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1 Complex numbers

1.1 Naive definition

As well-known, there is no real number x such that x2 = −1. However the
system of real numbers can be extended to a number system in which the
equation x2 = −1 has a solution. The simplest of them is the system of
complex numbers.

Let i be a solution of the equation x2 = −1, that is i2 = −1. An arbitrary
complex number can be obtained from real numbers and i by operations of
addition, subtraction and multiplication.

The relation i2 = i·i = −1 applied together with the usual rules of elementary
algebra allow to present any complex number in the form x + yi, where x
and y are real numbers. We will call this form standard. For example,

i+ i2
√

2 + 2i3(1− i) = i−
√

2 + 2(−1)i(1− i)
= i−

√
2− 2i− 2 = (−2−

√
2) + (−1)i.

Two fundamental exercises: Let z1 = x1 + y1i and z2 = x2 + y2i. Let us
present their sum z1 + z2 and product z1 · z2 in the standard form:

z1+z2 = (x1+y1i)+(x2+y2i) = x1+y1i+x2+y2i = (x1+x2)+(y1+y2)i



z1 · z2 = (x1 + y1i) · (x2 + y2i) = x1x2 + x1, y2i+ y1ix2 + (y1i)(y2i)

= (x1x2 − y1y2) + (x1y2 + y1x2)i.

From the very beginning in a study of complex numbers, we may assume
that each complex number is already presented in the standard form. More
complicated formulas (like the formula i+ i2

√
2 + 2i3(1− i) discussed above)

are considered as prescriptions for calculations, that is for transforming them
into the standard form.

The standard form x + yi of a complex number z is encoded by an ordered
pair (x, y) of real numbers. It happens to be unique. In order to eliminate
an apparent mysterious flavor of i, we will lay down the foundations of the
theory of complex numbers by speaking only about ordered pairs of real
numbers representing complex numbers. This approach is realized below.

1.2 Complex numbers as a pairs of real numbers

A complex number is an ordered pair (x, y) of real numbers. 1 The set of all
complex numbers is denoted by C. A complex number (x, y) is associated to
the point with Cartesian coordinates x and y on the plane.

Define addition and multiplication of z1 = (x1, y1) and z2 = (x2, y2) by
formulas:2

z1 + z2 = (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

and

z1 · z2 = (x1, y1) · (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1).

A real number x is identified with the complex number (x, 0).

Under this identification, the arithmetic operations with real numbers agree
with the arithmetic operations with the corresponding complex numbers.
Namely, the sum of complex numbers (x1, 0), (x2, 0) corresponding to real
numbers x1 and x2 corresponds to the sum x1 + x2 of the real numbers:

1Notice: no i is involved!
2Motivated by the two fundamental exercises in section 1.1
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(x1, 0) + (x2, 0) = (x1 + x2, 0 + 0) = (x1 + x2, 0).

Similarly, for multiplication:

(x1, 0) · (x2, 0) = (x1 · x2 − 0 · 0, x1 · 0 + 0 · x2) = (x1 · x2, 0).

Multiplication by a real number

Let r ∈ R and z = (x, y) ∈ C. Then r · z = r · (x, y) = (r · x, r · y). Indeed,

r · z = r · (x, y) = (r, 0) · (x, y) = (r · x− 0 · y, r · y + 0 · x) = (r · x, r · y).

1.3 Properties of the operations

Commutativity of addition. z1 + z2 = z2 + z1 for any z1, z2 ∈ C.

Proof. z1 + z2 = (x1, y1) + (x2, y2) = (x1 +x2, y1 + y2) = (x2 +x1, y2 + y1) =
(x2, y2) + (x1, y1) = z2 + z1. �

Associativity of addition. (z1+z2)+z3 = z1+(z2+z3) for any z1, z2, z3 ∈
C.

Proof. (z1 + z2) + z3 = ((x1, y1) + (x2, y2)) + (x3, y3) = (x1 + x2, y1 + y2) +
(x3, y3) = ((x1 + x2) + x3, (y1 + y2) + y3) = (x1 + (x2 + x3), y1 + (y2 + y3)) =
(x1, y1) + ((x2, y2) + (x3, y3)) = z1 + (z2 + z3) �

The zero. z + 0 = z for any z ∈ C.

Proof. z + 0 = (x, y) + (0, 0) = (x+ 0, y + 0) = (x, y) = z. �

Additive inverse. For any z = (x, y) ∈ C, denote by −z the complex
number (−x,−y). Then z + (−z) = (x, y) + (−x,−y) = (0, 0) = 0.

Distributivity. z1(z2 + z3) = z1z2 + z1z3 for any z1, z2, z3 ∈ C.

Proof. Let z1 = (x1, y1), z2 = (x2, y2) and z3 = (x3, y3). Then z1(z2 + z3) =
(x1, y1) ((x2, y2) + (x3, y3)) = (x1, y1)·(x2+x3, y2+y3) = (x1(x2+x3), y1(y2+
y3)) = (x1x2 + x1x3, y1y2 + y1y3) = (x1, y1)(x2, y2) + (x1, y1)(x3, y3) = z1z2 +
z1z3 �

Commutativity of multiplication. z1z2 = z2z1 for any z1, z2 ∈ C.
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Proof. z1z2 = (x1, y1)(x2, y2) = (x1x2, y1y2) = (x2x1, y2y1) = (x2, y2)(x1, y1) =
z2z1 = �

Associativity of multiplication. (z1 · z2) · z3 = z1 · (z2 · z3) for any
z1, z2, z3 ∈ C.

Proof. (z1 ·z2)·z3 = ((x1, y1) · (x2, y2))·(x3, y3) = ((x1 ·x2)·x3, (y1 ·y2)·y3) =
(x1 · (x2 · x3), y1 · (y2 · y3)) = (x1, y1) · ((x2, y2) · (x3, y3)) = z1 · (z2 · z3) �

The unit. z · 1 = z for any z ∈ C.

Proof. z · 1 = (x, y)(1, 0) = (x · 1− y · 0, x · 0 + y · 1) = (x, y) = z. �

We proved that the arithmetic operations of addition and multiplication of
complex numbers introduced in Section 1.2 have the usual properties that we
expect for operations with these names. So, we really may deal with them
in the same way as we did with real numbers.

As usual, subtraction is defined as addition of the additive inverse:

z1 − z2 = z1 + (−z2).

Denote the complex number (0, 1) by i.

The square of i. i2 = −1.

Proof. i2 = i · i = (0, 1) · (0, 1) = (0 · 0− 1 · 1, 0 · 1 + 1 · 0) = (−1, 0) = −1.�

Back to the traditional notation of complex numbers.

Now the presentation of any complex number z in the form z = x+ yi with
i2 = −1 makes sense:

z = (x, y) = (x, 0) + (0, y) = (x, 0) + y(0, 1) = x+ yi.

