Advanced Linear Algebra MAT 315

Oleg Viro
03/03/2020, Lecture 5

Map to double dual

Map to double dual

Let V be a vector space over a field \mathbb{F}.

Map to double dual

Let V be a vector space over a field \mathbb{F}.
A natural map $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}$:

Map to double dual

Let V be a vector space over a field \mathbb{F}. A natural map $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}: u \mapsto($

Map to double dual

Let V be a vector space over a field \mathbb{F}.
A natural map $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}: u \mapsto\left(V^{\vee} \rightarrow \mathbb{F}: \quad\right)$

Map to double dual

Let V be a vector space over a field \mathbb{F}.
A natural map $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}: u \mapsto\left(V^{\vee} \rightarrow \mathbb{F}: \varphi \mapsto \quad\right)$

Map to double dual

Let V be a vector space over a field \mathbb{F}.
A natural map $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}: u \mapsto\left(V^{\vee} \rightarrow \mathbb{F}: \varphi \mapsto \varphi(u)\right)$.

Map to double dual

Let V be a vector space over a field \mathbb{F}.
A natural map $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}: u \mapsto\left(V^{\vee} \rightarrow \mathbb{F}: \varphi \mapsto \varphi(u)\right)$.

The map $V^{\vee} \rightarrow \mathbb{F}: \varphi \mapsto \varphi(u)$ is linear.

Map to double dual

Let V be a vector space over a field \mathbb{F}.
A natural map $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}: u \mapsto\left(V^{\vee} \rightarrow \mathbb{F}: \varphi \mapsto \varphi(u)\right)$.

The map $V^{\vee} \rightarrow \mathbb{F}: \varphi \mapsto \varphi(u)$ is linear.
Need to verify that $(a \varphi+b \psi) u=a \varphi(u)+b \psi(u)$.

Map to double dual

Let V be a vector space over a field \mathbb{F}.
A natural map $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}: u \mapsto\left(V^{\vee} \rightarrow \mathbb{F}: \varphi \mapsto \varphi(u)\right)$.

The map $V^{\vee} \rightarrow \mathbb{F}: \varphi \mapsto \varphi(u)$ is linear.
Need to verify that $(a \varphi+b \psi) u=a \varphi(u)+b \psi(u)$.
Indeed, $(a \varphi+b \psi)(u)=(a \varphi)(u)+(b \psi)(u)$ by definition of sum for functionals

Map to double dual

Let V be a vector space over a field \mathbb{F}.
A natural map $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}: u \mapsto\left(V^{\vee} \rightarrow \mathbb{F}: \varphi \mapsto \varphi(u)\right)$.

The map $V^{\vee} \rightarrow \mathbb{F}: \varphi \mapsto \varphi(u)$ is linear.
Need to verify that $(a \varphi+b \psi) u=a \varphi(u)+b \psi(u)$.
Indeed, $(a \varphi+b \psi)(u)=(a \varphi)(u)+(b \psi)(u)$ by definition of sum for functionals $=a \varphi(u)+b \psi(u)$ by definition of scalar multiplication for functionals.

Map to double dual

Let V be a vector space over a field \mathbb{F}.
A natural map $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}: u \mapsto\left(V^{\vee} \rightarrow \mathbb{F}: \varphi \mapsto \varphi(u)\right)$.

The map $V^{\vee} \rightarrow \mathbb{F}: \varphi \mapsto \varphi(u)$ is linear.
Need to verify that $(a \varphi+b \psi) u=a \varphi(u)+b \psi(u)$.
Indeed, $(a \varphi+b \psi)(u)=(a \varphi)(u)+(b \psi)(u)$ by definition of sum for functionals $=a \varphi(u)+b \psi(u)$ by definition of scalar multiplication for functionals.

Hence, $\Lambda(V) \subset \mathcal{L}\left(V^{\vee}, \mathbb{F}\right)=\left(V^{\vee}\right)^{\vee}$.

Map to double dual

Let V be a vector space over a field \mathbb{F}.
A natural map $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}: u \mapsto\left(V^{\vee} \rightarrow \mathbb{F}: \varphi \mapsto \varphi(u)\right)$.

The map $V^{\vee} \rightarrow \mathbb{F}: \varphi \mapsto \varphi(u)$ is linear.
Need to verify that $(a \varphi+b \psi) u=a \varphi(u)+b \psi(u)$.
Indeed, $(a \varphi+b \psi)(u)=(a \varphi)(u)+(b \psi)(u)$ by definition of sum for functionals $=a \varphi(u)+b \psi(u)$ by definition of scalar multiplication for functionals.

