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1. Dual space

1.1. Vectors and covectors

Let V be a vector space over a field F. Linear maps V → F has many
names. In Axler’s textbook they are called functionals. They are called
also linear forms, linear functionals, dual vectors and covectors. Below we
call them covectors.

1.2. Dual vector space

Let V be a vector space over a field F.

The set L(V,F) of all covectors is said to be dual to V
and denoted by V

X
.

As we know, this is a vector space over F. Recall that the linear opera-
tions in V

X
are defined by formulas

(ϕ+ ψ)(u) = ϕ(u) + ψ(u) for ϕ, ψ ∈ V X
and u ∈ V,

(aϕ)(u) = a(ϕ(u)) for φ ∈ V X
, a ∈ F and u ∈ V.
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1.3. Dual linear map

Let T : V → W be a linear map.

Define a map T
X

: W
X → V

X
by formula T

X
(ϕ) = ϕ ◦ T .

The map T
X

is said to be dual to T .

1.A. Theorem. For a linear map T , the dual map T
X

is linear.

Proof. T
X
(ϕ+ ψ)(u) = (ϕ+ ψ)(T (u))

= ϕ(T (u)) + ψ(T (u))
= T

X
ϕ(u) + T

X
ψ(u)

and T
X
(aϕ)(u) = (aϕ)(T (u))

= a(ϕ(T (u)))
= a(T

X
ϕ)(u).

1.B. Theorem. id
X

= id and (T ◦ S)
X

= S
X ◦ TX

.

1.C Corollary. If T is an isomorphism then T
X

is an isomorphism,
and (T

X
)−1 = (T−1)

X
.

1.4. Duality between monomorphisms and epimor-
phisms

1.D Theorem. Duality between surjective and injective
Let V and W be finite dimensional vector spaces, and let T : V → W
be a linear map. Then
• If T is injective, then T

X
: W

X → V
X

is surjective.
• If T is surjective, then T

X
: W

X → V
X

is injective.

1.E Lemma. Injective ⇐⇒ left invertible
Under assumptions of 1.D,
T is injective ⇐⇒ ∃ a linear map S : W → V such that S ◦ T = id.

Proof of Lemma 1.E.
=⇒ Assume that T is injective. Choose a basis u = (u1, . . . , up) of V .
Then (Tu1, . . . , Tup) are linearly independent and can be extended to
a basis of W . Define S : W → V on this basis by mapping Tui back
to ui for i = 1, . . . , p and mapping the rest of the basis to 0. Then
ST : ui 7→ ui. Hence S ◦ T = id.
⇐= Let u ∈ nullT . The ST (u) = S0 = 0. On the other hand, ST (u) =
id(u) = u. Hence u = 0. Thus nullT = 0 and T is injective.
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1.F Lemma. Surjective ⇐⇒ right invertible
Under assumptions of 1.D,
T is surjective ⇐⇒ ∃ a linear map S : W → V such that T ◦S = id.

Proof of Lemma 1.F.
=⇒ Assume that T is surjective. Choose a basis w = (w1, . . . , wp) of
W . Since T is surjective, T−1(wi) 6= ∅ for each i. Choose vi ∈ T−1(wi).
There exists a unique linear map S : W → V such that S(wi) = vi for
each i. Then TS(wi) = T (vi) = wi. Hence T ◦ S = id.
⇐= Let u ∈ W . Since T ◦ S = id, u = TS(u) = T (S(u)). Hence
u ∈ rangeT . Hence W = rangeT and T is surjective.

Proof of Theorem 1.D.
Assume T is injective. Then by Lemma 1.E there exists a linear map
S : W → V with S ◦ T = id. By Theorem 1.B, T

X ◦ SX
= (S ◦ T )

X
=

id
X

= id. Hence, by Lemma 1.F, T
X

is surjective.

Assume T is surjective. Then by Lemma 1.F there exists a linear map
S : W → V with T ◦ S = id. By Theorem 1.B, S

X ◦ TX
= (T ◦ S)

X
=

id
X

= id. Hence, by Lemma 1.E, T
X

is injective.

Remark. Right and left invertibility of a morphism can be defined for
morphisms of any category:

a morphism f is left invertible
if there exists a morphism g such that g ◦ f = id;

a morphism f is right invertible
if there exists a morphism g such that f ◦ g = id.

On the other hand, surjectivity and injectivity of a linear map are defined
in terms of elements. These are notions from the set theory. Lemmas
1.F and 1.E relate them to right and left invertibilities for the category
of vector spaces. This allows to prove that surjactivity and injectivity
are dual to each other, because right and left invertibilities are dual to
each other.

1.5. Space dual to the coordinate vector space

The dual to F0 is F0. Indeed, any linear map maps 0, the only element
of F0, to 0. Thus there is only one linear map F0 → F, and this is zero.

FX
= F. Indeed, an element of FX

= L(F,F), that is a linear map
F → F. It is defined, due to its linearity, by the image of 1, and any
element of F may be the image of 1.

Recall the following theorem.
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1.G. Parametrization of L(Fn, V ) by lists of n vectors
There is a natural bijection V n → L(Fn, V ). It maps a list
u = (u1, . . . , un) ∈ V n to a linear map

Tu : Fn → V : (x1, . . . , xn) 7→
n∑
i=1

xiu1.

The inverse map maps T : Fn → V to the list (T (e1), . . .T (en)),
where e1, . . . , en ∈ Fn are the standard basis vectors.

1.H. Self-duality to the coordinate space: (Fn)
X

= Fn.

Indeed, according to 1.G, we have a bijection (Fn)
X

= L(Fn,F) → Fn.
A covector ϕ : Fn → F corresponds to the list (ϕ(e1), . . . , ϕ(en)) ∈ Fn,
which can be an arbitrary element of Fn. Verify that this bijection is
linear.

The values ϕ1 = ϕ(e1), . . . , ϕ1 = ϕ(en) of a functional ϕ on the
standard basis vectors e1, . . . , en can be considered as coordinates of ϕ
in (Fn)

X
.

The basis e1, . . . , en of (Fn)
X

corresponding to these coordinates is
defined by formulas ej(x1, . . . , xn) = xj.

Indeed, for any ϕ ∈ (Fn)
X

and x = (x1, . . . , xn) ∈ Fn we have

ϕ(x) = ϕ(
n∑
i=1

xiei)

=
n∑
i=1

xiϕ(ei)

=
n∑
i=1

ei(x1, . . . , xn)ϕ(ei)

=
n∑
i=1

ϕ(ei)e
i(x) =

n∑
i=1

ϕie
i.

