Linear Algebra MAT 315 Lecture 5

Advanced Linear Algebra MAT 315

Oleg Viro

03/03/2020, Lecture 5

Let V be a vector space over a field \mathbb{F} .

Let V be a vector space over a field \mathbb{F} . A natural map $\Lambda: V \to (V^{\vee})^{\vee}$: Let V be a vector space over a field \mathbb{F} . A natural map $\Lambda: V \to (V^{\vee})^{\vee}: u \mapsto ($

The map $V^{\vee} \to \mathbb{F} : \varphi \mapsto \varphi(u)$ is linear.

The map $V^{\vee} \to \mathbb{F} : \varphi \mapsto \varphi(u)$ is linear.

Need to verify that $(a\varphi + b\psi)u = a\varphi(u) + b\psi(u)$.

The map $V^{\vee} \to \mathbb{F} : \varphi \mapsto \varphi(u)$ is linear.

Need to verify that $(a\varphi + b\psi)u = a\varphi(u) + b\psi(u)$. Indeed, $(a\varphi + b\psi)(u) = (a\varphi)(u) + (b\psi)(u)$ by definition of sum for functionals

The map $V^{\vee} \to \mathbb{F} : \varphi \mapsto \varphi(u)$ is linear.

Need to verify that $(a\varphi + b\psi)u = a\varphi(u) + b\psi(u)$. Indeed, $(a\varphi + b\psi)(u) = (a\varphi)(u) + (b\psi)(u)$ by definition of sum for functionals $= a\varphi(u) + b\psi(u)$ by definition of scalar multiplication for functionals.

The map $V^{\vee} \to \mathbb{F} : \varphi \mapsto \varphi(u)$ is linear.

Need to verify that $(a\varphi + b\psi)u = a\varphi(u) + b\psi(u)$. Indeed, $(a\varphi + b\psi)(u) = (a\varphi)(u) + (b\psi)(u)$ by definition of sum for functionals $= a\varphi(u) + b\psi(u)$ by definition of scalar multiplication for functionals.

Hence, $\Lambda(V) \subset \mathcal{L}(V^{\vee}, \mathbb{F}) = (V^{\vee})^{\vee}$.

The map $V^{\vee} \to \mathbb{F} : \varphi \mapsto \varphi(u)$ is linear.

Need to verify that $(a\varphi + b\psi)u = a\varphi(u) + b\psi(u)$. Indeed, $(a\varphi + b\psi)(u) = (a\varphi)(u) + (b\psi)(u)$ by definition of sum for functionals $= a\varphi(u) + b\psi(u)$ by definition of scalar multiplication for functionals.

Hence, $\Lambda(V) \subset \mathcal{L}(V^{\vee}, \mathbb{F}) = (V^{\vee})^{\vee}$.

The map $V^{\vee} \to \mathbb{F} : \varphi \mapsto \varphi(u)$ is linear.

Need to verify that $(a\varphi + b\psi)u = a\varphi(u) + b\psi(u)$. Indeed, $(a\varphi + b\psi)(u) = (a\varphi)(u) + (b\psi)(u)$ by definition of sum for functionals $= a\varphi(u) + b\psi(u)$ by definition of scalar multiplication for functionals.

Hence, $\Lambda(V) \subset \mathcal{L}(V^{\vee}, \mathbb{F}) = (V^{\vee})^{\vee}$.

One more linearity: The map Λ is linear.

The map $V^{\vee} \to \mathbb{F} : \varphi \mapsto \varphi(u)$ is linear.

Need to verify that $(a\varphi + b\psi)u = a\varphi(u) + b\psi(u)$. Indeed, $(a\varphi + b\psi)(u) = (a\varphi)(u) + (b\psi)(u)$ by definition of sum for functionals $= a\varphi(u) + b\psi(u)$ by definition of scalar multiplication for functionals.

Hence, $\Lambda(V) \subset \mathcal{L}(V^{\vee}, \mathbb{F}) = (V^{\vee})^{\vee}$.

One more linearity: The map Λ is linear.

 $\Lambda(au+bw)(\varphi)=\varphi(au+bw)\,$ by definition of Λ

The map $V^{\vee} \to \mathbb{F} : \varphi \mapsto \varphi(u)$ is linear.

Need to verify that $(a\varphi + b\psi)u = a\varphi(u) + b\psi(u)$. Indeed, $(a\varphi + b\psi)(u) = (a\varphi)(u) + (b\psi)(u)$ by definition of sum for functionals $= a\varphi(u) + b\psi(u)$ by definition of scalar multiplication for functionals.

Hence, $\Lambda(V) \subset \mathcal{L}(V^{\vee}, \mathbb{F}) = (V^{\vee})^{\vee}$.

