MAT 315, Advanced Linear Algebra Homework 5 due by March 12

Name _____

Score

Problem 1. Let X be a set and \mathbb{F} a field. Denote by \mathbb{F}^X the set of all maps $X \to \mathbb{F}$. As it was shown in the first lectures, \mathbb{F}^X has a natural structure of vector space over \mathbb{F} .

- (a) For which X the dimension of this vector space is finite?
- (b) Find a natural basis of \mathbb{F}^X .
- (c) For any finite-dimensional vector space V over \mathbb{F} , find X such that V is isomorphic to \mathbb{F}^X .

Problem 2. For finite sets X and Y find a natural isomorphism between $\mathbb{F}^{X \times Y}$ and $\mathcal{L}(V', W'; \mathbb{F})$, where $V = \mathbb{F}^X$ and $W = \mathbb{F}^Y$.

Problem 3. Let U, V, W be finite-dimensional vector spaces over a field \mathbb{F} . Find a bilinear map $\mathcal{M}: V \times W \to \mathcal{L}(V^{\checkmark}, W^{\checkmark}; \mathbb{F})$ such that for any bilinear map $F: V \times W \to U$ there exists a unique linear map $G: \mathcal{L}(V^{\checkmark}, W^{\checkmark}; \mathbb{F})$ such that $G \circ \mathcal{M} = F$. The latter condition means that the following diagram commutes.

Remark. Problem 1 is for warming up. Its purpose to remind definitions.

The vector space $\mathcal{L}(V^{\checkmark}, W^{\checkmark}; \mathbb{F})$, which appears in Problem 3, is the tensor product $V \otimes W$ of V and W. It was not defined in the lectures. Problem 3 is about is a characteristic property of $V \otimes W$, the property which defines $V \otimes W$.

The statement of Problem 2 means that $\mathbb{F}^{X \times Y}$ is isomorphic to $\mathbb{F}^X \otimes \mathbb{F}^Y$.