Thus ϕ =
∑n

i=1 ϕie
i.

In particular,

ej(ei) =

{
1, if i = j

0, if i 6= j
.

Here it is convenient to use the Kronecker delta symbol, which is defined
by formula

δji =

{
1, if i = j

0, if i 6= j

With the Kronecker delta the relation between ei and ej looks as follows:
ej(ei) = δji .
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1.I Corollary. Any finite dimensional vector space V is isomorphic to
its dual vector space V

X
.

Proof. V is isomorphic to Fn. Hence, V
X

is isomorphic to (Fn)
X

by 1.C.
As we have just seen, (Fn)

X
is isomorphic to Fn.

A basis (v1, . . . , vn) of V defines an isomorphism T : V → Fn which
maps the basis (v1, . . . , vn) of V to the standard basis (e1, . . . , en) of Fn.
The dual map T

X
: (Fn)

X → V
X

maps the standard dual basis (e1, . . . , en)
to some basis of V

X
. Its elements T

X
e1, . . . , T

X
en are denoted by v1, . . . ,

vn. The basis (v1, . . . , vn) V
X

is said to be dual to the basis (v1, . . . , vn).
The basis (v1, . . . , vn) is related to (v1, . . . , vn) by formula vj(vi) = δji ,

which is similar to formula ej(ei) = δji established above, and, in fact,

follows from it: vj(vi) = T
X
ej(vi) = ej(Tvi) = ej(ei) = δji .

1.6. The second dual

The proof of Corollary 1.I is indirect. To construct an isomorphism
V → V

X
, we use an isomorphism between V and Fn. The isomorphism

V → V
X

obtained in this way depends on the choice of isomorphism
V → Fn. This dependence is not a defect of our presentation. There is
no canonical isomorphism between V and V

X
.

Contrary to this, the space (V
X
)
X

which is dual to V
X

is canonically
isomorphic to V , as we will see in this section.

1.J. Theorem. Canonical map to the second dual
Let V be a vector space over a field F. There is a canonical linear map
V → (V

X
)
X

. It is defined by formula u 7→ (V
X → F : ϕ 7→ ϕ(u)).

Proof. Linearity of the map V
X → F : ϕ 7→ ϕ(u) (that is its belonging

to (V
X
)
X
) follows immediately from the definition of linear operations

in V
X
: (aϕ + bψ)u = aϕ(u) + bψ(u). Hence this formula defines a map

V → (V
X
)
X
. This map is linear. Indeed, ϕ(au+ bv) = aϕ(u) + bϕ(v) by

linearity of ϕ.

The construction of the map V → (V
X
)
X

above does not involve any
choice, it is natural and universal.

1.K. Theorem. If V is finite dimensional then the natural map V →
(V

X
)
X

is an isomorphism.

1.L Lemma. If V is finite dimensional, then the natural map V →
(V

X
)
X

is injective.
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Proof of Lemma 1.L. Let u ∈ V be a non-zero vector. As a list of
vectors which consists of a single non-zero vector, u is linear independent.
Hence, it can be included into a basis of V . Let u, u1, . . . , un be such a
basis. The first covector of the dual basis takes value 1 on u. Therefore
the image of u under the canonical map V → (V

X
)
X

takes value 1 on
this covector. Hence u is not in the kernel of V → (V

X
)
X
. So, we proved

that any non-zero vector does not belong to the kernel. Thus, the map
is injective.

Proof of Theorem 1.K. By 1.I, any finite dimensional vector space
V is isomorphic to its dual V

X
, which, in turn, is isomorphic to its dual

(V
X
)
X
. Thus, V and (V

X
)
X

have the same dimension. Hence our map
V → (V

X
)
X
, being an injective linear map between vector spaces of the

same finite dimension, is an isomorphism.

Remark. In the proof of Lemma 1.L given above, we used the assump-
tion that V is finite dimensional. However, Lemma 1.L holds true without
this assumption. For any non-zero vector in any vector space one can
find a linear functional which takes non-zero value on this vector. How-
ever, in general case a construction of such a functional requires tools
that we do not need. Nonetheless, Theorem 1.K cannot be extended to
an infinite dimensional situation: for any infinite dimensional space V
the canonical map V → (V

X
)
X

is not an isomorphism.

1.7. Bracket, bra and ket

We see that in the finite dimensional case a vector space and its dual
have the same dimension and play symmetric rôles: the space dual to
V

X
is identified with V . So, if we denote V

X
by U , then V becomes

U
X
. This suggests to make notations more symmetric. Let us denote the

value ϕ(u) taken by a linear functional ϕ ∈ V
X

on a vector u ∈ V by
〈ϕ|u〉. This defines a map

V
X × V → F : (ϕ, u) 7→ 〈ϕ|u〉.

This map is bilinear, that is it is linear against each of the arguments:
〈ϕ|au + bv〉 = a〈ϕ|u〉 + b〈ϕ|v〉 and 〈aϕ + bψ|u〉 = a〈ϕ|u〉 + b〈ψ|u〉. The
first of these equalities is linearity of ϕ, the second, definition of linear
operations with covectors. Bilinearity means that if one of the arguments
in the bracket is fixed, then the bracket turns to a linear map.

The definition of dual linear map gets a new look under the bracket
notation. Recall that map T

X
dual to a linear map T is defined by

identity T
X
(ϕ) = ϕ ◦T , which on the level of vectors can be rewritten as

follows: T
X
(ϕ)(u) = ϕ(Tu). In the bracket notation this equality looks

as follows: 〈TX
ϕ|u〉 = 〈ϕ|Tu〉.
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There is a tendency, especially among physicists, to identify an object
with its action to other objects, provided that this action can characterize
the acting object completely. From this point of view, a covector is a
functional on vectors (and we have accepted this in our definition of a
covector) and a vector is a functional on vectors (although this is NOT
how we have introduced vectors!).

Dirac went further. He suggested to rename vectors and covectors
according these their rôles in the bracket. According to Dirac, covectors
should always be enclosed in the left-hand half of the bracket, like this:
〈ϕ|, and called bra vectors, while vectors should be dressed in the right-
hand half of the bracket, like that: |u〉, and called ket vectors.