Hence, $\Lambda(V) \subset \mathcal{L}\left(V^{\vee}, \mathbb{F}\right)=\left(V^{\vee}\right)^{\vee}$.

Map to double dual

Let V be a vector space over a field \mathbb{F}.
A natural map $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}: u \mapsto\left(V^{\vee} \rightarrow \mathbb{F}: \varphi \mapsto \varphi(u)\right)$.

The map $V^{\vee} \rightarrow \mathbb{F}: \varphi \mapsto \varphi(u)$ is linear.
Need to verify that $(a \varphi+b \psi) u=a \varphi(u)+b \psi(u)$. Indeed, $(a \varphi+b \psi)(u)=(a \varphi)(u)+(b \psi)(u)$ by definition of sum for functionals $=a \varphi(u)+b \psi(u)$ by definition of scalar multiplication for functionals.

Hence, $\Lambda(V) \subset \mathcal{L}\left(V^{\vee}, \mathbb{F}\right)=\left(V^{\vee}\right)^{\vee}$.
One more linearity: The map Λ is linear.

Map to double dual

Let V be a vector space over a field \mathbb{F}.
A natural map $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}: u \mapsto\left(V^{\vee} \rightarrow \mathbb{F}: \varphi \mapsto \varphi(u)\right)$.

The map $V^{\vee} \rightarrow \mathbb{F}: \varphi \mapsto \varphi(u)$ is linear.
Need to verify that $(a \varphi+b \psi) u=a \varphi(u)+b \psi(u)$.
Indeed, $(a \varphi+b \psi)(u)=(a \varphi)(u)+(b \psi)(u)$ by definition of sum for functionals $=a \varphi(u)+b \psi(u)$ by definition of scalar multiplication for functionals.

Hence, $\Lambda(V) \subset \mathcal{L}\left(V^{\vee}, \mathbb{F}\right)=\left(V^{\vee}\right)^{\vee}$. One more linearity: The map Λ is linear.
$\Lambda(a u+b w)(\varphi)=\varphi(a u+b w)$ by definition of Λ

Map to double dual

Let V be a vector space over a field \mathbb{F}.
A natural map $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}: u \mapsto\left(V^{\vee} \rightarrow \mathbb{F}: \varphi \mapsto \varphi(u)\right)$.

The map $V^{\vee} \rightarrow \mathbb{F}: \varphi \mapsto \varphi(u)$ is linear.
Need to verify that $(a \varphi+b \psi) u=a \varphi(u)+b \psi(u)$.
Indeed, $(a \varphi+b \psi)(u)=(a \varphi)(u)+(b \psi)(u)$ by definition of sum for functionals $=a \varphi(u)+b \psi(u)$ by definition of scalar multiplication for functionals.

Hence, $\Lambda(V) \subset \mathcal{L}\left(V^{\vee}, \mathbb{F}\right)=\left(V^{\vee}\right)^{\vee}$. One more linearity: The map Λ is linear.
$\Lambda(a u+b w)(\varphi)=\varphi(a u+b w)$ by definition of Λ
$=a \varphi(u)+b \varphi(w)$ by linearity of φ

Map to double dual

Let V be a vector space over a field \mathbb{F}.
A natural map $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}: u \mapsto\left(V^{\vee} \rightarrow \mathbb{F}: \varphi \mapsto \varphi(u)\right)$.

The map $V^{\vee} \rightarrow \mathbb{F}: \varphi \mapsto \varphi(u)$ is linear.
Need to verify that $(a \varphi+b \psi) u=a \varphi(u)+b \psi(u)$.
Indeed, $(a \varphi+b \psi)(u)=(a \varphi)(u)+(b \psi)(u)$ by definition of sum for functionals $=a \varphi(u)+b \psi(u)$ by definition of scalar multiplication for functionals.

Hence, $\Lambda(V) \subset \mathcal{L}\left(V^{\vee}, \mathbb{F}\right)=\left(V^{\vee}\right)^{\vee}$. One more linearity: The map Λ is linear.

$$
\begin{aligned}
\Lambda(a u+b w)(\varphi) & =\varphi(a u+b w) \text { by definition of } \Lambda \\
& =a \varphi(u)+b \varphi(w) \text { by linearity of } \varphi \\
& =a(\Lambda(u)(\varphi))+b(\Lambda(w)(\varphi)) \text { by definition of } \Lambda
\end{aligned}
$$

Map to double dual

Let V be a vector space over a field \mathbb{F}.
A natural map $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}: u \mapsto\left(V^{\vee} \rightarrow \mathbb{F}: \varphi \mapsto \varphi(u)\right)$.

