
Lecture 5. Quaternions

Oleg Viro

The lecture on quaternions was given by Professor Alexander Kirillov.
Below you can find a concise list of definitions and statements on this topic.

5.1 Quaternions as quartiples of real numbers

The set of quaternions is denoted by H. This is a very concrete mathematical
object. As a vector space over R, it has the standard basis 1, i, j, k. A
quaternion expanded in this standard basis is a+bi+cj+dk, where a, b, c, d ∈
R. The quaternion addition is component-wise.

(a+bi+cj+dk)+(a′+b′i+c′j+d′k) = (a+a′)+(b+b′)i+(c+c′)j+(d+d′)k.

Quaternions can be multiplied by each other. The multiplication is as-
sociative (i.e., (xy)z = x(yz) for any quaternions x, y, z ∈ H) and distribu-
tive (i.e., (x + y)z = xz + yz). The generators are subject to relations
i2 = j2 = k2 = ijk = −1.

The quaternion products of the generators are calculated according to
the formulas

ij = k, ji = −k, jk = i, kj = −i, ki = j and ik = −j (1)

These formulas can be deduced from the relations i2 = j2 = k2 = ijk = −1
and associativity of multiplication. For example, multiply the last relation
ijk = −1 by k from the right hand side: ijk2 = −k. Since k2 = −1, then
−ij = −k. Multiply both sides by −1. This results the first formula ij = k
that we wanted to prove.

Take the square of it: ijij = k2 = −1. Multiply by i from the left and
by j from the right: i(ijij)j = −ij. The right hand side is −ij = −k. The
left hand side: i2jij2 = (−1)ji(−1) = ji. Hence ji = −k.
Exercise: prove the rest of formulas (1).

Notice that the quaternion multiplication is not commutative: ij 6= ji.
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5.2 Scalars and vectors.

The field R of real numbers is contained in H as {a+ 0i+ 0j + 0k | a ∈ R}.
A quaternion of the form a+ 0i+ 0j + 0k, is called real . A quaternion of
the form 0 + bi+ cj + dk, where b, c, d ∈ R is called pure imaginary .

If q = a+ bi+ cj + dk is any quaternion, then a is called its scalar part
or real part and denoted by Re q and bi + cj + dk is called its vector part
and denoted by Ve q. The set of pure imaginary quaternions bi+ cj + dk is
identified with the real 3-space R3.

5.3 Multiplication of quaternions and multiplications of vec-
tors.

A real quaternion commutes with any quaternion. Multiplication of quater-
nions is composed of all the standard multiplications of factors which are
real numbers and vectors: multiplications of real numbers, multiplication of
a vector by a real number and dot and cross products of vectors. It is not
accident: the very notion of vector and all the operations with vectors were
introduced by Hamilton after invention of quaternions. (Many mathemati-
cians nowadays are not aware about this.)
Quaternion product of vectors. Let p = ui+vj+wk and q = xi+yj+zk
be vector quaternions. Then pq = −p · q + p× q.

Proof. Indeed,

pq = (ui+ vj + wk)(xi+ yj + zk)

= −(ux+ vy + wz) + (vz − wy)i+ (wx− uz)j + (uy − vx)k

= −p · q + p× q.

Product of arbitrary quaternions via other products. For any
p, q ∈ H

pq = (Re p+Ve p)(Re q+Ve q) = Re pRe q+Re pVe q+Ve pRe q+Ve pVe q

= Re pRe q + Re pVe q + Re qVe p−Ve p ·Ve q + Ve p×Ve q

= Re pRe q −Ve p ·Ve q + Re pVe q + Re qVe p+ Ve p×Ve q

5.4 Conjugation.

The map H→ H : q 7→ q̄ = Re q−Ve q is called conjugation. The conjugation
is an antiautomorphism of H in the sense that
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• it is invertible (in fact, it coincides with its inverse: (q̄) = q),

• preserve addition, i.e., (p+ q) = p̄+ q̄,

• and maps the product to the product of exchanged factors: (pq) = q̄p̄.