Bra space (that is the vector space of bra vectors) comes for free
together with any vector (ket) space. Let us formalize this structure.

Let V and W be vector spaces over F. A map b : V × W → F is
called a bilinear pairing, if it is linear against each of the variables. To
a bilinear pairing b : V ×W → F one associates two linear maps,

V → W
X

: v 7→ (w 7→ b(v, w)) and W → V
X

: w 7→ (v 7→ b(v, w)).

In the case of the canonical pairing V
X × V → F the associated lin-

ear maps are the identities V
X → V

X
and V → V . A bilinear pairing

b : V ×W → F is said to be non-singular, if the associated maps are iso-
morphisms. A non-singular bilinear pairing b : V ×W → F is essentially
the canonical pairing W

X ×W → F: at least, replacement V by W
X

by
the associated isomorphism V → W

X
turns b to the canonical pairing.

1.8. Matrix of dual map

1.M. Theorem. Let (v1, . . . , vp) be a basis of a vector space V and
(w1, . . . , wq) be a basis of vector space W . Let T : V → W be a
linear map with matrix A with respect to the bases (v1, . . . , vp) and
(w1, . . . , wq). Then the matrix of T

X
: W

X → V
X

with respect to
the dual bases (v1, . . . , vp) and (w1, . . . , wq) is obtained from A by
transposition of rows and columns.

Proof. Matrix A consists of scalars aij such that Tvi =
∑q

k=1 akiwk.

Let B = (bij) be the matrix of the dual map T
X

with respect to the dual
bases. This means that T

X
wj =

∑p
k=1 bkjw

k.

Consider 〈wj|Tvi〉. On one hand,

〈wj|Tvi〉 =

〈
wj

∣∣∣∣∣
q∑
i=1

akiwk

〉
=

q∑
i=1

aki〈wj|wk〉 =

q∑
i=1

akiδ
j
k = aji.
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On the other hand, 〈wj|Tvi〉 = 〈TX
wj|vi〉 and

〈TX
wj|vi〉 =

〈
p∑

k=1

bkjv
k

∣∣∣∣∣vi
〉

=

p∑
k=1

bkj〈vk|vi〉 =

p∑
k=1

bkjδ
k
i = bij,

where (bik) is the matrix of the dual map. We see that aji = bij, that is
the ij entry of the matrix (bij) coincides with the symmetric ji entry of
A.

1.9. Rank of dual map

Recall that the rank of a linear map is the dimension of its range, the
rank of T is denoted by rkT .

1.N. Theorem. The ranks of a linear maps dual to each other are
equal.

Proof. Any linear map T : V → W is represented as a composition

V
S−→ rangeT

R−→ W of the surjection S defined by T (that is Su = Tu

for u ∈ V ) and an inclusion rangeT
R−→ W .

The rank of a composition of a surjection followed by an injection is
equal to the rank of each of them. Hence rkS = rkR = dim rangeT =
rkT .

The dual maps give rise to a decomposition W
X R

X

−−→ (rangeT )
X S

X

−→
V

X
of T

X
. By 1.D, S

X
is injective and R

X
surjective. Hence rkS

X
=

rkR
X

= rkT
X

= dim(rangeT )
X
. Spaces rangeT and (rangeT )

X
are

finite dimensional dual. Hence their dimensions are equal.

1.O Corollary. For any matrix the maximal number of its linearly
independent rows is equal to the maximal number of its linearly inde-
pendent columns.

Proof. The maximal number of linearly independent columns of a ma-
trix is equal to the rank of the linear map defined by it. The maximal
number of linearly independent rows of a matrix is equal to the rank of
the dual linear map, by Theorem 1.M. By Theorem 1.N these two ranks
are equal.

1.10. Improving matrix notation

Traditionally, vectors of Fn in matrix notation are associated with
matrices-columns. This is motivated by our addiction to functional no-
tation: the image of a vector u under a linear map T is denoted by Tu,
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and if we associate to u a matrix-column X and to map T , its matrix A,
then AX is the matrix-column associated to Tu.

If we dared to associate a matrix-row to a vector, it would be pos-
sible to multiply it from left only by a matrix-column. This cannot be
corresponding to linear maps, because the dimension of the space of lin-
ear maps is greater than the dimension of the space of matrix-columns.
Hence either we would need to use multiplication by a matrix from right,
or to modify the very multiplication of matrices.

The choice of notation used above is commonly accepted, and we
speculate on other possibilities not because we consider seriously change
of a commonly accepted notation, but because we want to prepare the
next twist of notation’s development. Here are the new rules.

(1) Covectors are associated to matrix-rows.
(2) Bracket pairing of covectors and vectors is identified with multipli-

cation of matrices.
(3) Dual maps are represented in dual bases by the same matrix.
(4) Matrix representation of a linear map between dual spaces (whose

elements are represented by matrices-rows) is multiplication of a
matrix-row by a matrix from the right hand side.

The first rule does not require a formal justification. It means that
an element

∑n
i=1 xie

i of (Fn)
X

is represented by matrix(
x1 x2 . . . xn

)
.

This is similar to the traditional representation of a vector
∑n

i=1 xiei ∈ Fn
by matrix 

x1
x2
...
xn

 .

The second rule requires proof. Here it is. For
∑n

i=1 xie
i ∈ (Fn)

X
and∑n

i=1 yiei ∈ Fn〈
n∑
i=1

xie
i

∣∣∣∣∣
n∑
j=1

yjej

〉
=

n∑
i=1

n∑
j=1

xiyj〈ei|ej〉 =

n∑
i=1

n∑
j=1

xiyjδ
i
j =

n∑
i=1

xiyi =

(
x1 x2 . . . xn

)
y1
y2
...
yn

 .
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Consider now the last two rules. Let T : Fp → Fq be a linear map and
A be the matrix of T in the standard bases. The dual map T

X
is defined

by 〈TX
x|y〉 = 〈x|Ty〉 for all x ∈ (Fq)X

and y ∈ Fp. Let x =
∑q

i=1 xie
i

and y =
∑p

j=1 yjej. Denote matrix
(
x1 x2 . . . xq

)
by X and matrix

y1
y2
...
yp


by Y . Then Ty is represented by matrix AY . Hence 〈x|Ty〉 = XAY . Fix
x. The covector T

X
x ∈ (Fp)X

is defined by equality 〈TX
x|y〉 = 〈x|Ty〉 for

all y ∈ Fp. Denote the matrix-row representing T
X
x by Z. The equality

turns into ZY = XAY . It holds true for all Y . Taking Y with all entries
0 but one, we see that each entry of Z equals the corresponding entry of
XA. It follows Z = XA.

