Score

1. Let X and Y be sets. Prove that an injective map $X \to Y$ exists if and only if a surjective map $Y \to X$ exists.

2. Let X and Y be sets, $X_1 = X \amalg \{a\}$ and $Y_1 = Y \amalg \{b\}$,

(i.e., X_1 and Y_1 , respectively, are disjoint sums of X and Y, respectively, and sets consisting of a single element a and b).

- (1) Prove that if there exists a surjective map $X_1 \to Y_1$, then there exists a surjective map $X \to Y$.
- (2) Prove that if there exists an injective map $X_1 \to Y_1$, then there exists an injective map $X \to Y$.

3. Pigeon Hole Principle says that if p pigeons sit in q pigeon holes and p > q then there exists a hole in which more than one pigeons sit.

- (1) Translate this principle into the language of sets and maps.
- (2) Prove the statement about sets and maps that you have just found.
- (3) Is this statement applicable to infinite sets?