Advanced Linear Algebra MAT 315

Oleg Viro
02/23/2021
Solutions for midterm 1. Problem 4 2
Problem 5 3
Linear maps 4
Linear maps 5
Examples of linear maps 6
Examples of linear maps 7
A linear map takes 0 to 0 8
Linear operations in $\mathcal{L}(V, W)$ 9
Composition. 10
Language of categories 11
Categories 12
Examples of categories 13
Operators 14
Inverses and invertibles 15
Isomorphism in a category 16
Invertible map $=$ bijection 17
Spaces associated to a linear map 18
Null space 19
Null space is a subspace 20
Injectivity and the null space 21
Range 22
Surjectivity and range 23
Inverse to a linear map is linear 24

Solutions for midterm 1. Problem 4

Problem 4. Let F be a field and S be a subset of F.
(a) Prove that among subfields $K \subset F$ such that $S \subset K$, there exists the smallest one, K_{0}.

Proof. In Lecture 2, in the proof of existence of a prime subfield in any field,
there is Lemma according to which
the intersection of any collection of subfields in a field F is a subfield of F.
Hence, the intersection of all subfields $K \subset F$ such that $S \subset K$ is a subfield of F.
This subfield is contained in any subfield $K \subset F$ such that $S \subset K$.
Thus it is the smallest of those K 's.
(b) Find a necessary condition for finiteness of this minimal subfield K_{0}.

Solution. Here are two necessary conditions.
(1) If K_{0} is finite, then $S \subset K_{0}$ must be finite.
(2) If K_{0} is finite, then the characteristic of F is not 0 .

Indeed, the prime subfield of F must be finite, and this happens iff the characteristic of F is 0 .

Problem 5

Problem 5. Let \mathbb{F} be a field and $\varphi: \mathbb{F} \rightarrow \mathbb{F}$ be a field homomorphism.
(a) Is φ a linear map $\mathbb{F}^{1} \rightarrow \mathbb{F}^{1}$? Justify your answer.

Solution. No, unless $\varphi=\mathrm{id}$. Indeed, if $\varphi \neq \mathrm{id}$, then there exists α such that $\varphi(\alpha) \neq \alpha$. Since φ is a field homomorphism, then

$$
\varphi((\alpha))=\varphi((\alpha \cdot 1))=(\varphi(\alpha \cdot 1))=(\varphi(\alpha) \cdot \varphi(1))=(\varphi(\alpha) \cdot 1)=(\varphi(\alpha))
$$

On the other hand, if φ was a linear map, we would have

$$
\varphi((\alpha))=\varphi((\alpha \cdot 1))=\varphi(\alpha(1))=\alpha(\varphi(1))=\alpha(1)=(\alpha)
$$

Therefore $\varphi(\alpha)=\alpha$, but this contradicts to the assumption that $\varphi(\alpha) \neq \alpha$.
(b) Give an example of a field homomorphism $\varphi: \mathbb{F} \rightarrow \mathbb{F}$ such that $\varphi \neq \mathrm{id}_{\mathbb{F}}$ for some field \mathbb{F}.

Solution. $\mathbb{F}=\mathbb{C}$, and φ is a complex conjugation $x+i y \mapsto x-i y$, which is a field homomorphism, see handout of Lecture 2.

Linear maps

Let V and W be vector spaces over a field \mathbb{F}.
Definition A map $T: V \rightarrow W$ is said to be linear if:

$T(u+v)=T u+T v$ for all $u, v \in V$	(T is additive);
$T(\lambda v)=\lambda(T v)$ for all $\lambda \in \mathbb{F}$ and all $v \in V$	$(T$ is homogeneous).

Linear maps or linear transformations? $\quad T v$ or $T(v)$?
Notation $\quad \mathcal{L}(V, W)=\{$ all the linear maps $V \rightarrow W\}$

Other notations: $\quad \operatorname{Hom}_{\mathbb{F}}(V, W)$ or $\operatorname{Hom}(V, W)$.

Examples of linear maps

Zero
$0 \in \mathcal{L}(V, W): x \mapsto 0$

Identity
$I \in \mathcal{L}(V, V): x \mapsto x \quad$ Other notations: id, or id_{V}, or 1.