This is more specific and meaningful notation than z = (x, y), and we switch
to it. Here x is called the real part of z and denoted by Re z, while y is called
the imaginary part of z and denoted by Im z. Thus z = Re z + i Im z.

Notice, that both real and imaginary parts are real numbers.
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1.4 Conjugation

For z = x + iy ∈ C, denote the complex number x − yi by z and call it the

conjugate to z. Notice that z = z. Indeed,
(
x+ yi

)
= x− yi = x− (−y)i =

x+ yi. Complex numbers x+ yi and x− yi are said to be conjugate to each
other , we say about them as about a pair of conjugate complex numbers.

Passing from z to z is a map C → C. It has several remarkable and useful
properties. First of all, it respects the arithmetic operations.

1.A Theorem. For any complex numbers z and w

z + w = z + w and z · w = z · w

Proof. Let z = x+ yi and w = u+ vi. Then

z + w = (x+ yi) + (u+ iv) = (x+ u) + (y + v)i

= (x+ u)− (y + v)i = x− yi+ u− vi = z + w

and

z · w = (x+ yi)(u+ vi) = (xu− yv) + (xv + yu)i

= (xu− yv)− (xv + uy)i = (xu− (−y)(−v)) + (x(−v) + (−y)u)i

= (x− yi)(u− vi) = zw.

1.B Theorem. z+ z = 2 Re z and z− z = 2i Im z for any complex number
z.

Proof. Let z = x + yi. Then z + z = x + yi + x − iy = 2x = 2 Re z and
z − z = x+ yi− (x− yi) = 2yi = 2i Im z.

1.C Theorem. z · z = (Re z)2 + (Im z)2.

Proof. Let z = x+ yi. Then z · z = (x+ yi)(x− yi) = x2− y2i2 = x2 + y2 =
(Re z)2 + (Im z)2.

1 Corollary. For any complex number z the product z · z is a non-negative
real number. It equals zero if and only if z = 0. �
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1.5 The module of a complex number

For a complex number z, the real number
√
z · z is called the module, or the

absolute value, or the norm of z and is denoted by |z|. As it follows from
Theorem 1.C, |z| =

√
(Re z)2 + (Im z)2. By the Pythagoras theorem, |z| =√

(Re z)2 + (Im z)2 is the distance from the origin to the point corresponding
to z.

z = x+ yi

|z| =
√
x2 + y2

x = Re z

y = Im z

If z is a real number, then Im z = 0, z = Re z and |z| coincides with the
absolute value defined for z, as a real number, by the formula

|z| =

{
z, if z ≥ 0

−z, if z < 0.

Indeed, |x+ 0i| =
√
x2 + 02 =

√
x2 = |x| for any real x.

For an arbitrary complex number z, the module is related to the real and
imaginary parts by inequalities |z| ≥ |Re z| and |z| ≥ | Im z|.

Indeed, |z| =
√

(Re z)2 + (Im z)2 ≥
√

(Re z)2 = |Re z|. Similar proof works
for Im z. �

1.D Theorem. For any complex numbers z and w,

|z · w| = |z| · |w|

Proof. By the definition of module, |z·w| =
√

(z · w) · (z · w) =
√
z · w · z · w =√

z · z · w · w. Since z·z and w·w are non-negative real numbers,
√
z · z · w · w =√

z · z
√
w · w. Hence |z · w| =

√
z · z
√
w · w = |z| · |w|.

1.E Theorem (Triangle Inequality). For any complex numbers z and w,

|z + w| ≤ |z|+ |w|.
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Proof. |z+w| =
√

(z + w)(z + w) =
√

(z + w)(z + w) =
√
zz + zw + wz + ww.

Observe, that zz = |z|2, ww = |w|2 and wz = zw. Therefore,

|z + w| =
√
|z|2 + zw + zw + |w|2 =

√
|z|2 + 2 Re(zw) + |w|2.

As it was proven above, |Re(zw)| ≤ |zw| = |z||w|. Therefore,

|z|2 + 2 Re(zw) + |w|2 ≤ |z|2 + 2|z||w|+ |w|2 = (|z|+ |w|)2.

Hence, |z + w| =
√
|z|2 + 2 Re(zw) + |w|2 ≤ |z|+ |w|.

1.6 Division of complex numbers

Let z = x+ iy be a complex number. Assume that z 6= 0. Then the complex
number

w =
z

|z|2
=

x

x2 + y2
+ i

y

x2 + y2

has the following remarkable property: z · w = 1.

Indeed, z · w =
z · z
|z|2

=
z · z
z · z

= 1.

Recall a few general facts about multiplicative inverse and division. First,
here is a definition for multiplicative inverse: B is called the multiplicative
inverse for A if AB = 1. The multiplicative inverse to A is denoted by A−1

or
1

A
. Thus for a complex number z which is not 0 the multiplicative inverse

exists and is given by the formula z−1 =
z

|z|2
.

Recall that division is the operation inverse to multiplication: X = A/B if
X · B = A. It can be performed as multiplication of the divising by the
multiplicative inverse to the divisor: A/B = A · B−1. Indeed, if X = A/B
then X ·B = A. By multiplying both sides of the latter equality by B−1 we
get X ·B ·B−1 = A ·B−1. The left hand side here is X ·B ·B−1 = X ·1 = X.
Thus we have A/B = X = A ·B−1.

Since we have found the multiplicative inverse for each non-zero complex
number, we can divide one complex number to any non-zero complex number.
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Let z = x+ yi and w = u+ vi 6= 0. Then

z

w
=
x+ yi

u+ iv
= z · w−1 = z · w

|w|2
=

(x+ yi)(u− vi)
u2 + v2

=
xu+ yv

u2 + v2
+ i

yu− xv
u2 + v2

.

There is no need to remember this formula. Instead, remember that you can
simplify a complex fraction by multiplying both numerator and denominator

by the number conjugate to the denominator:
x+ yi

u+ vi
=

(x+ yi)(u− vi)
(u+ vi)(u− vi)

.

This makes the denominator real:
(x+ yi)(u− vi)
(u+ vi)(u− vi)

=
(x+ yi)(u− vi)

u2 + v2
. Di-

vision of a complex number by a real number is nothing but separate division
of its real and imaginary parts by this real number.

1.7 Argument (aka phase)

Let z be a complex number, z 6= 0. The angle subtended in counter-clockwise
direction between the positive direction of the real axis and the segment
connecting 0 to z is called the argument or the phase of z. It is denoted
by arg z. The word phase is used mostly in Physics and in engineering
applications.

z = x+ yiy

x

arg z

Traditionally argument is measured in radians (not degrees).

