MAT 315, Advanced Linear Algebra Homework 6 due by April 2 Name _____

Score

Problem 1. Let V be a vector space over a field \mathbb{F} and let $T: V \to V$ be a linear operator such that $T^2 = I$.

(a) Prove that if the characteristic of \mathbb{F} is not 2, then V is direct sum of two subspaces, V_+ and V_- invariant under T such that $T|_{V_+} = I$ and $T|_{V_-} = -I$.

(b) Under assumptions of (a), is T diagonalizable?

If so, what is its diagonalization?

(c) Prove that if $\mathbb{F} = \mathbb{Z}/2$ and $V = \mathbb{F}^2$, then there exists $T: V \to V$ which is not diagonalizable.

Problem 2. Let T be a linear operator over \mathbb{F} such that $T^3 = \mathrm{id}$. Prove that

(a) if $\mathbb{F} = \mathbb{C}$ then T is diagonalizable

(b) if $\mathbb{F} = \mathbb{R}$ and T is diagonalizable, then T = id.

Problem 3. Let V, W be vector spaces over a field \mathbb{F} .

(a) Write down a definition for $\phi \otimes \psi \in \mathcal{L}(V, W; \mathbb{F})$ if $\phi \in V'$ and $\psi \in W'$.

(b) Write down a definition of $a \wedge b \in \Lambda^{p+q}(V)$, where $a \in \Lambda^p(V)$ and $b \in \Lambda^q(V)$.

Problem 4. Let e_1, e_2, \ldots, e_{2n} be a basis of a vector space V and $\omega = e^1 \wedge e^2 + e^3 \wedge e^4 + \cdots + e^{2n-1} \wedge e^{2n}$. Prove that $\omega \wedge \omega \wedge \cdots \wedge \omega = n! e^1 \wedge e^2 \wedge \cdots \wedge e^{2n}$.