Inclusion
in $\in \mathcal{L}(V, W): x \mapsto x \quad$ if $V \subset W$

Examples of linear maps

Differentiation $\mathbb{R}[x] \rightarrow \mathbb{R}[x]: p(x) \mapsto \frac{d p}{d x}(x)$.
Integration $\mathbb{R}[x] \rightarrow \mathbb{R}: p(x) \mapsto \int_{0}^{1} p(x) d x$.
Multiplication by a polynomial $q(x) \quad T: \mathbb{F}[x] \rightarrow \mathbb{F}[x]: T p(x)=q(x) p(x)$.
Backward shift $T \in \mathcal{L}\left(\mathbb{F}^{\infty}, \mathbb{F}^{\infty}\right): T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{2}, x_{3}, x_{4}, \ldots\right)$
Forward shift $T \in \mathcal{L}\left(\mathbb{F}^{\infty}, \mathbb{F}^{\infty}\right): T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0, x_{1}, x_{2}, \ldots\right)$

A linear map takes $\mathbf{0}$ to $\mathbf{0}$

Theorem. Let $T: V \rightarrow W$ be a linear map. Then $T(0)=0$.

Proof. $\quad T(0)=T(0+0)=T(0)+T(0)$.
So, $\quad T(0)=T(0)+T(0)$.
Add $-T(0)$ to both sides.

$$
0=T(0)
$$

Linear operations in $\mathcal{L}(V, W)$

Definition Let $S, T: V \rightarrow W$ be maps and $\lambda \in \mathbb{F}$.
The sum $S+T$ and the product λT are maps $V \rightarrow W$ defined by

$$
(S+T)(v)=S v+T v \quad \text { and } \quad(\lambda T)(v)=\lambda(T v) \quad \text { for all } v \in V .
$$

Theorem. If S, T are linear maps, then $S+T$ and λT are linear maps.
Proof. Exercise! It's easy!
Theorem With the operations of addition and scalar multiplication, $\mathcal{L}(V, W)$ is a vector space.
Proof. Exercise! It's easy!
Special case: $W=\mathbb{F}$. Then $\mathcal{L}(V, W)=\mathcal{L}(V, \mathbb{F})$ is called the dual space and is denoted by V^{\prime}.
Elements of V^{\prime} are linear maps $V \rightarrow \mathbb{F}$. They are called linear functionals or covectors.

Composition

Definition (should be well known). Let $T: U \rightarrow V$ and $S: V \rightarrow W$ be maps.
The composition $S \circ T$ is a map $U \rightarrow W$ defined by formula

$$
(S \circ T)(u)=S(T(u)) \text { for all } u \in U
$$

Diagramatic presentation:

Composition is also called a product. (Say, in Axler's textbook.)
Often $S \circ T$ is denoted by $S T$, like a product.
Theorem. If S and T are linear maps, then $S \circ T$ is a linear map.
Proof. Exercise! It's easy!
Properties of composition.

```
associativity
identity
    (T1T T)T3 = T ( (T2 T T ).
    Tid}\mp@subsup{V}{V}{}=T=\mp@subsup{\textrm{id}}{W}{}T
distributivity
homogeneity
\[
\left(S_{1}+S_{2}\right) T=S_{1} T+S_{2} T \quad \text { and } \quad\left(T_{1}+T_{2}\right) S=T_{1} S+T_{2} S
\]
\((\lambda S) T=\lambda(S T)=S(\lambda T)\).
```


Categories

A category provides a convenient language to speak about
objects of unspecified nature, but related to each other in a very specific way. A category consists of: objects and
morphisms: for any two objects X, Y morphisms $X \rightarrow Y$, and
compositions of morphisms: $\quad X \xrightarrow{\underset{~}{f}} \underset{\substack{\text { g f }}}{ } \xrightarrow{g} X$

The composition is associative: $h \circ(g \circ f)=(h \circ g) \circ f$

$=A$

With any object X, the identity morphism $\operatorname{id}_{X}: X \rightarrow X$ is associated:
for $A \xrightarrow{f} X \xrightarrow{\text { id }_{X}} X \quad$ we have $\operatorname{id}_{X} \circ f=f$ and for $X \xrightarrow{\mathrm{id}_{X}} \underset{y}{\text { }} \underset{\substack{g}}{ } B$ we have $g \circ \mathrm{id}_{X}=g$.

Examples of categories

Example 1. The category of sets.