One more linearity: The map Λ is linear.

$$\begin{split} \Lambda(au+bw)(\varphi) &= \varphi(au+bw) \ \text{by definition of } \Lambda \\ &= a\varphi(u) + b\varphi(w) \ \text{by linearity of } \varphi \end{split}$$

The map $V^{\vee} \to \mathbb{F} : \varphi \mapsto \varphi(u)$ is linear.

Need to verify that $(a\varphi + b\psi)u = a\varphi(u) + b\psi(u)$. Indeed, $(a\varphi + b\psi)(u) = (a\varphi)(u) + (b\psi)(u)$ by definition of sum for functionals $= a\varphi(u) + b\psi(u)$ by definition of scalar multiplication for functionals.

Hence, $\Lambda(V) \subset \mathcal{L}(V^{\vee}, \mathbb{F}) = (V^{\vee})^{\vee}$.

One more linearity: The map Λ is linear.

$$\begin{split} \Lambda(au+bw)(\varphi) &= \varphi(au+bw) \text{ by definition of } \Lambda \\ &= a\varphi(u) + b\varphi(w) \text{ by linearity of } \varphi \\ &= a(\Lambda(u)(\varphi)) + b(\Lambda(w)(\varphi)) \text{ by definition of } \Lambda \end{split}$$

The map $V^{\vee} \to \mathbb{F} : \varphi \mapsto \varphi(u)$ is linear.

Need to verify that $(a\varphi + b\psi)u = a\varphi(u) + b\psi(u)$. Indeed, $(a\varphi + b\psi)(u) = (a\varphi)(u) + (b\psi)(u)$ by definition of sum for functionals $= a\varphi(u) + b\psi(u)$ by definition of scalar multiplication for functionals.

Hence, $\Lambda(V) \subset \mathcal{L}(V^{\vee}, \mathbb{F}) = (V^{\vee})^{\vee}$.

One more linearity: The map Λ is linear.

$$\begin{split} \Lambda(au+bw)(\varphi) &= \varphi(au+bw) \text{ by definition of } \Lambda \\ &= a\varphi(u) + b\varphi(w) \text{ by linearity of } \varphi \\ &= a(\Lambda(u)(\varphi)) + b(\Lambda(w)(\varphi)) \text{ by definition of } \Lambda \\ &= (a\Lambda(u) + b\Lambda(w))(\varphi) \text{ by definition of linear operations in } (V^{\vee})^{\vee} . \end{split}$$

Lemma If V is finite-dimensional, then $\Lambda: V \to (V^{\vee})^{\vee}$ is injective.

Lemma If V is finite-dimensional, then $\Lambda: V \to (V^{\vee})^{\vee}$ is injective.

Proof of Lemma. Let $u \in V$, $u \neq 0$.

Lemma If V is finite-dimensional, then $\Lambda: V \to (V^{\vee})^{\vee}$ is injective.

Proof of Lemma. Let $u \in V$, $u \neq 0$. Include u as the first vector to a basis of V.

Lemma If V is finite-dimensional, then $\Lambda: V \to (V^{\vee})^{\vee}$ is injective.

Proof of Lemma. Let $u \in V$, $u \neq 0$. Include u as the first vector to a basis of V. Let φ be the first element of the dual basis.

Lemma If V is finite-dimensional, then $\Lambda: V \to (V^{\vee})^{\vee}$ is injective.

Proof of Lemma. Let $u \in V$, $u \neq 0$. Include u as the first vector to a basis of V. Let φ be the first element of the dual basis. Then $\Lambda(u)\varphi = \varphi(u) = 1 \neq 0$.

Lemma If V is finite-dimensional, then $\Lambda: V \to (V^{\vee})^{\vee}$ is injective.

Proof of Lemma. Let $u \in V$, $u \neq 0$. Include u as the first vector to a basis of V. Let φ be the first element of the dual basis. Then $\Lambda(u)\varphi = \varphi(u) = 1 \neq 0$. Hence $u \notin \operatorname{null} \Lambda$.

Lemma If V is finite-dimensional, then $\Lambda: V \to (V^{\vee})^{\vee}$ is injective.

Proof of Lemma. Let $u \in V$, $u \neq 0$. Include u as the first vector to a basis of V. Let φ be the first element of the dual basis. Then $\Lambda(u)\varphi = \varphi(u) = 1 \neq 0$. Hence $u \notin \operatorname{null} \Lambda$. So, $\operatorname{null} \Lambda = 0$ and Λ is injective.

Lemma If V is finite-dimensional, then $\Lambda: V \to (V^{\vee})^{\vee}$ is injective.