A few examples: arg i = π
2
, arg 1 = 0, arg(−1) = π, arg(−i) = 3π

2
=

−π
2
. Since the argument is defined only up to adding 2πn, the argument

of the same complex numbers take also the following values: arg i = −3π
2

,

arg 1 = 2π = −4π, etc. Further, arg(1
2

+
√
3
2
i) = π

3
, arg(1 + i) = π

4
,

arg(1− i) = −π
4

= 7π
4

.

Since argument is a measurement of an angle, it is defined up to adding 2πn,
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where n is an arbitrary integer. There are three ways to look at a numerical
measurement of an angle:

• the result is a unique real number which belongs to an interval of length
2π chosen once forever (say, [0, 2π) or (−π, π]);

• the result is a real number defined up to adding of a multiple of 2π (the
same angle amounts 3π

2
and −π

2
and −9π

2
);

• the result is an infinite set of numbers, which can be obtained from a
measurement in the first sense by adding 2nπ for all integers n.

Each approach has its advantages and disadvantages. The first one eliminates
the ambiguity, but at the cost of two drawbacks: a need to choose an interval
of length 2π when no choice is natural, and an unavoidable discontinuity of
measurement. In order to understand the nature of the discontinuity, assume
that all measurements are restricted to the interval (−π, π] and consider an
angle increasing continuously. Its measurement increases continuously until
it reaches π, and then it jumps down by −2π. The second approach means
that the result of measurement is not a true function of the angle, because
it is not univalued. The third approach involves infinite sets which seem to
be cumbersome and inappropriate.

For our needs, the second approach seems to be most appropriate. The am-
biguity is similar to other ambiguities. For example, every rational number
can be presented by infinitely many fractions and each of these fractions
represents the number adequately, a choice of a fraction is a matter of con-
venience.

Arguments of complex numbers will appear in formulas. However the formu-
las respect the ambiguity. For example, since the basic trigonometric func-
tions are 2π-periodic, the values which they take on an argument are not
affected by adding of 2π to the argument. For example, cos(ϕ+ 2π) = cosϕ.
Therefore, expressions cos(arg z), sin(arg z), sin(3 arg z) and tan(arg z) have
well-defined numerical values for any complex number z.

There are several formulas which express the argument as a function of real
and imaginary parts, but each of them is applicable only to z from some
domain. For instance, if Re z ≥ 0, then arg z = arcsin Im z

|z| . This is so due to

the fact that the range of arcsin is [−π
2
, π
2
].
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Similarly,

• if Im z ≥ 0, then arg z = arccos Re z
|z| ;

• if Re z > 0, then arg z = arctan Im z
Re z

;

• if Re z < 0, then arg z = π + arctan Im z
Re z

;

• if Re z ≤ 0, then arg z = π + arcsin − Im z
|z| .

1.8 Geometry of multiplication by a complex number

Let w be a complex number. In this section we study the map C→ C defined
by the formula z 7→ z · w.

Multiplication by null. First, let us consider the most special case. If
w = 0, then this is a constant map which maps each complex number to 0,
because z · 0 = 0.

Multiplication by a positive real number. Second, let w be a positive
real number. Then the points z = x + yi and zw = xw + ywi are on the
same ray starting at 0, therefore the map does not change the argument. The
module is multiplied by w. Indeed, |zw| = |w||z| = w|z|. Thus, the map is a
dilation with factor w.

z · w = xw + ywi

z = x+ yi

Multiplication by −1. Third, let w = −1. Then each z = x + yi is
mapped to its additive inverse −z = −x − yi. Geometrically, this map can
be described as the symmetry about the origin, or as the rotation about the
origin by π.
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z = x+ yi

z(−1) = −x− yi

Multiplication by a negative real number. Fourth, let w be a neg-
ative real number. Then w = −|w|, and the map can be presented as the
composition of two maps discussed above: z 7→ −z 7→ (−z)|w| = zw. So,
this a symmetry about the origin followed by dilation with factor |w|.

Multiplication by i. Fifth, let w = i. Then z = x + yi is mapped to
z ·w = z · i = (x+ yi)i = −y+ xi. The real axis is mapped to the imaginary
axis. Indeed, x + 0i 7→ xi. The imaginary axis is mapped to the real one,
but the positive direction goes to the negative one. Indeed, iy 7→ i2y = −y.
Overall, the map seems to rotate the whole plane about the origin by π

2
in

the counter-clockwise direction.

z = x+ yi

z · i = −y + xi

We will come back with a proof later.

Multiplication by a complex number of module 1. Now let us
consider a more general w: assume that |w| = 1.

1.F Theorem. Let w be a complex number with |w| = 1. Then the map
C → C : z 7→ z · w preserve distances between points: for any z1, z2 the
distance between z1 · w and z2 · w equals the distance between z1 and z2.
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Proof. By the Pythagoras Theorem, the distance between z1 = x1 +y1i and
z2 = x2 + y2i is √

(x2 − x1)2 + (y2 − y1)2 = |z2 − z1|

Similarly, the distance between z1 · w and z2 · w is

|z2 · w − z1 · w| = |(z2 − z1) · w| = |z2 − z1| · |w| = |z2 − z1|.

A map which preserves distances is called an isometry. An isometry is a
mathematical counter-part to a motion of a rigid body.

In general, in order to understand a map, one needs to understand how each
point is mapped. However, if the map is an isometry, then a knowledge on
mapping of a few points suffices for recovery of the whole map.

1.G Theorem. An isometry f : C→ C is uniquely determined by its values
on any three points, which do not lie on the same straight line.

Proof. Let points A,B,C ∈ C do not belong to the same line and let

f : C → C be an isometry. Our task
is to recover f(X) for any X ∈ C if we
know f(A), f(B) and f(C).
Denote by dA, dB and dC the distances
from X to A, B and C, respectively.
The point X belongs to the circles cA,
cB and cC centered at A, B and C and
of radii dA, dB and dC , respectively.
These circles have only one common
point. Indeed, two circles with differ-
ent centers may intersect either in two
points, or in one point (and then the
circles kiss each other at this point),
or have no common point at all. Our
circles have common point X, so the
latter situation is not realized for any
two of them.

A

B

cA

YX

C

dA dC

cB

dB

cC
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If two of the circles are tangent to each other atX, thenX is the only common
point for these two circles and then a fortiori the only common point for all
three circles (and we are done). If two circles have two common points, and
the third circle passes through both of these points, then the points A, B
and C belong to the locus of points which are at the same distance of these
two points. As well known, this locus is a line (the mid-perpendicular line).
But by assumption, A, B and C do not belong to the same line. Hence the
intersection of the three circles consists of X.

An isometry f maps a circle centered at a point P with radius R to a circle
of the same radius centered at f(P ). Indeed, the circle is the locus of points
which are at the distance R from P and the images of such points under an
isometry have to be at distance R from f(P ), i.e., they have to belong to the
circle centered at f(P ) of radius R.

