between the point with position vector \mathbf{r}_{0} and the line $\mathbf{r}=\mathbf{r}_{1}+\mathbf{a} t$.
5. Find an equation of the line such that it passes through the point $(1,1)$ and this point is the midpoint of the segment between the intersection points of this line with the lines $3 x+y+2=0$ and $4 x+y-1=0$.
