Name

Score

1. Given lines l_1 and l_2 , which intersect at a point O, and a point A, which does not belong to the lines. Is it possible to present the vector \overrightarrow{AB} as the sum of two vectors, that are directed along l_1 and l_2 ? If so, then how to find these vectors?

2. Given a pentagon ABCDE, does there exit a pentagon such that its sides are parallel and congruent to the diagonals of ABCDE, that is segments AC, AD, BD, BE, CE?

3. Let O be the center of regular hexagon ABCDEF. Express vectors \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} , and \overrightarrow{OD} via $\mathbf{p} = \overrightarrow{OE}$ and $\mathbf{q} = \overrightarrow{OF}$.

4. Given a quadrilateral and a point M. Prove that the points symmetric to M with respect to the midpoints of the sides of the quadrilateral are vertices of a parallelogram.

5. Given vectors $\mathbf{a} = \overrightarrow{OA}$ and $\mathbf{b} = \overrightarrow{OB}$, find a vector parallel to the bisector of the angle $\angle AOB$.

6. Let $A_1 A_2 \ldots A_{2n}$ be a regular 2*n*-gon. Prove that

 $\overrightarrow{A_1A_2} + \overrightarrow{A_1A_3} + \dots + \overrightarrow{A_1A_{2n}} = n \cdot \overrightarrow{A_1A_{n+1}}.$