The latter property is verified as follows:

(pq) = (Re pRe q −Ve p ·Ve q + Re pVe q + Re qVe p+ Ve p×Ve q)

= Re pRe q −Ve p ·Ve q − Re pVe q − Re qVe p−Ve p×Ve q

= Re pRe q−(−Ve p)·(−Ve q)+Re p(−Ve q)+Re q(−Ve p)+(−Ve q)×(−Ve p)

= (Re q −Ve q)(Re p−Ve p) = q̄p̄.

(Here we used well-known properties of dot and cross products.)

5.5 Norm.

The product q̄q is a real number for any quaternion q.
Indeed, (q̄q) = q̄(q̄) = q̄q.

If q = a+ bi+ cj + dk, then q∗q = a2 + b2 + c2 + d2.
Indeed, q̄q = Re q2 − (−Ve q) ·Ve q + Re qVe q + Re q(−Ve q) + (−Ve q)×
Ve q = Re q2 + Ve q ·Ve q = a2 + b2 + c2 + d2.

Corollary. For any quaternion q, the product q̄q is non-negative real number.
It is zero if and only if q is zero.

The number
√
q∗q is called the norm of q and denoted by |q|. This is

the Euclidean distance from q to the origin in H = R4.

The norm is a multiplicative homomorphism H→ R. This means that |pq| =
|p||q| for any quaternions p and q.

Proof. |pq| =
√
pq(pq) =

√
pqq̄p̄ =

√
p(qq̄)p̄ =

√
pp̄
√
qq̄ = |p||q|.

5.6 Unit quaternions.

A quaternion q with |q| = 1 is called a unit quaternion. The set of all unit
quaternions {q ∈ H | |q| = 1} is a sphere of radius one in the 4-space H

¯
. It

is denoted by S3.
The set of unit quaternions is closed under quaternion multiplication,

because the norm of the product of quaternions is the product of norms
of the factors. The inverse to a unit quaternion q ∈ S3 coincides with q̄.
Indeed, |q| =

√
(qq̄) = 1, hence qq̄ = 1 and q̄ = q−1.

Unit vector quaternions form the unit 2-sphere S2 in R3. It is contained
in S3 as an equator. The unit vectors are very special quaternions.
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Theorem 1. Each unit quaternion can be presented as a product of two unit
vectors. Moreover, if q is a unit quaternion and v is a unit vector perpendicular
to qv, then there exist unit vectors w+ and w− such that q = vw+ = w−v.

Proof. Let q ∈ S3 be a unit quaternion. Then q = Re q+Ve q with 1 = |q|2 =
Re q2 + |Ve q|2. Choose α ∈ [0, π] such that Re q = cosα and |Ve q| = sinα.
Then q = cosα+ u sinα for some unit vector u.

Take any unit vector v perpendicular to u. Then w+ = −v cosα+ (u×
v) sinα and w− = −v cosα−(u×v) sinα are also unit vectors perpendiculars
to u, with the required properties: vw+ = q and w−v = q. Indeed, vw+ =
v(−v cosα+(u×v) sinα) = −v·(−v cosα)+v×(u×v) sinα = cosα+u sinα =
q and w−v = (−v cosα−(u×v) sinα)v = −(−v cosα) ·v−(u×v)×v sinα =
cosα+ u sinα = q

Remark. Any unit vector quaternion u has order four, its multiplicative
inverse coincides with the additive inverse: u−1 = −u.
Indeed, let u be unit vector. Then u2 = −u ·u+u×u = −1, hence u3 = −u
and u4 = (u2)2 = (−1)2 = 1.

By Theorem 1 any unit quaternion q admits presentation as product of
two unit vector quaternions: q = vw.

A unit quaternion can be presented as a sort of quotient of two unit
vectors: first, present −q as product of two unit vector quaternions: −q =
vw, then re-write this as q = −vw = (−v)w = v−1w. This presentation
goes back to W.R.Hamilton, the inventor of quaternions. In his book [1],
Hamilton introduced quaternions as quotients of vectors.