Hence f(X) belongs to the circles centered at f(A), f(B) and f(C) of radii
dA, dB and dC , respectively. An isometry f maps triangle ABC to a congru-
ent triangle. Since A, B and C are not collinear, the points f(A), f(B) and
f(C) are not collinear either. Therefore, there is only one possible position
for f(X), and we know how to find it: this is the only common point of the
circles centered at f(A), f(B) and f(C) and having the radii dA, dB and dC ,
respectively.

Theorem 1.G ensures that if two isometries C→ C coincides with each other
on a triple of non-collinear points, then these isometries coincide.

Now let us come back to the map C→ C : z 7→ z · i. Clearly,

• 0 7→ 0 · i = 0,

• 1 7→ 1 · i = i,

• i 7→ i · i = −1.

1

i

−1 0

On the other hand, consider the counter-clockwise rotation of the plane C
about 0 by the right angle. It maps 0, 1 and i exactly in the same way. It is
an isometry. Hence, these two maps coincide.
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1.H Theorem. Let w be a complex number with |w| = 1. Then the map
C→ C : z 7→ z ·w is the rotation about the origin by angle argw in counter-
clockwise direction.

1

i

w

wi

Proof. Consider the images of 0, 1 and i under this map:

• 0 · w = 0,

• 1 · w = w,

• i · w = w · i

The latter is the image of w under the multiplication by i. As we proved
above, it is obtained from w by the rotation about the origin by the right
angle in counter-clockwise direction. Its argument is obtained from argw by
adding π

2
.

Compare this to the action of the rotation about the origin by angle argw
in counter-clockwise direction. For z 6= 0, the rotation does not change the
distance to the origin, and adds argw to the argument. Both maps map
0 7→ 0. The image of 1 is w for both maps. The third point, i, has argument
π
2
, its image under the rotation by argw has argument π

2
+ argw.

Finally, consider the case of the most general w. Assume that w 6= 0, Imw 6=
0, and |w| 6= 1. Then w = |w| · w

|w| . Then the map C → C : z 7→ z · w
can be presented as a composition of two maps considered above: a dilation
z 7→ z · |w| followed by rotation z 7→ w

|w| .

1.I Theorem. Let z and w be complex numbers, z 6= 0 6= w. Then

arg(z · w) = arg z + argw.
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Proof. If |w| = 1, then by Theorem 1.H the map C → C : z 7→ z · w is a
counter-clockwise rotation by argw. Hence, arg(z · w) = arg z + argw.

In general case, z · w = z ·
(
w
|w| · |w|

)
=
(
z · w|w|

)
|w|. Multiplication by real

positive number |w| does not change the argument. Therefore

arg(z · w) = arg

((
z · w
|w|

)
|w|
)

= arg

(
z · w
|w|

)
.

Since | w|w| | =
|w|
|w| = 1, we can apply the result discussed above, so

arg

(
z · w
|w|

)
= arg z + arg

w

|w|
.

Further,

arg
w

|w|
= arg

(
w · 1

|w|

)
= argw,

since
1

|w|
is a positive real number. Combining these equalities, we obtain

the desired result.

1.9 Trigonometric form of a complex number

1.J Theorem. The argument and the module of a complex number z char-
acterize z completely. Namely, if |z| = 0 then z = 0, if |z| 6= 0, then

z = |z|(cos(arg z) + i sin(arg z)). (1)
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y

arg z

z = x+ yi

xcos(arg z)

w = z/|z|sin(arg z)

Proof. For z with |z| = 1 formula (1) follows immediately from the definition
of cos and sin. Recall that cosϕ and sinϕ are defined as coordinates of the
point on the unit circle centered at 0 such that the counter-clockwise angle
subtended between the x-axis and the direction to this point is ϕ. The point z
with |z| = 1 lies on the unit circle, the angle ϕ is arg z, and z = cosϕ+i sinϕ.

Assume that z 6= 0 and |z| 6= 1. Since z 6= 0, we can consider w = z
|z| .

Obviously, |w| = | z|z| | = |z · 1
|z| | = |z| 1|z| = 1. By applying the formula to w,

we get
w = cos(argw) + i sin(argw).

Notice that argw = arg z, since w = 1
|z|z and therefore z and w lie on

the same ray which starts at 0. Hence, we can rewrite the formula w =
cos(argw) + i sin(argw) as

z

|z|
= cos(arg z) + i sin(arg z).

Multiplying both sides of this formula by |z|, we obtain the required result.

If z = 0, then arg z is not defined, and formula (1) does not make sense.
However in this case z = |z|, and thus |z| characterizes z alone.

A presentation of a complex number z as r(cosϕ + i sinϕ) with real r > 0
and ϕ is called a trigonometric form of z. As follows from Theorem 1.J, here
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r = |z| and ϕ = arg z. Any complex number z 6= 0 can be presented in
trigonometric form.

Since arg z is defined by z only up to addition of 2πn with n ∈ Z, the
trigonometric form also is not defined by z, it depends on the choice of
representative for arg z.

The trigonometric form is multiplication friendly in the following sense: given
trigonometric forms of complex numbers z and w, one can easily find a
trigonometric form of their product z ·w. Indeed, by Theorem 1.F, |z ·w| =
|z| · |w|, as for the argument, and, by Theorem 1.I, arg(z ·w) = arg z+ argw.
Therefore

z · w = |z| · |w|(cos(arg z + argw) + i sin(arg z + argw)). (2)

1.10 Trigonometric addition formulas

In this section we consider applications to trigonometry.

1.K Theorem. For any real numbers ϕ and ψ,

cos(ϕ+ ψ) = cosϕ · cosψ − sinϕ · sinψ (3)

sin(ϕ+ ψ) = sinϕ · cosψ + cosϕ · sinψ (4)

Proof. Let z = cosϕ+ i sinϕ and w = cosψ + i sinψ. Then by (2),

zw = cos(ϕ+ ψ) + i sin(ϕ+ psi).

On the other hand,

zw = (cosϕ+ i sinϕ)(cosψ + i sinψ)

= (cosϕ · cosψ − sinϕ · sinψ) + i(sinϕ · cosψ + cosϕ · sinψ)

Comparison of these two formulas gives the desired result.
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Corollaries.

cos(ϕ− ψ) = cosϕ · cosψ + sinϕ · sinψ (5)

sin(ϕ− ψ) = sinϕ · cosψ − cosϕ · sinψ (6)

cos 2ϕ = cos2 ϕ− sin2 ϕ (7)

sin 2ϕ = 2 sinϕ cosϕ (8)

tan(ϕ+ ψ) =
tanϕ+ tanψ

1− tanϕ tanψ
(9)

2 Vector spaces

2.1 Coordinate vector space Rn

Let n be a natural number. Denote by Rn the set of n-element sequences of
real numbers. In formula it can be written as follows: Rn = {(x1, . . . , xn) |
xi ∈ R for i = 1, . . . n}.