Objects are sets, morphisms are maps, compositions are compositions of maps.
Example 2. The category of vector spaces over a field \mathbb{F}.
Objects are vector spaces over \mathbb{F}, morphisms are linear maps, compositions are compositions of linear maps.
Example 3. The category of linear maps. Let \mathbb{F} be a field.
Objects are linear maps $V \rightarrow W$, where V and W are vector spaces over \mathbb{F}.
A morphism $(V \xrightarrow{T} W) \rightarrow(X \xrightarrow{S} Y)$ is a pair $(V \xrightarrow{L} X, W \xrightarrow{M} Y)$ of linear maps such that $M \circ T=S \circ L$.

Operators

Definition A linear map from a vector space to itself is called an operator.
Notation $\quad \mathcal{L}(V)=\{$ all linear maps $V \rightarrow V\}=\mathcal{L}(V, V)$.

Category of operators in vectors spaces over a field \mathbb{F}

objects are operators $T: V \rightarrow V$,
a morphism $(V \xrightarrow{T} V) \rightarrow(W \xrightarrow{S} W)$
is a linear map $V \xrightarrow{L} W$ such that $S \circ L=L \circ T$.

a composition of morphisms is the composition of the linear maps.
Axler: "The deepest and most important parts of linear algebra ... deal with operators."

Inverses and invertibles

In any category:
Definition
Morphisms $T: V \rightarrow W$ and $S: W \rightarrow V$ are said to be inverse to each other if $S \circ T=\mathrm{id}_{V}$ and $T \circ S=\mathrm{id}_{W}$.
A morphism $T: V \rightarrow W$ is called invertible if there exists a morphism inverse to T.

Uniqueness of Inverse. An morphism inverse to an invertible morphism is unique.
Proof Let S_{1} and S_{2} be inverse to $T: V \rightarrow W$. Then

$$
S_{1}=S_{1} \mathrm{id}_{W}=S_{1}\left(T S_{2}\right)=\left(S_{1} T\right) S_{2}=\operatorname{id}_{V} S_{2}=S_{2}
$$

Notation If T is invertible, then its inverse is denoted by T^{-1}.
For a morphism $T: V \rightarrow W$, the inverse morphism T^{-1} is defined by two properties:

$$
T T^{-1}=\operatorname{id}_{W} \quad \text { and } \quad T^{-1} T=\operatorname{id}_{V} .
$$

Isomorphism in a category

Definition. An invertible morphism is called an isomorphism.
Objects V and W are called isomorphic if \exists an isomorphism $V \rightarrow W$.

Properties of isomorphisms

- An identity morphism is an isomorphism.
- The composition of isomorphisms is an isomorphism.
- The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.
It is reflexive, symmetric and transitive.

A category does not recognize any difference between its isomorphic objects, although the objects may be not identically the same.

Invertible map = bijection

Which sets are isomorphic in the category of sets and maps?
Theorem. Invertibility is equivalent to bijectivity.
You should know this. If not, see the textbook, page 81.

Null space

Definition (reminder) For $T \in \mathcal{L}(V, W)$, the null space of T is

$$
\operatorname{null} T=T^{-1}\{0\}=\{v \in V \mid T v=0\}
$$

Another name: kernel. Notation: $\operatorname{Ker} T$.
Examples

- For $T: V \rightarrow W: v \mapsto 0, \quad \operatorname{null} T=V$
- For differentiation $D: \mathcal{P}(\mathbb{R}) \rightarrow \mathcal{P}(\mathbb{R}), \quad$ null $D=\{$ constants $\}$
- For multiplication by $x^{3} T: \mathcal{P}(\mathbb{F}) \rightarrow \mathcal{P}(\mathbb{F}): T p=x^{3} p(x), \quad$ null $T=0$
- For backward shift $T \in \mathcal{L}\left(\mathbb{F}^{\infty}, F^{\infty}\right): T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{2}, x_{3}, x_{4}, \ldots\right)$ null $T=\{(a, 0,0, \ldots) \mid a \in \mathbb{F}\}$

Null space is a subspace

Theorem. For $T \in \mathcal{L}(V, W)$, null T is a subspace of V.
Proof. As we know $T(0)=0$. Hence $0 \in \operatorname{null} T$.
$u, v \in \operatorname{null} T \Longrightarrow T(u+v)=T(u)+T(v)=0+0=0 \Longrightarrow u+v \in \operatorname{null} T$.
$u \in \operatorname{null} T, \lambda \in \mathbb{F} \Longrightarrow T(\lambda u)=\lambda T u=\lambda 0=0 \quad \Longrightarrow \lambda u \in \operatorname{null} T$.