1.11. The Einstein notation

In formulas used in the mathematical literature objects are denoted
by letters, but, due to lack of letters in the commonly used alphabets,
and necessity to denote similar objects numerated by numbers, different
things are denoted by the same letter equipped with indices.

Mathematicians place indices on the right hand side and below the
main symbol. Usually they hesitate to put index on the left hand side of
the main symbol (because of writing from left to right) or to the upper
position on the right hand side of the main symbol (since this position is
reserved for exponents). However, in situations when there are too many
indices of different nature, these objections do not work.

This happens in the classical notation of polylinear algebra used ex-
tensively in the physics and geometry literature. Until this point we
used mainly lower indices. The only exception appeared in notation for
dual basis. In fact, this exception is the first manifestation of the whole
system, according to which about half of all indices should be upper.

Basis vectors in a vector space are numerated by lower indices, as we
did: ei. The coordinates of vectors are to be equipped with upper indices,
like this: (x1, . . . , xn) ∈ Fn and v =

∑n
i=1 x

iei ∈ Fn. Vectors in the basis
dual to a basis v1, . . . , vn ∈ V are numerated with upper indices (as we
did): v1, . . . , vn ∈ V X

. Coordinates of a covector with respect to a basis
v1, . . . , vn ∈ V X

are numerated with low indices: x1v
1+x2v

2+· · ·+xnvn ∈
V

X
.

In sums each index of summation appears twice, once as a lower index
and once as an upper index. This is so usual that there is an agreement
to skip summation sign in such a situation (i.e., when in a formula an



index appears twice once as lower and once as upper index). For example,
formula xie

i should be understood as
∑

i xie
i. The range of summation

is determined from the context.

We will use this skipping of a summation sign cautiously, repeating
the same formulas with the summation sign in order to reduce the risk
of confusion, until the reader will get comfortable with the shorthand
notation and appreciate its flexibility and convenience.

Recall that entries of the matrix of a linear map are involved in the
following formulas: the image of the basis vector ej under the linear map
with matrix (aij) is

∑m
i=1 aijei and the ith coordinate of the image of

vector (x1, . . . , xn) is
∑n

j=1 aijxj. The first formula suggests to raise the

first index of the entry aij. Then it would take the shape
∑m

i=1 a
i
jei or even

aijei (by skipping the summation sign). In the second formula we have to
raise, first, the index at xj, as it was stated above, and then raising the
first index at the matrix entry would make it perfect:

∑n
j=1 a

i
jx
j. Again,

we can skip the summation sign and shorthand
∑n

j=1 a
i
jx
j till aijx

j.

Thus, in matrices that we met so far, the index numerating lines
should be raised to the upper position, while the index numerating rows
should be left in the lower position. Then skipping sigmas makes nota-
tion very similar to matrix notation: we write aijx

j instead of AX, and,
say, matrix expression XAY for 〈x|Ty〉 that we discussed in 1.10 turns
to xia

i
jy
j where double summation (both over i and j) is understood.

However this similarity falls short when the number of indices increases.
It could be preserved if one could use high dimensional matrices.

2. Tensors

2.1. Polylinear maps

Let V1, . . .Vn, W be vector spaces over a field F. A map

F : V1 × · · · × Vn → W : (v1, . . . , vn) 7→ F (v1, . . . , vn)

is said to be polylinear or multilinear, if it is linear as a function of each
of its arguments, when the other arguments are fixed. In other words,

F (v1, . . . , vi−1, x+ y, vi+1, . . . , vn) =

F (v1, . . . , vi−1, x, vi+1, . . . , vn) + F (v1, . . . , vi−1, y, vi+1, . . . , vn),

F (v1, . . . , vi−1, avi, vi+1, . . . , vn) = aF (v1, . . . , vi−1, vi, vi+1, . . . , vn)

for i = 1, . . . , n, a ∈ F. If W = F, a polylinear map is called also a
polylinear function, or polylinear functional, or polylinear form.

11
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The set of all polylinear maps V1 × · · · × Vn → W is denoted by
L(V1, . . . , Vn;W ). This is a subspace of the vector space of all maps
V1 × · · · × Vn → W .

2.2. Tensor algebra of a vector space

Let V be a finite dimensional vector space over F. A polylinear func-
tional

T : V × · · · × V︸ ︷︷ ︸
p times

× V X × · · · × V X︸ ︷︷ ︸
q times

→ F

is called a tensor on V of type (p, q) and order or valency p+q. It is also
said to be a mixed tensor p times covariant and q times contravariant.

Denote by Tensqp(V ) the set of all tensors on a vector space V of type

(p, q). As a subspace of L(V, . . . , V, V
X
, . . . , V

X
;F), Tensqp(V ) is a vector

space over the same ground field F as V . If one of the numbers p and
q is zero, it is not mentioned in the notation Tensqp(V ). Then we write
Tensp(V ) or Tensq(V ).

Special cases:

• A tensor V → F of type (1, 0) is a covector. Thus Tens1(V ) = V
X
.

• A tensor V
X → F of type (0, 1) is an element of the double dual

space (V
X
)
X
, and, via the canonical identification of (V

X
)
X

with V ,
this is a vector. Thus Tens1(V ) = V .

• A tensor V × V → F of type (2, 0) is a bilinear form on V .
• A tensor V × V X → F of type (1, 1) defines (and is defined by) a

linear map V → (V
X
)
X

= V , thus it is identified with an operator
V → V . Therefore Tens11(V ) = L(V ).

2.3. Coordinates in the spaces of tensors

Let e1, . . . , en be a basis in a vector space V and e1, . . . en be the dual
basis in V

X
. Consider a tensor T : V p × (V

X
)q → F. It is defined by its

values on lists of base vectors

T (ei1 , . . . , eip , e
j1 , . . . , ejq) = T

j1,...,jq
i1,...,ip

These values are called coordinates of T . A tensor of type (p, q) on a vec-
tor space of dimension n has np+q coordinates. A tensor, as a polylinear
function on vectors v1, . . . , vp and covectors u1, . . . , uq is determined by
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its coordinates as follows:

T (v1, . . . , vp, u
1, . . . , uq)

= T (vi11 ei1 , . . . , v
ip
p eip , u

1
j1
ej1 , . . . , uqjqe

jq)

= vi11 . . . v
ip
p u

1
j1
. . . uqjqT (ei1 , . . . , eip , e

j1 , . . . , ejq)

= T
j1,...,jq
i1,...,ip

vi11 . . . v
ip
p u

1
j1
. . . uqjq

In this formula, we use the Einstein notation. The vector vk is presented
as
∑

i v
i
kei and we skip the summation symbol, so that vk = vikei. Simi-

larly, for covectors uk =
∑

j u
k
j e
j = ukj e

j.