For example, R2 is the set of ordered pairs of real numbers. Here are some
of its elements: (1, 2), (−1.3, 52), (0,

√
7), (0, 0), (π,− log 22). We met this

set in the definition of complex numbers. Recall that complex numbers were
formally defined as ordered pairs of real numbers. Thus, as a set, the set C
of all complex numbers coincides with R2 .

Elements of Rn are called real n-tuples of real numbers. The jth element xj
of an n-tuple (x1, . . . , xn) is called the jth coordinate of this n-tuple. The
whole set Rn of real n-tuples is called the real coordinate space of dimension
n.

When talking about n-tuples of real numbers, we often do not mention the
n real numbers forming it, but denote an n-tuple by a single letter. Say,
(x1, . . . , xn) is denoted by x. We write x = (x1, . . . , xn), x ∈ Rn.

The operation of addition of complex numbers (which were considered as
pairs of real numbers) are generalized to Rn with any n. Namely, for x =
(x1, . . . , xn) and y = (y1, . . . , yn) we define

x+ y = (x1 + y1, . . . , xn + yn).
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This addition of n-tuples can be considered as a map of the set of pairs of
n-tuples to the set of n-tuples, that is a map Rn × Rn → Rn.

The operation of multiplication of complex numbers does not admit a single
reasonable generalization in any n. However multiplication of a complex
number by a real number is very simple. (Recall that r · (x, y) = (rx, ry) for
r ∈ R and (x, y) ∈ C.) It admits the following straightforward generalization:

r · (x1, . . . , xn) = (rx1, . . . , rxn) for r ∈ R, (x1, . . . , xn) ∈ Rn.

If x1, . . . , xn is denoted by x, then the n-vector (rx1, . . . , rxn) is denoted by
rx. It is called the product of n-vector x = (x1, . . . , xn) by r. We may
consider this multiplication as a map R× Rn → Rn.

Thus, we have in Rn two operations: addition

Rn × Rn → Rn : ((x1, . . . , xn), (y1, . . . , yn)) 7→ (x1 + y1, . . . , xn + yn)

and multiplication by real numbers

R× Rn → Rn : (r, (x1, . . . , xn)) 7→ (rx1, . . . rxn).

These two operations have the same properties which we already meet when
we studied complex numbers. Namely,

Associativity of addition: (x+ y) + z = x+ (y + z) for any x, y, z ∈ Rn;

Commutativity of addition: x+ y = y + x for any x, y ∈ Rn;

Zero: There is an element (0, . . . , 0) of Rn made of zeros and denoted by 0
such that x+ 0 = x for any x ∈ Rn;

Additive inversion: for each n-vector x = (x1, . . . , xn) ∈ Rn, there is an n-
vector (−x1, . . . ,−xn), which is denoted by −x, such that x+(−x) = 0;

Associativity of multiplication. (r1r2)x = r1(r2x) for any r1, r2 ∈ R and
x ∈ Rn;

Distributivity. r(x+ y) = rx+ ry for any r ∈ R and x, y ∈ Rn;

Distributivity. (r1 + r2)x = r1x+ r2x for any r1, r2 ∈ R and x ∈ Rn;
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Multiplication by one. 1 · x = x for any x ∈ Rn.

Similar mathematical structure appear quite often. For example, for a fixed
set X one can consider the set of all real valued functions X → R. For
any two functions f, g : X → R we can define a function f + g by formula
(f +g)(x) = f(x)+g(x) for any x ∈ X; for any real number r and a function
f : X → R define a function rf by formula (rf)(x) = r(f(x)). One can easily
check that these operation have the same properties as formulated above.

This construction alone gives a huge collection of examples, as we can take
different sets X. Furthermore, one can take instead of arbitrary functions
more special functions. Say, if X = R, take only continuous functions, or
only polynomial functions, or only linear functions. All these sets are closed
with respect to addition of functions and multiplication by a number: the
sum of two functions of each of these types is a function of the same type, the
same for product of a function by a number. Moreover, there are sets with
addition and multiplication by numbers which come from absolutely other
sources. This motivated introduction of a general axiomatic notion of vector
space introduced below.

2.2 Vector space, the general notion

Let V be a set, equipped with two operations discussed below.

The first of them is called addition. This is a map V × V → V . It assigns
to a pair (u, v) of elements of V an element of V , which is denoted by u+ v,
like the usual sum of numbers.

Let the addition have the following four properties:

1. Associativity. (u+ v) + w = u+ (v + w) for any u, v, w ∈ V ;

2. Commutativity. u+ v = v + u for any u, v ∈ V ;

3. Zero. There exists an element of V denoted by 0 such that u+ 0 = u for
any u ∈ V ;
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4. Additive inversion. for each u ∈ V there exists an element of V which
is denoted by −u such that u+ (−u) = 0.

The second operation is a map R× V → V . It assigns to a pair (r, u) which
is formed by a number r ∈ R and an element u of V an element of V denoted
by ru and called the product of r by u. Let, together with the addition, the
multiplication have the following properties:

5. Associativity of multiplication. (r1r2)u = r1(r2u) for any r1, r2 ∈ R
and u ∈ V ;

6. Distributivity. r(u+ v) = ru+ rv for any r ∈ R and u, v ∈ V ;

7. Distributivity. (r1 + r2)u = r1u+ r2u for any r1, r2 ∈ R and u ∈ V ;

8. Multiplication by one. 1 · u = u for any u ∈ V .

The eight properties listed above are called the axioms of vector space. If they
hold true, V is called a vector space (over R), its elements are called vectors.
In a vector space, the addition of vectors and multiplication of vector by a
number are called linear operations . The set Rn discussed above is a vector
space.

2.3 The simplest consequences of axioms

The third axiom claims that in a vector space V there exists a special element
0 such that 0 + u = u for any u ∈ V . The axioms do not claim explicitly
that such element is unique. However, it follows from the axioms.

2.A. Uniqueness of zero. In any vector space V , the vector 0 ∈ V such
that 0 + u = u for any u ∈ V is unique.

Proof. Assume that there are two elements, 01 and 02, which share this
property, that is 01 +u = u and 02 +u = u for any u ∈ V . Then 01 + 02 = 02

and 02 + 01 = 01. By commutativity of addition, 01 + 02 = 02 + 01. Hence
02 = 01 + 02 = 02 + 01 = 01.
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2.B. Uniqueness of additive inverse. For any vector u ∈ V , the vector
which is additive inverse to u ∈ V is unique.

Proof. Assume that there are two element, v1 and v2, which are both addi-
tive inverse to u, that is u+ v1 = 0 and u+ v2 = 0. Then consider the vector
v1 + u+ v2. On one hand, v1 + u+ v2 = v1 + (u+ v2) = v1 + 0 = v1. On the
other hand, v1 + u+ v2 = (v1 + u) + v2 = (u+ v1) + v2 = 0 + v2 = v2. Hence
v1 = v2.

