MAT 150, Introduction to Advanced Mathematics
Homework 3, due by $9 / 29$

Name \qquad

Score

\qquad

1. In the text "Prime numbers" posted on Blackboard, in the proof of infinity of the set of prime numbers in the arithmetic sequence $3 \mathbb{N}+2$ there are gaps. Find them and propose your ways of repair of the proof.
2. Let $x \in \mathbb{R}$. Determine the truth value of the following predicates:
(1) $\left(x>0 \vee x^{2}=1\right) \Longrightarrow x \geq 1$
(2) $\left(x>0 \wedge x^{2}=1\right) \Longrightarrow x \geq 1$
(3) $x^{2}=4 \Longrightarrow(x=2 \vee x<0)$
(4) $x \in(-2,2) \Longrightarrow(|x-2| \leq 2 \wedge|x+2| \leq 2)$
(5) $x \in(-2,2) \Longrightarrow(|x-2| \leq 2 \vee|x+2| \leq 2)$
3. Bonus problem. What sets of primes can you prove to be infinite?
(a) the sets of primes in arithmetic series $4 \mathbb{N} ; 4 \mathbb{N}+1 ; 2+4 \mathbb{N} ; 3+5 \mathbb{N}$.
(b) the sets of primes with the last digit 3 or 7 (i.e., having the last digit 3 or 7 in the decimal notation)?
