MAT 220, Vector Geometry and Algebra Homework 5
due $3 / 2$

Name \qquad
Score \qquad

1. Given a point P inside a triange $A B C$. What masses should be placed to A, B and C so that the center of these masses would be P ?
2. Prove that in a triangle $A B C$ a bisector $A D$ divides the side $B C$ so that

$$
\frac{|B D|}{|D C|}=\frac{|A B|}{|A C|}
$$

3. What masses should be placed to points A, B and C so that the barycenter of them would be the center of the circle inscribed in $A B C$?
4. Let A, B, C be points, p, q, r be positive real numbers. Prove that there exists a point D such that for any points O_{1} and O_{2}

$$
\begin{aligned}
& \overrightarrow{O_{1} D}=\frac{p}{p+q+r} \overrightarrow{O_{1} A}+\frac{q}{p+q+r} \overrightarrow{O_{1} B}+\frac{r}{p+q+r} \overrightarrow{O_{1} C} \\
& \overrightarrow{O_{2} D}=\frac{p}{p+q+r} \overrightarrow{O_{2} A}+\frac{q}{p+q+r} \overrightarrow{O_{2} B}+\frac{r}{p+q+r} \overrightarrow{O_{2} C}
\end{aligned}
$$

What is the meaning of this statement? What is its relation to the notion of barycenter?
5. Let A, B, C be points, p, q, r be positive real numbers. Prove that there exists a point D such that

$$
\frac{p}{p+q+r} \overrightarrow{D A}+\frac{q}{p+q+r} \overrightarrow{D B}+\frac{r}{p+q+r} \overrightarrow{D C}=0
$$

Prove that such D is unique. Hints: 1. How to find D ? 2. See the preceding problem.
6. Generalize the problems 4 and 5 to any finite set of points.