2.C. Multiplication by number zero. 0 · u = 0 for any vector u ∈ V .

Proof. First, observe that since 0+0 = 0, we have 0·u = (0+0)u = 0·u+0·u.
Now let us add to both sides of the equality 0 · u = 0 · u + 0 · u the vector
additive inverse to 0 · u. This turns the equality into 0 · u + 0 = 0. By the
definition of 0, the left hand side of the latter equality is 0 · u.

2.D. Multiple of the zero vector. r · 0 is the zero vector for any r ∈ R.

Proof. r0 = r(0 + 0) = r0 + r0. Let us add to both sides of the equality
r · 0 = r · 0 + r · 0 the vector additive inverse to r · 0. This gives the equality
0 = r · 0.

2.E. Multiplication by negative one. Let V be a vector space and u ∈ V .
Then (−1)u is the additive inverse to u.

Proof. We have to prove that u + (−1)u = 0. Indeed, u + (−1)u = 1u +
(−1)u = (1 + (−1))u = 0u = u.

2.F. Subtraction. For any vectors u, v ∈ V there exists a unique solution
of equation x+ u = v.

Proof. The vector v+(−u) is a solution for the equation x+u = v. Indeed,
(v + (−u)) + u = v + ((−u) + u) = v + 0 = v. Assume that x1 and x2 are
two solutions. Then x1 + u = x2 + u. By adding −u to both sides of this
equality, we get x1 = x2.

In the usual arithmetic, the subtraction a − b is defined as the solution of
equation x+b = a, and the solution can be identified as in Proposition 2.F as
a+ (−b). Here similarly we define difference v − u of vectors as the solution
of equation x+ u = v and observe that v − u = v + (−u).
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2.4 Subspaces

Let V be a vector space. A subset W ⊂ V is called a vector subspace of V
if for any vectors u, v ∈ W their sum u + v also belongs to W and for any
u ∈ W and any real number r the product ru belongs to W .

This property is described by saying that W is closed with respect to the
linear operations of V , meaning that the operations do not lead out of the
subset.

It is useful to re-phrase this as follows. For any set W ⊂ V consider the
restriction of the addition V × V → V to W × W ⊂ V × V . This is a
map W ×W → V . The fact that W is closed with respect to the addition
means that the image of this map is contained in W . Thus the addition in
V determines a map W ×W → W , provided that W is a vector subspace of
V . Similarly, the multiplication by numbers R× V → V in V determines a
map R×W → W .

2.G. A vector subspace is a vector space. Let V be a vector space
and W ⊂ V be its subspace. Then W with the maps W × W → W and
R×W → W , which are determined by the linear operations in V , is a vector
space on its own.

Proof. We have to prove that the axioms of vector space hold true. As-
sociativity and commutativity of addition, associativity of multiplication,
distributivities hold true because they are literally special cases of the same
properties of the ambient space. Further, for each vector u ∈ W , the additive
inverse vector −u can be obtained from u by multiplying it by −1 (indeed,
u+ (−1)u = 1u+ (−1)u = (1 + (−1))u = 0u = u). Hence, −u ∈ W , as this
is a product of u by a number −1. Then, 0 ∈ W , because 0 is the sum of
any u ∈ W with −u, which as we have just seen also belongs to W .

In any vector space, there is the smallest vector subspace. It consists of a
single element 0. This subspace is denoted also by 0. In any vector space V ,
there is also the largest subspace, the space V itself.

Exercises

1. Prove that the intersection of any family of vector subspaces of a vector
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space V is also a vector subspace of V .

2. Find an example of two vector subspaces R2, such that their union is not
a vector subspace of V .

3 Linear maps

3.1 Definition

Let V and W be vector spaces. A map f : V → W is said to be linear if it
satisfy the following two requirements:

Additivity f(u+ v) = f(u) + f(v) for any u, v ∈ V ;

Homogenuity f(ru) = rf(u) for any u ∈ V and r ∈ R.

These two requirements mean that a linear map respects the linear operations
in V and W . A linear map also respect the zero. There is no need to require
this separately, because it follows from additivity. Namely, the following
holds true:

3.A. A linear map maps zero to zero. Any linear map f : V → W maps
0 7→ 0.

Proof. Indeed, f(0) = f(0 + 0) = f(0) + f(0). Add −f(0) to both sides of
the equality f(0) = f(0) + f(0). This turns the equality into 0 = f(0).

3.B. A linear map maps inverse to inverse. For any linear map f :
V → W and any u ∈ V , f(−u) = −f(u).

Proof. By Proposition 2.E, −u = (−1)u. Hence f(−u) = f((−1)u) =
(−1)f(u) = −f(u).
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3.2 The simplest examples of linear maps

1. The zero map. For any vector spaces V and W , consider the map which
sends any vector u ∈ V to 0 ∈ W . The requirements from the definition of
linear map is satisfied. Indeed, f(u + v) = 0 and f(u) + f(v) = 0 + 0 = 0,
f(ru) = 0 and rf(u) = r · 0 = 0. �.

2. The identity map. For any vector space V , the identity map id : V → V
(that is the map which sends each u ∈ V to itself) is a linear map. The
verification is straightforward.

3. Dilation and contraction maps. Let c ∈ R and V be any vector
space. The map f : V → V : u → c · u is a linear map. Indeed, f(u + v) =
c(u+ v) = cu+ cv = cf(u) + cf(v) and f(ru) = c · (ru) = r · (cu) = r · f(u)
�.

4. Inclusion map. Let W be a subspace of a vector space V . Then the
inclusion map W → V is linear. Indeed, the inclusion map maps each vector
u ∈ W to the same vector, but considered as an element of V and the linear
operations in W are the same as in V . �

3.3 Two important subspaces determined by a linear
map

Let f : V → W be a linear map. In this section we introduce a subspace of
V and a subspace of W , which are determined by f and to a great extend
characterize it. We start with a subspace of W .

The image of a linear map

The image of a map f : V → W is the set

{w ∈ W | w = f(v) for some v ∈ V }.

It is denoted in two ways: first, there is a general notation f(V ) which used
in any part of mathematics and applicable to any map f ; second, the image
of linear map f is denoted by Im f .
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By the definition of surjectivity, a map f : V → W is surjective if and only
if f(V ) = W .

3.C. If V and W are vector spaces and f : V → W is a linear map, then
Im f is a vector subspace of W

Proof. Exercise. Prove this.

The kernel of a linear map

For a linear map f : V → W , the set {u ∈ V | f(u) = 0} is called the kernel
of f and denoted by Ker f . The kernel of f can be defined in words as the
pre-image of 0, or in a formula, Ker f = f−1(0).

3.D Proposition. For any linear map f : V → W , the set Ker f is a vector
subspace of V .