The coordinates T
j1,...,jq
i1,...,ip

of a tensor T are its coordinates with respect

to the basis e
i1,...,ip
j1,...,jq

in Tensqp(V ) in the sense that any tensor T ∈ Tensqp(V )

can be presented as a linear combination of the base tensors e
i1,...,ip
j1,...,jq

with

coefficients T
j1,...,jq
i1,...,ip

, that is T = T
j1,...,jq
i1,...,ip

e
i1,...,ip
j1,...,jq

. The tensor e
i1,...,ip
j1,...,jq

is

defined by formula (e
i1,...,ip
j1,...,jq

)(v1, . . . , vq, u
1, . . . , uq) = vi11 . . . v

ip
p u1j1 . . . u

q
jq

,

where vi = vki ek and uj = ujke
k, as above.

2.4. Change of basis

Under a change of basis in V , the new basis is expressed in terms of
the old one according to formula

ẽα = Ci
αei =

∑
i

Ci
αei

and the old basis is expressed in terms of the new by formula

eα = C̃i
αẽi,

where C̃i
α are terms of the matrix inverse to the transition matrix Cα

i , so

that C̃i
αC

α
j = δij and C̃i

αC
β
i = δβα. Then the coordinates of tensor changes

by the following formula:

T̃ β1...,βqα1,...,αp
= T

j1,...,jq
i1,...,ip

Ci1
α1
. . . Cip

αp
C̃β1
j1
. . . C̃

βq
jq
.

Indeed,

T̃
β1...,βq
α1,...,αp = T (ẽα1 , . . . , ẽαp , ẽ

β1 , . . . , ẽβq)

= T (Ci1
α1
ei1 , . . . , C

ip
αpeip , C̃

β1
j1
ej1 , . . . , C̃

βq
jq
ejq)

= Ci1
α1
. . . C

ip
αpC̃

βq
jq
. . . C̃

βq
jq
T (ei1 , . . . , eip , e

j1 , . . . , ejq)

= Ci1
α1
. . . C

ip
αpC̃

βq
jq
. . . C̃

βq
jq
T
j1,...,jq
i1,...,ip

2.5. Maps induced by a linear map

A linear map F : V → W defines linear maps only for Tensk and
Tensk, for Tensqp with both p 6= 0 and q 6= 0, it does not induce any map.
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The map Tensk(F ) : Tensk(W ) → Tensk(V ), which is induced by
a linear map F : V → W , maps T : W k → F to the composition

V k F×···×F−−−−−→ W k T−→ F. If there is no danger of confusion, we will use a
shorthand notation F ∗ for Tensk(F ). The star here indicates that the
map is induced by F , its upper index position means that it acts in the
direction that is opposite to the direction of F .

The map Tensk(F ) : Tensk(V ) → Tensk(W ), which is induced by
a linear map F : V → W , maps T : (V

X
)k → F to the composition

(W
X
)k

F
X×···×FX

−−−−−−−→ (V
X
)k

T−→ F. If there is no danger of confusion, we will
use a shorthand notation F∗ for Tensk(F ). The star here indicates that
the map is induced by F , its low index position means that it acts in the
same direction as F .

Both constructions respect compositions: for linear maps F : U → V

and G : V → W , the maps induced by their composition U
F−→ V

G−→ W
are the appropriate compositions of the maps induced by F and G. More
specifically: (G ◦ F )∗ = F ∗ ◦ G∗ and (G ◦ F )∗ = G∗ ◦ F∗. The proofs of
these statements are straightforward.

2.6. Multiplication of tensors

The product of tensors (i.e., polylinear functionals)

T : V p × (V
X
)q → F and S : V r × (V

X
)s → F,

is a tensor T ⊗ S : V p × (V
X
)q × V r × (V

X
)s → F defined by formula

T ⊗ S(v1, . . . , vp, w
1, . . . , wq, u1, . . . , ur, z

1, . . . , zs)

= T (v1, . . . , vp, w
1, . . . , wq)S(u1, . . . , ur, z

1, . . . , zs).

This multiplication is distributive with respect to addition of tensors.
In other words, the multiplication of tensors defines a bilinear pairing

Tensqp(V )× Tenssr(V )→ Tensq+sp+r(V ).

Example. Recall that the simplest tensors are vectors (i.e., ele-
ments of Tens1(V ) = V ) and covectors (elements of Tens1(V ) = V

X
).

Let us fix a basis e1, . . . , en in V . Then e1, . . . , en is the dual basis (this
is a basis of V

X
= Tens1(V )). Consider ei ⊗ ej ∈ Tens02(V ). This is a

bilinear form V × V → F. Let us calculate its value on vectors v = vkek
and w = wmem

ei ⊗ ej : (v, w) 7→ 〈ei|v〉〈ej|w〉 = 〈ei|vkek〉〈ej|wmem〉
= vk〈ei|ek〉wm〈ej|em〉 = vkδikw

mδjm = viwj

In words: the tensor ei ⊗ ej evaluated on pair of vectors v and w gives
the product of the ith coordinate of v and the jth coordinate of w. The



coordinates of tensor ei⊗ej in the coordinate system defined by the basis
e1, . . . , en are (ei⊗ ej)p,q = δipδ

j
q . So, the (i, j) coordinate equals 1 and all

others equal 0. This is one of the base vectors in Tens20(V ).

In general, tensors ei1 ⊗ · · · ⊗ eip ⊗ ej1 ⊗ · · · ⊗ ejq form a basis in
Tensqp(V ).

Although the basis vectors of Tensq+sp+r(V ) belong to the range of pair-

ing Tensqp(V )× Tenssr(V )→ Tensq+sp+r(V ) the pairing is not surjective. It
is not a linear, but a bilinear map. A linear map, whose range contains
a basis, would be surjective. For a bilinear map, this is not true. Indeed,
dim Tensqp(V )×Tenssr(V ) = np+q+nr+s while dim Tensq+sp+r(V ) = np+q+r+s,
so usually the dimension of the target space is less than the dimension
of the source.

