MAT 315, Advanced Linear Algebra Homework 4 due by March 5 Name _____

Score

- 1. The vector space $\mathcal{P}_m(\mathbb{R})$ of real polynomials of degree $\leq m$ in variable x has a basis $1, x, \ldots, x^m$. (a) Find explicit formulas for functionals which form the dual basis.
 - (b) Do the same for a basis $1, x 1, (x 1)^2, \dots, (x 1)^m$.
- 2. Let V, W be finite-dimensional vector spaces over a field \mathbb{F} . Prove that the map

$$\mathcal{L}(V,W) \to \mathcal{L}(W^{\vee},V^{\vee}): T \to T^{\vee}$$

is an isomorphism of a vector space $\mathcal{L}(V, W)$ to a vector space $\mathcal{L}(W^{\vee}, V^{\vee})$.

- 3. Let V, W be finite-dimensional vector spaces over a field \mathbb{F} and $T: V \to W$ be a linear map.
 - (a) Find formulas expressing numbers $\operatorname{rk} T^{\vee}$, dim null T^{\vee} in terms of $\operatorname{rk} T$ and dim null T.
 - (b) Find isomorphisms which justify the formulas which you found in (a).
- 4. What can you say about T^{\vee} if T is
 - (a) injective,
 - (b) surjective?