MAT 150, Introduction to Advanced Mathematics
Homework 2, due by $9 / 22$

Name \qquad
Score \qquad

1. Formulate a necessary condition for a local extremum of a real valued function in one variable.

Is this condition sufficient?
2. Is it true that for real numbers x and y and natural number n the inequality $x<y$ is necessary and sufficient for $x^{n}<y^{n}$?
Formulate correct statements about relations between these two inequalities.
3. Which of the following are true in the universe of all real numbers?

$$
\begin{aligned}
& (\forall x)(\exists y)(x+y=0) . \\
& (\exists x)(\forall y)(x+y=0) . \\
& (\exists x)(\exists y)\left(x^{2}+y^{2}=-1\right) . \\
& (\forall x)[x>0 \Rightarrow(\exists y)(y<0 \wedge x y>0)] . \\
& (\forall y)(\exists x)(\forall z)(x y=x z) . \\
& (\exists x)(\forall y)(x \leq y) . \\
& (\forall y)(\exists x)(x \leq y) . \\
& (\exists!y)(y<0 \wedge y+3>0) . \\
& (\exists!x)(\forall y)\left(x=y^{2}\right) . \\
& (\forall y)(\exists!x)\left(x=y^{2}\right) . \\
& (\exists!x)(\exists!y)(\forall w)\left(w^{2}>x-y\right) .
\end{aligned}
$$

4. Write the symbolic form of the statement of the Mean Value Theorem.
5. Which of the following are denials of $\exists!x P(x)$?

$$
\begin{aligned}
& (\forall x) P(x) \vee(\forall x) \sim P(x) . \\
& (\forall x) \sim P(x) \vee(\exists y)(\exists z)(y \neq z \wedge P(y) \wedge P(z)) . \\
& (\forall x)[P(x) \Rightarrow(\exists y)(P(y) \wedge x \neq y)] . \\
& \sim(\forall x)(\forall y)[(P(x) \wedge P(y)) \Rightarrow x=y] .
\end{aligned}
$$