For example, not any bilinear form V × V → F (i.e., a tensor of type
(2, 0)) can be represented as a product of two covectors.

Those tensors, which can be presented as a product of tensors are
called decomposable. Any tensor can be presented as a sum of products
of tensors from V

X
= Tens1(V ) and V = Tens1(V ).

There is a construction which for any two vector spaces V and W over
F gives rise to a vector space V ⊗W . The dimension of V ⊗W is the
product of dimensions of V and W . The space V ⊗ V can be identified
with Tens2(V ). It is generated by vectors which can be identified with
v ⊗ u, where v, u ∈ V .

3. Symmetric and skew-symmetric

3.1. Digression on permutations and their parity

A permutation of a set X is a bijection σ : X → X of this set onto
itself. Denote the set {1, 2, 3, . . . , n} of the first n positive integers by
Nn. The set of all permutations of the set Nn is denoted by Sn and called
the symmetric group of degree n.

A permutation, mapping two elements of the set S to each other
and every other element to itself, is called the transposition of these two
elements.

Permutations belonging to Sn can be presented by pictures of the
following type. Put n dots on two horizontal lines, numerate them from
left to right by numbers from 0 to n and connect the dot k on the upper

2 3 4 51

2 3 4 51

line to the dot σ(k) on the lower line by a simple de-
scending arc. One should draw the arcs clearly, avoid-
ing intersection of several arcs in one point and points
of tangency.

15
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A picture for the composition σ1 ◦ σ1 of permutations σ0 and σ2 can
be obtained from the pictures for σ0 and σ2 by drawing them one over
the other as follows.

2 3 4 51

2 3 4 51

2 3 4 51

=⇒

2 3 4 51

2 3 4 51

3.A. Theorem. Any permutation can be presented as a composition
of transpositions.

Proof. On a picture of arbitrary permutation, arcs can be drawn in
such a way that no two intersection points of the arcs
were on the same horizontal line. Then they can be sep-
arated from each other by horizontal lines. This gives
a desired decomposition of the permutation into a com-
position of permutations each of which is presented by a
picture with one intersection point. Those permutations
are transpositions.

2 3 4 51

2 3 4 51

The arcs, which start at points i and j with i < j and finish at σ(i)
and σ(j), must intersect if σ(i) > σ(j). They may intersect in several
points, but the parity of the number of points depends on the mutual
position of σ(i) and σ(j). Namely, if σ(i) > σ(j), then the number of
intersection points is odd, if σ(i) < σ(j), then it is even.

A permutation which is a composition of odd number of transposi-
tions is said to be odd , otherwise it is said to be even. The sign signσ of
a permutation σ is defined to be −1 if σ is odd and +1 if σ is even.

3.2. Symmetric tensors

A polylinear form T : V k → F is called symmetric if its values are not
affected by any permutations of the arguments. In other words, T is
symmetric, if, for any permutation σ : {1, . . . , k} → {1, . . . , k} and
any v1, . . . , vk ∈ V ,

T (v1, . . . , vk) = T (vσ(1), . . . , vσ(k)).
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For each k, symmetric polylinear functionals V k → F form a subspace
of the vector space Tensk(V ) of all polylinear functionals V k → F. This
subspace is denoted by Symk(V ).

Similarly, symmetric polylinear functionals (V
X
)k → F form a sub-

space of the space Tensk(V ). This subspace is denoted by Symk(V ).

3.3. Digression on field’s characteristic
and arithmetic mean.

Consider the multiples of 1 in a field F: 1, 1 + 1, 1 + 1 + 1, . . . . Let
us denote its term obtained as the sum of k units by k · 1.

This sequence may be periodic, like in the field F2 = {0, 1} of two
elements, where 2 · 1 = 1 + 1 = 0.

The least k such that k·1 = 0 is called the characteristic of F. If k·1 6= 0
for any integer k > 0, then F is said to be a field of characteristic zero.

The fields Q of rational numbers, R of real numbers, C of complex num-
bers are all of characteristic zero.

In a field of characteristic zero, it is possible to divide any element of
the field by any positive integer. In particular, in a field of characteristic
zero one can define an arithmetic mean of any collection a1, . . . , ak ∈ F as
a1+···+ak

k
. This gives rise to a linear map Fk → F and it has a remarkable

property that a+···+a
k

= a. If the characteristic of the field is not zero and
divides k, then an arithmetic mean of k elements of the field cannot be
defined.

3.4. Symmetrization

Assume that our ground field F is of characteristic zero. Then any
polylinear form can be symmetrized. Namely, there is a map which
assigns to a polylinear form T ∈ Tensk(V ) a polylinear form defined by
the formula

symT (v1, . . . , vk) =
∑
σ∈Sk

1

k!
T (vσ(1), . . . , vσ(k))

Clearly, symT is a symmetric polylinear form. It coincides with the
original form T if T was already symmetric. Thus, sym is a projection
of the space of all polylinear forms Tensk(V ) onto the subspace Symk(V )
of symmetric forms.
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3.5. Anti-symmetric polylinear maps

Let V be a vector space over a field F. A bilinear form T : V ×V → F
is said to be anti-symmetric or skew-symmetric if T (v, w) = −T (w, v)
for any v, w ∈ V .

More generally:

A polylinear map T : V k → F is said to be anti-symmetric , or skew-
symmetric , or alternating , or exterior k-form on V if transposition of
any two arguments implies multiplication of the value by −1.

In formula:
T (A, v,B,w,C) = −T (A,w,B, v, C),

where v, w ∈ V and A, B, C are lists of vectors (some of which may be
empty). Say, A = a1, . . . , ai, B = b1, . . . , bj, C = c1, . . . , cl.

3.B Reformulations. Let T : V k → F be a polylinear map. Then
the following statements are equivalent:

(1) T is anti-symmetric.
(2) T takes value zero on any list of vectors v1, v2, . . . , vk in which

two of the vectors are equal (say, vi = vj for some i 6= j).
(3) Adding to one of the arguments other arguments multiplied by

an element of F does not change the value of T . In formula:

T (A, v,B,w,C) = T (A, v,B,w + av, C),

where v, w ∈ V , a ∈ F and A, B, C are some lists of vectors.
(4) T takes value zero on any linearly dependent list of vectors.