Proof of Lemma. Let $u \in V$, $u \neq 0$. Include u as the first vector to a basis of V. Let φ be the first element of the dual basis. Then $\Lambda(u)\varphi = \varphi(u) = 1 \neq 0$. Hence $u \notin \operatorname{null} \Lambda$. So, $\operatorname{null} \Lambda = 0$ and Λ is injective.

Proof of Theorem. As we know, $\dim V^{\vee} = \dim V$.

Lemma If V is finite-dimensional, then $\Lambda: V \to (V^{\vee})^{\vee}$ is injective.

Proof of Lemma. Let $u \in V$, $u \neq 0$. Include u as the first vector to a basis of V. Let φ be the first element of the dual basis. Then $\Lambda(u)\varphi = \varphi(u) = 1 \neq 0$. Hence $u \notin \operatorname{null} \Lambda$. So, $\operatorname{null} \Lambda = 0$ and Λ is injective.

Proof of Theorem. As we know, $\dim V^{\vee} = \dim V$. Therefore $\dim(V^{\vee})^{\vee} = \dim V^{\vee} = \dim V$.

Lemma If V is finite-dimensional, then $\Lambda: V \to (V^{\vee})^{\vee}$ is injective.

Proof of Lemma. Let $u \in V$, $u \neq 0$. Include u as the first vector to a basis of V. Let φ be the first element of the dual basis. Then $\Lambda(u)\varphi = \varphi(u) = 1 \neq 0$. Hence $u \notin \operatorname{null} \Lambda$. So, $\operatorname{null} \Lambda = 0$ and Λ is injective.

Proof of Theorem. As we know, $\dim V^{\vee} = \dim V$. Therefore $\dim(V^{\vee})^{\vee} = \dim V^{\vee} = \dim V$. We know that an injective linear map of a vector space to a vector space of the same dimension is an isomorphism.

Lemma If V is finite-dimensional, then $\Lambda: V \to (V^{\vee})^{\vee}$ is injective.

Proof of Lemma. Let $u \in V$, $u \neq 0$. Include u as the first vector to a basis of V. Let φ be the first element of the dual basis. Then $\Lambda(u)\varphi = \varphi(u) = 1 \neq 0$. Hence $u \notin \operatorname{null} \Lambda$. So, $\operatorname{null} \Lambda = 0$ and Λ is injective.

Proof of Theorem. As we know, $\dim V^{\vee} = \dim V$. Therefore $\dim(V^{\vee})^{\vee} = \dim V^{\vee} = \dim V$. We know that an injective linear map of a vector space to a vector space of the same dimension is an isomorphism.

In the proof of Lemma, we used the assumption that V is finite-dimensional. Lemma holds true without this assumption. For infinite-dimensional space it requires tools like transfinite induction. But Theorem holds true only for a finite-dimensional V, anyway.

Linear Algebra MAT 315 Lecture 5

If $\dim V < \infty$, then $(V^{\vee})^{\vee}$ is identified with V by Λ .

If dim $V < \infty$, then $(V^{\vee})^{\vee}$ is identified with V by Λ . The space dual to V^{\vee} is identified with V.

If dim $V<\infty$, then $(V^\vee)^\vee$ is identified with V by Λ . The space dual to V^\vee is identified with V.

This suggests more symmetric notations:

If dim $V < \infty$, then $(V^{\vee})^{\vee}$ is identified with V by Λ . The space dual to V^{\vee} is identified with V.

This suggests more symmetric notations:

Denote $\varphi(u)$ by $\langle \varphi | u \rangle$ for $u \in V$ and $\varphi \in V^{\vee}$.

If dim $V < \infty$, then $(V^{\vee})^{\vee}$ is identified with V by Λ . The space dual to V^{\vee} is identified with V.

This suggests more symmetric notations:

Denote $\varphi(u)$ by $\langle \varphi | u \rangle$ for $u \in V$ and $\varphi \in V^{\vee}$. We get a **bilinear** map $V^{\vee} \times V \to \mathbb{F} : (\varphi, u) \mapsto \langle \varphi | u \rangle$.

Linear Algebra MAT 315 Lecture 5

If dim $V < \infty$, then $(V^{\vee})^{\vee}$ is identified with V by Λ . The space dual to V^{\vee} is identified with V.

This suggests more symmetric notations:

Denote $\varphi(u)$ by $\langle \varphi | u \rangle$ for $u \in V$ and $\varphi \in V^{\vee}$. We get a **bilinear** map

$$\begin{split} V^{\vee} \times V \to \mathbb{F} : (\varphi, u) \mapsto \langle \varphi | u \rangle \, . \\ \textbf{Bilinear means } \langle \varphi | au + bw \rangle &= a \langle \varphi | u \rangle + b \langle \varphi | w \rangle \\ & \text{and } \langle a\varphi + b\psi | u \rangle = a \langle \varphi | u \rangle + b \langle \psi | u \rangle \, . \end{split}$$

If dim $V < \infty$, then $(V^{\vee})^{\vee}$ is identified with V by Λ . The space dual to V^{\vee} is identified with V.