Proof. Indeed, if u, v ∈ Ker f , then f(u) = 0 and f(v) = 0, hence f(u+v) =
f(u) + f(v) = 0 + 0 = 0, and u + v ∈ Ker f ; if u ∈ Ker f and r ∈ R, then
f(ru) = rf(u) = r0 = 0 and hence ru ∈ Ker f .

Clearly, the map f : V → W is zero, if and only if Ker f = V .

3.E Theorem. A linear map f : V → W is injective if and only if Ker f =
0.

Proof. By the definition of injectivity, f is injective, iff the preimage of each
v ∈ W consists of at most one element. As a vector subspace, Ker f must
contain 0. Thus, if f is injective, then Ker f = 0.

Let us prove the converse. Assume that Ker f = 0. Let u, v ∈ V and
f(u) = f(v). Then f(u + (−v)) = f(u) + f(−v) = f(u) + (−f(v)) =
f(v) + (−f(v)) = 0. Hence u− v ∈ Ker f . Hence u− v = 0 and u = v.

3.4 Linear maps from a coordinate space

In this section we will study linear maps from a coordinate space Rn to
an arbitrary vector space W . To begin with, we present a formula which
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describes such a map. The formula looks quite special. However after that
we will see that any linear map Rn → W is described by a formula of this
type.

3.F. Let W be a vector space and let u = (u1, . . . , un) be any n-tuples of
vectors of W . Then the map

Lu : Rn → W : (x1, . . . , xn) 7→ x1u1 + · · ·+ xnun.

is linear.

Proof. We have to verify additivity and homogenuity of this map. Let
x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn. Additivity:

Lu(x+ y) = (x1 + y1)u1 + · · ·+ (xn + yn)un

= x1u1 + y1u1 + . . . xnun + ynun

= x1u1 + · · ·+ xnun + y1u1 + · · ·+ ynun

= Lu(x) + Lu(y)

Homogenuity:

Lu(rx) = rx1u1 + · · ·+ rxnun = r(x1u1 + · · ·+ xnun) = rLu(x)

Let us denote by ei ∈ Rn the n-tuple of real numbers, whose ith coordinate is
1 and all other coordinates are 0. So, e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0),
. . . en = (0, . . . , 0, 1).

It is easy to check that any x = (x1, . . . , xn) ∈ Rn can be presented as
x1e1 + . . . xnen. Indeed, in the sum x1e1 + . . . xnen the ith summand has all
coordinates 0, besides the ith one, which is xi · 1 = xi. Hence the sum has
exactly the same coordinates as x.

3.G Proposition. Any linear map L : Rn → W is Lu for u = (u1, . . . , un),
where u1 = L(e1), . . . , un = L(ei).
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Proof. Indeed, for x = (x1, . . . , xn)

L(x) = L(x1e1 + · · ·+ xnen)

= L(x1e1) + · · ·+ L(xnen)

= x1L(e1) + · · ·+ xnL(en)

= x1u1 + · · ·+ xnun = Lu(x).

Thus, linear maps from a coordinate vector space Rn to an arbitrary vector
space W are encoded by n-tuples of vectors u1, . . . , un of V .

4 Dimensions

4.1 Linear dependence

A vector b ∈ V is said to be linearly dependent on vectors a1, . . . , an ∈ V if
it can be obtained by applying a sequence of linear operations to a1, . . . , an.
Of course, any such vector can be presented as x1a1 + · · · + xnan for some
real numbers x1, . . . , xn. Hence, a vector b linearly depends on a1, . . . , an,
if it belongs to the image of the linear map Rn → V defined by a1, . . . , an.

A vector x1a1 + · · ·+ xnan is called a linear combination of a1, . . . , an.

The set of all linear combinations of vectors a1, . . . , an is called linear hull or
linear span of a1, . . . , an and denoted by Lin(a1, . . . , an). It coincides with the
image of the linear map La : Rn → V defined by a = (a1, . . . , an). Hence,
this is a vector subspace of V .

A collection a1, . . . , an is said to generate V if V = Lin(a1, . . . , an).

4.2 Linear independence

Vectors a1, . . . , an are said to be linearly independent if none of them depends
on the others.
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A linear combination, in which not all the coefficients are zero, is called non-
trivial . Therefore, La1,...,an : Rn → V is not injective if and only if there exists
a non-trivial linear combination of a1,. . . , an which equals zero.

4.A Proposition. Vectors a1, . . . , an are linearly independent if and only if
there is no non-trivial linear combination of a1,. . . , an which is equal to zero.

Proof. Assume that vectors a1,. . . , an are not linearly independent. Then
one of them is a linear combination of the others. Without loss of generality,
we may assume that this is the last vector an, so an = x1a1 . . . xn−1an−1.
Then x1a1 + · · ·+ xn−1an−1 + (−1)an = 0. In the linear combination x1a1 +
· · ·+ xn−1an−1 + (−1)an at least the last coefficient is not zero (because it is
−1.) Hence we have a non-trivial linear combination which is zero.

Conversely, let there exist a linear combination x1a1 + · · ·+ xnan equal zero,
in which at least one coefficient is not zero. Without loss of generality we
may assume that xn 6= 0. Then an is linearly dependent on a1, . . . , an−1.
Indeed, in the equality x1a1 + · · · + xnan = 0 move the last term of the left
hand side to the right hand side and divide both sides by −xn. It gives

−x1
xn
a1 + · · · − xn−1

xn
= an.

4.B Theorem. Vectors a1, . . . , an ∈ V are linearly independent if and only
if the map La : Rn → V with a = (a1, . . . , an) is injective.

Proof. By Proposition 3.E, La : Rn → V is injective if and only if KerLa =
0. By the definition of La, the kernel of La consists of (x1, . . . , xn) such that
x1a1 + . . . xnan = 0.

Thus, La : Rn → V is not injective if and only if there exist real numbers
x1, . . . , xn, which are not all equal zero, such that the linear combination
x1a1 + . . . xnan equals zero.

4.3 Basis of a vector space

A vector space V is said to be infinite-dimensional if it does not admit a finite
generating set. Below we will work mainly with finite-dimensional vector
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spaces.

A basis of a vector space V is a finite sequence a1, . . . an of its vectors, which
generate V and are linearly independent.

4.C Theorem. Let V be a vector space. An n-tuple a = (a1, . . . , an) of
vectors of V is a basis of V if and only if the linear map La : Rn → V is a
bijection.

Proof. We know from Section 4.1 that La is surjective if and only if a1, . . . , an
generate V . By Theorem 4.B La is injective if and only if vectors a1, . . . , an
are linearly independent.

Theorem 4.C means that a basis of vector space allows to identify a vector
space with the coordinate vector space Rn. Linear operations in a vector
space with a chosen basis are identified with linear operations in Rn.