Proof. (1) =⇒ (2): If T is anti-symmetric, then a transposition of the
equal arguments multiplies the value of T by −1. On the other hand,
the transposition does not change the list of arguments and hence does
not change the value of T . Hence, the value is zero.

In formulas: T (A, v,B,w,C) = −T (A,w,B, v, C). On the other
hand, if w = v, then T (A, v,B,w,C) = T (A,w,B, v, C).
Hence T (A, v,B, v, C) = 0.

(2) =⇒ (1):
0 = T (A, v + w,B, v + w,C)

= T (A, v,B, v, C)+T (A, v,B,w,C)+T (A,w,B, v, C)+T (A,w,B,w,C)

= T (A, v,B,w,C) + T (A,w,B, v, C).

(2) =⇒ (3):

T (A, v,B,w + av, C) = T (A, v,B,w,C) + aT (A, v,B, v, C)

= T (A, v,B,w,C) + a0 = T (A, v,B,w,C)
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(3) =⇒ (4): Assume vj is a linear combination of all other vectors of
the list v1, . . . , vk: vj =

∑
i 6=j aivi. Then by (3),

T (v1, . . . , vk) = T

(
v1, . . . , vj−1, vj −

∑
i 6=j

aivi, vj+1, . . . , vk

)
= T (v1, . . . , vj−1, 0, vj+1, . . . , vk) = 0

(4) =⇒ (2): A list of vectors in which two elements are equal is
linearly dependent.

Since the value of a skew-symmetric form is multiplied by −1 un-
der each transposition of arguments, under an arbitrary permutation of
arguments the value is multiplied by the sign of permutation:

T (vσ(1), vσ(2), . . . , vσ(n)) = sign σ T (v1, v2, . . . , vn)

for any anti-symmetric n-linear form T .

Denote the space of anti-symmetric polylinear forms V k → F by sym-
bol ΛkV .

If k = 1, then all conditions of Theorem 3.B hold true tautologically.
So, Λ1V = V

X
.

If dimV = 1, then Λ2V = 0. Indeed, in 1-dimensional space any two
vectors are linearly dependent, therefore by statement (4) of Theorem
3.B the value of antisymmetric form must be zero.

More generally, for the same reason ΛkV = 0 if dimV < k.

3.6. Anti-symmetrization

Assume that the ground field F has characteristic zero. Any polylin-
ear form can be anti-symmetrized. There is a linear map alt : Tensk(V )→
Λk(V ) defined by the formula

altT (v1, . . . , vk) =
∑
σ∈Sk

signσ

k!
T (vσ(1), . . . , vσ(k))

If T ∈ Tensk(V ) is anti-symmetric, then altT = T . Thus, alt is a
projection of the space of all polylinear forms Tensk(V ) onto the subspace
Λk(V ) which consists of anti-symmetric forms.

3.7. Exterior k-forms on a k-dimensional space

3.C. Theorem. For any integer k > 0, dim Λk(Fk) = 1.



Proof. Notice first that Λk(Fk) 6= 0, because it contains alt(e1 ⊗ e2 ⊗
· · · ⊗ ek) which is not zero. Hence dim Λk(Fk) ≥ 1.

Consider a skew-symmetric tensor T : Fk × · · · × Fk︸ ︷︷ ︸
k times

→ F. It is de-

fined by its coordinates in the space Tensk(Fk). Recall (see section 2.3)
that the coordinates of a polylinear map are its values on sequences
(ei1 , ei2 , . . . , eik) of base vectors. If ip = iq for some p 6= q, then the
value of a skew-symmetric form is zero. If ip 6= iq for any p 6= q,
then (i1, i2, . . . , ik) = (σ(1), σ(2), . . . , σ(k)) for some σ ∈ Sk. Hence
T (eσ(1), eσ(2), . . . , eσ(k)) = signσ T (e1, e2, . . . , ek)). Therefore, T can be
recovered from T (e1, e2, . . . , ek) ∈ F. Hence dim Λk(Fk) ≤ 1.

An isomorphism Λk(Fk)→ F is defied by T 7→ T (e1, e2 . . . , ek).

3.D Corollary. If dimV = k > 0, then dim Λk(V ) = 1.

4. Determinant

4.1. Determinant of an operator

Let V be a vector space of dimension n over a field F, and T : V → V
be a linear map. The map T ∗ : Λn(V ) → Λn(V ) induced by T , as
any linear map of a 1-dimensional space to itself, is a multiplication
by some element of F. This element is called the determinant of T and
is denoted by detT .

4.2. Properties of determinants

4.A. The determinant of a composition is the product of the deter-
minants of the factors. In formula: det(T ◦ S) = detT detS.

Indeed, (T ◦ S)∗ = S∗ ◦ T ∗, composition of multiplications by detT
and multiplication by detS is the multiplication by detT detS.

4.B. det id = 1.

Indeed, id∗ = id and id : F→ F is multiplication by 1

4.C. If T is invertible, then detT−1 =
1

detT
. In particular,

detT 6= 0.

Indeed, the equality id = T ◦ T−1 implies 1 = det id = detT detT−1.

20
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4.D. If T is not invertible, then detT = 0.

Proof. Represent T : V → V as a composition of the surjective map
S : V → rangeT defined by T and inclusion i : rangeT → V . Since T
is not invertible, it is not surjective and dim rangeT < dimV . Therefore
ΛdimV (rangeT ) = 0. Hence, T ∗ : Λn(V ) → Λn(V ) is factored through
the zero space. So, it is zero.

The last two properties imply the following convenient criterion for
non-invertibility of a linear map T : V → V :

4.E. A linear map T : V → V is not invertible ⇐⇒ detT = 0.

4.3. Invariance of determinant

4.F. If operators T : V → V and S : W → W are isomorphic in
the category of operators (that is there exists an linear isomorphism
L : V → W such that S = L ◦ T ◦ L−1), then detS = detT .

Proof. Assume, first, that W = V . Then detS = det(L ◦ T ◦ L−1) =
detL detT det(L−1) = detT detL(detL)−1 = detT .

If W 6= V , these arguments are not applicable, because a determinant
is defined only for operators, it is not defined for a linear map between
different vector spaces. In order to make the arguments legitimate, we
have to identify V and W somehow. Here is a straightforward proof.
Notice that commutative diagrams in that proof are not necessary. Their
purpose is to clarify the exposition, rather than to obscure.