The map $V^{\vee} \rightarrow \mathbb{F}: \varphi \mapsto \varphi(u)$ is linear.
Need to verify that $(a \varphi+b \psi) u=a \varphi(u)+b \psi(u)$.
Indeed, $(a \varphi+b \psi)(u)=(a \varphi)(u)+(b \psi)(u)$ by definition of sum for functionals $=a \varphi(u)+b \psi(u)$ by definition of scalar multiplication for functionals.

Hence, $\Lambda(V) \subset \mathcal{L}\left(V^{\vee}, \mathbb{F}\right)=\left(V^{\vee}\right)^{\vee}$. One more linearity: The map Λ is linear.

$$
\begin{aligned}
\Lambda(a u+b w)(\varphi) & =\varphi(a u+b w) \text { by definition of } \Lambda \\
& =a \varphi(u)+b \varphi(w) \text { by linearity of } \varphi \\
& =a(\Lambda(u)(\varphi))+b(\Lambda(w)(\varphi)) \text { by definition of } \Lambda \\
& =(a \Lambda(u)+b \Lambda(w))(\varphi) \text { by definition of linear operations in }\left(V^{\vee}\right)^{\vee} .
\end{aligned}
$$

Double dual in finite dimensions

Double dual in finite dimensions

Theorem If V is finite-dimensional, then $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}$ is an isomorphism.

Double dual in finite dimensions

Theorem If V is finite-dimensional, then $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}$ is an isomorphism.

Lemma If V is finite-dimensional, then $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}$ is injective.

Double dual in finite dimensions

Theorem If V is finite-dimensional, then $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}$ is an isomorphism.

Lemma If V is finite-dimensional, then $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}$ is injective.

Proof of Lemma. Let $u \in V, u \neq 0$.

Double dual in finite dimensions

Theorem If V is finite-dimensional, then $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}$ is an isomorphism.

Lemma If V is finite-dimensional, then $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}$ is injective.

Proof of Lemma. Let $u \in V, u \neq 0$. Include u as the first vector to a basis of V.

Double dual in finite dimensions

Theorem If V is finite-dimensional, then $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}$ is an isomorphism.

Lemma If V is finite-dimensional, then $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}$ is injective.

Proof of Lemma. Let $u \in V, u \neq 0$. Include u as the first vector to a basis of V. Let φ be the first element of the dual basis.

Double dual in finite dimensions

Theorem If V is finite-dimensional, then $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}$ is an isomorphism.

Lemma If V is finite-dimensional, then $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}$ is injective.

Proof of Lemma. Let $u \in V, u \neq 0$. Include u as the first vector to a basis of V. Let φ be the first element of the dual basis. Then $\Lambda(u) \varphi=\varphi(u)=1 \neq 0$.

Double dual in finite dimensions

Theorem If V is finite-dimensional, then $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}$ is an isomorphism.

Lemma If V is finite-dimensional, then $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}$ is injective.

Proof of Lemma. Let $u \in V, u \neq 0$. Include u as the first vector to a basis of V. Let φ be the first element of the dual basis. Then $\Lambda(u) \varphi=\varphi(u)=1 \neq 0$. Hence $u \notin$ null Λ.

Double dual in finite dimensions

Theorem If V is finite-dimensional, then $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}$ is an isomorphism.

Lemma If V is finite-dimensional, then $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}$ is injective.

Proof of Lemma. Let $u \in V, u \neq 0$. Include u as the first vector to a basis of V. Let φ be the first element of the dual basis. Then $\Lambda(u) \varphi=\varphi(u)=1 \neq 0$. Hence $u \notin \operatorname{null} \Lambda$. So, null $\Lambda=0$ and Λ is injective.

Double dual in finite dimensions

Theorem If V is finite-dimensional, then $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}$ is an isomorphism.

Lemma If V is finite-dimensional, then $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}$ is injective.

Proof of Lemma. Let $u \in V, u \neq 0$. Include u as the first vector to a basis of V. Let φ be the first element of the dual basis. Then $\Lambda(u) \varphi=\varphi(u)=1 \neq 0$. Hence $u \notin \operatorname{null} \Lambda$. So, null $\Lambda=0$ and Λ is injective.

Proof of Theorem. As we know, $\operatorname{dim} V^{\vee}=\operatorname{dim} V$.

Double dual in finite dimensions

Theorem If V is finite-dimensional, then $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}$ is an isomorphism.

Lemma If V is finite-dimensional, then $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}$ is injective.