5.7 The action of unit quaternions in the 3-space.

A unit quaternion q defines a map ρq : H→ H by formula ρq(p) = qpq−1 =
qpq̄. We say that the group S3 of unit quaternions acts in H.

This action commutes with the conjgation p 7→ p̄.
Indeed,

ρq(p̄) = qp̄q̄ = ((q̄)(p̄)q̄) = (qpq̄) = (ρq(p)).

Therefore the action of S3 in H preserves all the structures defined by
the congugation. In particular, it preserves the norm and the decomposition
into scalar and vector parts. Indeed,

ρq(Ve p) = ρq

(
p− p̄

2

)
=
ρq(p)− ρq(p̄)

2
=
ρq(p)− ρq(p)

2
= Ve(ρq(p)),
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ρq(Re p) = ρq

(
p+ p̄

2

)
=
ρq(p) + ρq(p̄)

2
=
ρq(p) + ρq(p)

2
= Re(ρq(p)),

|ρq(p)| =
√
ρq(p)(ρq(p)) =

√
ρq(p)ρq(p̄)

=
√

(qpq̄)(qp̄q̄) =
√
qpp̄q̄ = |p|.

In particular, the space R3 of vector quaternions is invariant, and S3 acts
on R3 by isometries.

Theorem 2. A unit vector quaternion v acts in R3 as the symmetry about
the line generated by v.

Proof. The statement that we are going to prove admits the following re-
formulation: for the linear operator R3 → R3 : u 7→ vuv∗, the vector v is
mapped to itself and each unit vector u orthogonal to v is mapped to the
opposite vector −u.

Let us verify the first statement. Since v is a unit vector, vv̄ = |v|2 = 1.
Therefore vvv̄ = v.

Now let us verify the second statement. Since u is a unit vector or-
thogonal to v, vu = v × u − v · u = v × u. Therefore, vuv̄ = −vuv =
−(v × u − v · u)v = −(v × u)v. Vector v × u is orthogonal to v. Therefore
−(v × u)v = −(v × u) × v + (v × u) · v = −(v × u) × v = −u. The latter
equality holds true, because (a× b)× a = b for any orthogonal unit vectors
a, b (e.g., (i× j)× i = k × i = j).

Theorem 3 (Euler-Rodrigues-Hamilton). Let q be any unit quaternion.
Represent it as q = cos θ2 + u sin θ

2 . Then the map R3 → R3 : p 7→ qpq̄ is the
rotation of R3 about the axis generated by a unit vector u by the angle θ.

Proof. By Theorem 1 any unit quaternion q can be presented as a product
of unit vectors v and w. In this proof it will be more convenient to use a
modification of this presentation, the fraction presentation q = v−1w = −vw
discussed above.

By Theorem 2 a unit vector acts as a symmetry about the line generated
by this vector. Thus, ρq is the composition of the symmetries ρ−v and ρw.
The composition of symmetries about lines is a rotation by the angle equal
the half of the angle between the lines. On the other hand, qs = (v(−w))s =
−v · (−w) = v · w = cosα, where α is the angle between the vectors v and
w. Thus qs = cos θ2 , where θ is the rotation angle.

The vector part qv of the product of two unit vectors v and−w is collinear
to v × (−w). The cross product of vectors is perpendicular to the vectors.
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On the other hand, we know that composition of symmetries about lines is
a rotation about the axis perpendicular to the lines. Thus the vector qv is
collinear to the axis of the rotation ρq. The length |qv| is | sin θ

2 |, because

|q| = 1 and qs = cos θ2 . Therefore qv = u sin θ
2 for some unit vector u collinear

to the axis of rotation.

The quaternion q can be written down as a+ bi+ cj + dk. It is defined
by the rotation up to multiplication by −1. Its components a, b, c, d are
called the Euler parameters for this rotation. They are calculated as follows:
a = cos θ2 , b = ux sin θ

2 , c = uy sin θ
2 and d = uz sin θ

2 , where ux, uy and uz
are coordinates of the unit vector u directed along the rotation axis.
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