Linear maps T , S, and L form a commutative diagram

V W

V W

T

L

S

L

. These maps induce maps T ∗, S∗, and L∗, which form a

commutative diagram

(1)
ΛnV ΛnW

ΛnV ΛnW

L∗

T ∗ S∗

L∗

where n = dimV = dimW . The maps T ∗ and S∗ are multiplications
by detT and detS, respectively. Let us fix isomorphisms ΛnV → F
and ΛnW → F and, in diagram (1), replace ΛnV and ΛnW with F via
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these isomorphisms. We get a diagram
F F

F F

L∗

detT detS

L∗

. Linear map

L∗ : F→ F appears twice in this diagram. It is an isomorphism F→ F,
thus this is a multiplication by some C ∈ F, C 6= 0. The commutativity
of the diagram (1) means that multiplication by C det(S) coincides with
the multiplication by det(T )C. Hence detS = detT .

4.4. Formula for determinant

4.G. Let T : Fn → Fn be a linear map with T ej = T ij ei. Then

detT =
∑
σ∈Sn

signσ T
σ(1)
1 T

σ(2)
2 · · ·T σ(n)n .

Proof. Let D ∈ Λn(Fn) be the base vector which is characterized by
the property that D(e1, . . . , en) = 1. Then

(T ∗D)(e1, . . . , en) = D(T e1, . . . , T en)

= D(T j11 ej1 , . . . , T
jn
n ejn)

= T j11 . . . T jnn D(ej1 , . . . , ejn)

=
∑
σ∈Sn

T
σ(1)
1 . . . T σ(n)n D(eσ(1), . . . , eσ(n))

=
∑
σ∈Sn

T
σ(1)
1 . . . T σ(n)n signσ D(e1, . . . , en)

=
∑
σ∈Sn

signσ T
σ(1)
1 . . . T σ(n)n

4.5. Characteristic polynomial of an operator

Let V be a finite-dimensional vector space over a field F and T : V →
V be an operator. For each λ ∈ F consider the determinant of operator
λI − T : V → V . (Here we denote by I the identity operator idV .)

By Theorem 4.G, the determinant is a sum of products of linear
functions of λ. Each of the products contains dimV factors. Therefore
this is a polynomial in λ of degree dimV .

det(λI − T ) is called the characteristic polynomial of T .

4.H. The characteristic polynomial of T is an invariant of the iso-
morphism class of T .
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Proof. Recall that any operator isomorphic to T : V → V can be
presented as L−1 ◦ T ◦ L, where L : W → V is an invertible linear
map. It follows from Theorem 4.F, that the values of the characteristic
polynomials of T and S at each λ ∈ F are equal, because operators
λI − T and λI − L−1 ◦ T ◦ L are isomorphic for any value of λ. Indeed,
λI − L−1 ◦ T ◦ L = λL−1 ◦ L− L−1 ◦ T ◦ L = L−1 ◦ (λI − T ) ◦ L.

These arguments suffice if the characteristic of the ground field F is
zero, because two polynomials over such a field equals iff they have the
same values at each λ ∈ F. However, if F has a finite characteristic, then
a polynomials are not defined by their values. For example, a polynomial
x2 and x have the same values if F = Z/2, and, more generally, if the
characteristic is 2.

Theorem 4.5 holds true for operators over any field F. It can be
proved similarly to Theorem 4.F. We leave the proof as an exercise.

Recall (see Theorem 5.6 from Axler’s textbook) that λ is an eigenvalue
of a linear operator T in a finite-dimensional space iff T − λ id is not
invertible. Together with the criterion of non-invertibility from Section
4.2, it implies that

4.I. λ is an eigenvalue of a linear operator in a finite dimensional
vector space iff λ is a root of the characteristic polynomial of this
operator.

Exercise. Prove that (−1)dimV det f is the free term of the characteristic
polynomial of f : V → V .

4.6. Trace

Let V be a finite-dimensional vector space over a field F and T : V →
V be an operator. Let in some basis v1, . . . , vn the operator T has
matrix T ji . Then T ii (=

∑
i T

i
i = T 1

1 + · · · + T nn ) is called the trace of
T and denoted by trT .

This definition requires a proof, because it involves a choice of basis,
while in the name no basis is mentioned. A proof comes as a reference
to Theorem 4.I and the following statement.

4.J. For any linear operator T in an n-dimensional vector space V
represented by a matrix (T ji ) for some basis of V , the coefficient at
λn−1 in the characteristic polynomial of T equals −

∑
i T

i
i .
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The Theorem 4.J together with Exercise above can be summarized
in the following formula:

det(λI − T ) = λn − trTλn−1 + · · ·+ (−1)n detT

Proof of 4.J. Expand det(λI − T ) according to Theorem 4.G. The
summands which contribute to the monomial of degree n− 1 correspond
to permutations σ which leave n−1 elements of {1, 2, . . . , n} fixed. Only
one permutation has this property: σ = id. The summand corresponding
to σ = id is (λ− T 1

1 )(λ− T 2
2 ) . . . (λ− T nn ). Expand it:

(λ− T 1
1 )(λ− T 2

2 ) . . . (λ− T nn ) = λn − λn−1
∑
i

T ii + . . .

= λn − trTλn−1 + . . .

Thus, the trace trT and determinant detT are, up to sign, coefficients
of the characteristic polynomial of T . Other coefficients also are numer-
ical invariants of the operator. The trace and determinant occupy the
extreme positions and they have special properties distinguishing them
from other numerical invariants which come from the characteristic. For
the determinant, this is its multiplicativity: det(S ◦ T ) = detS detT .
The next theorem is a distinctive property of trace.

4.K. For any S, T ∈ L(V ), tr(S ◦ T ) = tr(T ◦ S).

Proof. Fix a basis in V . Let T ji and Sji be marices of T and S in
this basis. Then in the Einstein notation the products TS and ST have
matrices (T ji S

i
k) and (Sji T

i
k). Let us find the traces:

tr(TS) = T ji S
i
j and tr(ST ) = Sji T

i
j

These two numbers are equal, because the summation indices are damn,
their renaming would not effect the sum.

Remark. Observe that the trace is neither multiplicative, nor additive.

Indeed, consider S = T =

(
0 1
1 0

)
. Then

tr

(
0 1
1 0

)
= 0, while tr

(
0 1
1 0

)2

= tr

(
1 0
0 1

)
= 2