This suggests more symmetric notations:

Denote $\varphi(u)$ by $\langle \varphi | u \rangle$ for $u \in V$ and $\varphi \in V^{\vee}$. We get a **bilinear** map $V^{\vee} \times V \to \mathbb{F} : (\varphi, u) \mapsto \langle \varphi | u \rangle$.

Bilinear means $\langle \varphi | au + bw \rangle = a \langle \varphi | u \rangle + b \langle \varphi | w \rangle$ and $\langle a\varphi + b\psi | u \rangle = a \langle \varphi | u \rangle + b \langle \psi | u \rangle$.

The formula $T^{\vee}(\varphi)(u) = \varphi(Tu)$ which defines T^{\vee} turns into $\langle T^{\vee}\varphi|u\rangle = \langle \varphi|Tu\rangle$.

If dim $V < \infty$, then $(V^{\vee})^{\vee}$ is identified with V by Λ . The space dual to V^{\vee} is identified with V.

This suggests more symmetric notations:

Denote $\varphi(u)$ by $\langle \varphi | u \rangle$ for $u \in V$ and $\varphi \in V^{\vee}$. We get a **bilinear** map

$$\begin{split} V^{\vee} \times V \to \mathbb{F} : (\varphi, u) \mapsto \langle \varphi | u \rangle \, . \\ \textbf{Bilinear means } \langle \varphi | au + bw \rangle &= a \langle \varphi | u \rangle + b \langle \varphi | w \rangle \\ \text{ and } \langle a\varphi + b\psi | u \rangle &= a \langle \varphi | u \rangle + b \langle \psi | u \rangle \, . \end{split}$$

The formula $T^{\vee}(\varphi)(u) = \varphi(Tu)$ which defines T^{\vee} turns into $\langle T^{\vee}\varphi|u\rangle = \langle \varphi|Tu\rangle$.

Paul Dirac suggested to rename vectors and functionals

according these their rôles in the bracket.

If dim $V < \infty$, then $(V^{\vee})^{\vee}$ is identified with V by Λ . The space dual to V^{\vee} is identified with V.

This suggests more symmetric notations:

Denote $\varphi(u)$ by $\langle \varphi | u \rangle$ for $u \in V$ and $\varphi \in V^{\vee}$. We get a **bilinear** map $V^{\vee} \times V \to \mathbb{F} : (\varphi, u) \mapsto \langle \varphi | u \rangle$. **Bilinear** means $\langle \varphi | au + bw \rangle = a \langle \varphi | u \rangle + b \langle \varphi | w \rangle$ and $\langle a\varphi + b\psi | u \rangle = a \langle \varphi | u \rangle + b \langle \psi | u \rangle$. The formula $T^{\vee}(\varphi)(u) = \varphi(Tu)$ which defines T^{\vee} turns into $\langle T^{\vee}\varphi | u \rangle = \langle \varphi | Tu \rangle$.

Paul Dirac suggested to rename vectors and functionals

according these their rôles in the bracket.

A functional φ is always enclosed like $\langle \varphi |$ and called a **bra vector**

If dim $V < \infty$, then $(V^{\vee})^{\vee}$ is identified with V by Λ . The space dual to V^{\vee} is identified with V.

This suggests more symmetric notations:

Denote $\varphi(u)$ by $\langle \varphi | u \rangle$ for $u \in V$ and $\varphi \in V^{\vee}$. We get a **bilinear** map $V^{\vee} \times V \to \mathbb{F} : (\varphi, u) \mapsto \langle \varphi | u \rangle$. **Bilinear** means $\langle \varphi | au + bw \rangle = a \langle \varphi | u \rangle + b \langle \varphi | w \rangle$ and $\langle a\varphi + b\psi | u \rangle = a \langle \varphi | u \rangle + b \langle \psi | u \rangle$.

The formula $T^{\vee}(\varphi)(u) = \varphi(Tu)$ which defines T^{\vee} turns into $\langle T^{\vee}\varphi|u\rangle = \langle \varphi|Tu\rangle$.

Paul Dirac suggested to rename vectors and functionals

according these their rôles in the bracket.

A functional φ is always enclosed like $\langle \varphi |$ and called a **bra vector** a vector u is always enclosed like $|u\rangle$ and called a **ket vector**.