The basis is not unique, so there is no standard, canonical identification. Our
goal in this section is to prove that the number of elements in a basis of a
vector space depends only on the vector space, but not on the choice of basis.
In particular, it would imply that from the point of view of linear algebra
Rn with different n differ from each other, there is no bijective linear map
between Rp and Rq if p 6= q.

4.D Theorem. Let a1, . . . , ap be linearly independent vectors in a vector
space generated by q vectors. Then p ≤ q.

Proof. Let b1, . . . , bq be generators of this vector space. Since a1 ∈ Lin(b1, . . . , bq),
it can be presented as

a1 = x1b1 + · · ·+ xqbq.

Vector a1 is not zero, since it belongs to a system of linearly independent
vectors. Therefore at least one of the coefficients x1, . . . , xq is not zero.
Without loss of generality, we may assume that x1 6= 0. Then the equal-
ity a1 = x1b1 + · · ·+ xqbq can be transformed into an expression for b1:

b1 =
1

x1
a1 +

−x2
x1

b2 + · · ·+ −xq
x1

bq.

Thus b1 ∈ Lin(a1, b2, . . . , bq). Therefore

Lin(b1, . . . , bq) = Lin(a1, b1, . . . , bq) = Lin(a1, b2, . . . , bq).
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Thus, we have replaced one of the generators (namely, b1) by one of the
vectors from the system of linearly independent vectors (namely, a1). Then
we repeat this process and replace in the same way one of the vector b2 by a2.
In this step, we have to take efforts for keeping b1 in the system of vectors.
It is possible, since in the expression of b2 as a linear combination of b1,
a2, . . . , ap at least one of the coefficients at a2,. . . ,ap is not zero, because
otherwise b2 would be dependent on b1 alone, which would contradict to
linear independence of b1, . . . ,bq.

If q > p, then after repeating this process for p times we would replace all
a1,. . . ,ap with b1,. . . ,bp. Then bp+1,. . . ,bq would be in Lin(b1, . . . , bp), which
would contradict to linear independence of b1,. . . ,bq. Hence q ≤ p.

Corollary. Any two bases of a finite-dimensional vector space contain the
same number of elements.

The number of elements in a basis of a vector space V is called the dimension
of V and denoted by dimV .

4.4 How to build a basis

4.E Proposition. Let a1, . . . , an be linearly independent vectors in V and
b ∈ V r Lin(a1, . . . , an). Then vectors b, a1, . . . , an are linearly independent.

Proof. If b, a1, . . . , an are linearly dependent, then there exists a non-trivial
linear combination of them xb + y1a1 + · · · + ynan, which is equal to zero.
Then x 6= 0, since otherwise this would be non-trivial zero linear combination
of a1, . . . , an which is impossible, since a1, . . . , an are linearly independent.
But then

b =
(−1)

x
(y1a1 + · · ·+ ynan) ∈ Lin(a1, . . . , an),

which contradicts to the assumption that b ∈ V r Lin(a1, . . . , an).

4.F Proposition. Let V be a vector space. If a vector b ∈ V linearly depends
on a1, . . . , an ∈ V , then Lin(b, a1, . . . , an) = Lin(a1, . . . , an).

Proof. Obviously, Lin(a1, . . . , an) ⊂ Lin(b, a1, . . . , an). Let us prove the
opposite inclusion. Take any element of Lin(b, a1, . . . , an). It can be presented
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as a linear combination xb+y1a1+· · ·+ynan for some real x, y1, . . . , yn. Then
b = z1a1 + · · · + znan for some z1, . . . , zn ∈ R, since b linearly depends on
a1, . . . , an. By substituting this expression into xb+ y1a1 + · · ·+ ynan, we get
xb+ y1a1 + · · ·+ ynan = (xz1 + y1)a1 + . . . (xzn + yn)an ∈ Lin(a1, . . . , an).

Theorem 4.D claims that the number of elements in any set of linearly inde-
pendent vectors in a vector space is not greater than the number of vectors
in a set of vectors generating this space. By Proposition 4.E, a system of
linearly independent vectors that does not generate the vector space, can
always be expanded to a larger system of linear independent vectors. If the
vector space is finite-dimensional, then in this way we will construct a basis
in a finite number of steps.

On the other hand, if vectors in a generating system are not linearly inde-
pendent, then some of vectors can be removed from this system keeping the
system generating. It can be done until we get a basis.

4.5 Coordinates

By Theorem 4.C, any basis a = (a1, . . . , an) of a vector space V provides a
linear bijection La : Rn → V . This bijection is called a coordinate system in
V determined by the basis a.

For each vector u ∈ V , the preimage L−1a (u) is an n-tuple x = (x1, . . . , xn) of
real numbers such that La(x) = u. Numbers x1, . . .xn a called the coordinates
of vector u in basis a or in the corresponding coordinate system.

Recall that La(x) = x1a1 + · · · + xnan. Thus x1, . . . , xn are coordinates of
vector u in basis a = (a1, . . . , an) if

u = x1a1 + · · ·+ xnan

A coordinate system returns us from V to the coordinate space Rn. Since
the bijection La is linear, linear operations in V can be performed in the
following way: first pull back all the vectors involved from V to Rn, then
perform the calculation in Rn, then move the result to V again via La.
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Appendix. Linear operations on linear maps

Addition of linear maps

Let V and W be vector spaces and let f : V → W and g : V → W be maps.
Define f + g : V → W by formula (f + g)(u) = f(u) + g(u).

4.G Proposition. If f and g are linear maps, then the map f + g is linear.

Proof.

(f + g)(u+ v) = f(u+ v) + g(u+ v)

= f(u) + f(v) + g(u) + g(v)

= f(u) + g(u) + f(v) + g(v)

= (f + g)(u) + (f + g)(v)

(f + g)(ru) = f(ru) + g(ru)

= rf(u) + rg(u) = r(f(u) + g(u))

= r((f + g)(u)).

Multiplication of a linear map by a number

Let V and W be vector spaces, f : V → W be a map and c ∈ R. Define
cf : V → W by formula (cf)(u) = r(f(u)).

4.H Proposition. If f is a linear map, then the map cf is linear.

Proof.

(cf)(u+ v) = c(f(u+ v)) = c(f(u) + f(v)) = cf(u) + cf(v)

(cf)(ru) = c(f(ru)) = c(rf(u)) = c · r · f(u) = r · (c · f(u))
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Vector spaces of linear maps

For vector spaces V and W , denote by L(V,W ) the set of all linear maps
V → W . Above we have defined operations of addition and multiplication
by a number in L(V,W ).

Exercise. Verify that L(V,W ) with these operations is a vector space (that
is L(V,W ) satisfy all the axioms of vector space).

Thus, any linear map V → W between two vector spaces is a vector of the
appropriate vector space (made of all linear maps V → W ).
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