Injectivity and the null space

Definition (reminder).
A map $T: V \rightarrow W$ is called injective if $T u=T v \Longrightarrow u=v$.

A map $T: V \rightarrow W$ is injective $\Longleftrightarrow u \neq v \Longrightarrow T u \neq T v$.
T is injective \Longleftrightarrow null $T=\{0\}$.
Proof
\Longrightarrow Recall $0 \in \operatorname{null} T$. If null $T \neq\{0\}$, then $\exists v \in \operatorname{null} T, v \neq 0$. So, $T v=T 0=0$ and T is not injective.
\Longleftarrow Let $u, v \in V, T u=T v$. Then $0=T u-T v=T(u-v)$.

Range

Definition.
For a map $T: V \rightarrow W$, the range of T is range $T=T(V)=\{T v \mid v \in V\}$.
Another name: image. Notation: $\operatorname{Im} T$.

Examples

- For $T: V \rightarrow W: v \mapsto 0, \quad$ range $T=\{0\}$.
- For differentiation $D: \mathcal{P}(\mathbb{R}) \rightarrow \mathcal{P}(\mathbb{R}), \quad$ range $D=\mathcal{P}(\mathbb{R})$.
- For multiplication by $x^{3} \quad T: \mathcal{P}(\mathbb{F}) \rightarrow \mathcal{P}(\mathbb{F}): T p=x^{3} p(x)$,
range $T=$ polynomials without monomials of degree <3.

Surjectivity and range

Definition (reminder).

A map $T: V \rightarrow W$ is called surjective if range $T=W$.

The range of a linear map is a subspace.
For $T \in \mathcal{L}(V, W)$, range T is a subspace of W.
Proof $0 \in \operatorname{range} T$, since $T(0)=0$.
If $w \in$ range T and $\lambda \in \mathbb{F}$, then $\exists v \in V: w=T v, T(\lambda v)=\lambda T v=\lambda w \in \operatorname{range} T$.
$w_{1}, w_{2} \in \operatorname{range} T \Longrightarrow \exists v_{1}, v_{2} \in V: w_{1}=T v_{1}, w_{2}=T v_{2}$

$$
\Longrightarrow w_{1}+w_{2}=T v_{1}+T v_{2}=T\left(v_{1}+v_{2}\right) \in \operatorname{range} T .
$$

Inverse to a linear map is linear

Theorem If V and W are vector spaces and a linear map $T: V \rightarrow W$ is invertible, then T^{-1} is linear.
This means that a morphism in the category vector spaces is isomorphism $\Longleftrightarrow \quad$ it is an isomorphism in the category of sets.
Proof. Additivity. Let $w_{1}, w_{2} \in W$. Then
$T^{-1}\left(w_{1}+w_{2}\right)=T^{-1}\left(\mathrm{id}_{W} w_{1}+\mathrm{id}_{W} w_{2}\right)=T^{-1}\left(T T^{-1} w_{1}+T T^{-1} w_{2}\right)$
$=T^{-1} T\left(T^{-1} w_{1}+T^{-1} w_{2}\right)=\operatorname{id}_{V}\left(T^{-1} w_{1}+T^{-1} w_{2}\right)=T^{-1} w_{1}+T^{-1} w_{2}$.
Proof. Homogeneity.
$T^{-1}(\lambda w)=T^{-1}\left(\lambda \operatorname{id}_{W} w\right)=T^{-1}\left(\lambda T T^{-1} w\right)=T^{-1}\left(\lambda T\left(T^{-1} w\right)\right)$
$=T^{-1} T\left(\lambda T^{-1} w\right)=\operatorname{id}_{V}\left(\lambda T^{-1} w\right)=\lambda T^{-1} w$.
Corollary 1 A linear map $T: V \rightarrow W$ is an isomorphism in the category of vector spaces, if and only if it is bijective.

Corollary 2 A linear map $T: V \rightarrow W$ is an isomorphism in the category of vector spaces, if and only if null $T=0$ and range $T=W$.