Proof of Lemma. Let $u \in V, u \neq 0$. Include u as the first vector to a basis of V. Let φ be the first element of the dual basis. Then $\Lambda(u) \varphi=\varphi(u)=1 \neq 0$. Hence $u \notin \operatorname{null} \Lambda$. So, null $\Lambda=0$ and Λ is injective.

Proof of Theorem. As we know, $\operatorname{dim} V^{\vee}=\operatorname{dim} V$. Therefore $\operatorname{dim}\left(V^{\vee}\right)^{\vee}=\operatorname{dim} V^{\vee}=\operatorname{dim} V$.

Double dual in finite dimensions

Theorem If V is finite-dimensional, then $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}$ is an isomorphism.

Lemma If V is finite-dimensional, then $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}$ is injective.

Proof of Lemma. Let $u \in V, u \neq 0$. Include u as the first vector to a basis of V. Let φ be the first element of the dual basis. Then $\Lambda(u) \varphi=\varphi(u)=1 \neq 0$. Hence $u \notin \operatorname{null} \Lambda$. So, null $\Lambda=0$ and Λ is injective.

Proof of Theorem. As we know, $\operatorname{dim} V^{\vee}=\operatorname{dim} V$. Therefore $\operatorname{dim}\left(V^{\vee}\right)^{\vee}=\operatorname{dim} V^{\vee}=\operatorname{dim} V$. We know that an injective linear map of a vector space to a vector space of the same dimension is an isomorphism.

Double dual in finite dimensions

Theorem If V is finite-dimensional, then $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}$ is an isomorphism.

Lemma If V is finite-dimensional, then $\Lambda: V \rightarrow\left(V^{\vee}\right)^{\vee}$ is injective.

Proof of Lemma. Let $u \in V, u \neq 0$. Include u as the first vector to a basis of V. Let φ be the first element of the dual basis. Then $\Lambda(u) \varphi=\varphi(u)=1 \neq 0$. Hence $u \notin \operatorname{null} \Lambda$. So, null $\Lambda=0$ and Λ is injective.

Proof of Theorem. As we know, $\operatorname{dim} V^{\vee}=\operatorname{dim} V$. Therefore $\operatorname{dim}\left(V^{\vee}\right)^{\vee}=\operatorname{dim} V^{\vee}=\operatorname{dim} V$. We know that an injective linear map of a vector space to a vector space of the same dimension is an isomorphism.

In the proof of Lemma, we used the assumption that V is finite-dimensional. Lemma holds true without this assumption. For infinite-dimensional space it requires tools like transfinite induction. But Theorem holds true only for a finite-dimensional V, anyway.

Duality

Duality

If $\operatorname{dim} V<\infty$, then $\left(V^{\vee}\right)^{\vee}$ is identified with V by Λ.

Duality

If $\operatorname{dim} V<\infty$, then $\left(V^{\vee}\right)^{\vee}$ is identified with V by Λ.
The space dual to V^{\vee} is identified with V.

Duality

If $\operatorname{dim} V<\infty$, then $\left(V^{\vee}\right)^{\vee}$ is identified with V by Λ.
The space dual to V^{\vee} is identified with V.
This suggests more symmetric notations:

Duality

If $\operatorname{dim} V<\infty$, then $\left(V^{\vee}\right)^{\vee}$ is identified with V by Λ.
The space dual to V^{\vee} is identified with V.
This suggests more symmetric notations:
Denote $\varphi(u)$ by $\langle\varphi \mid u\rangle$ for $u \in V$ and $\varphi \in V^{\vee}$.

Duality

If $\operatorname{dim} V<\infty$, then $\left(V^{\vee}\right)^{\vee}$ is identified with V by Λ.
The space dual to V^{\vee} is identified with V.
This suggests more symmetric notations:
Denote $\varphi(u)$ by $\langle\varphi \mid u\rangle$ for $u \in V$ and $\varphi \in V^{\vee}$. We get a bilinear map

$$
V^{\vee} \times V \rightarrow \mathbb{F}:(\varphi, u) \mapsto\langle\varphi \mid u\rangle
$$

Duality

If $\operatorname{dim} V<\infty$, then $\left(V^{\vee}\right)^{\vee}$ is identified with V by Λ.
The space dual to V^{\vee} is identified with V.
This suggests more symmetric notations:
Denote $\varphi(u)$ by $\langle\varphi \mid u\rangle$ for $u \in V$ and $\varphi \in V^{\vee}$. We get a bilinear map

$$
V^{\vee} \times V \rightarrow \mathbb{F}:(\varphi, u) \mapsto\langle\varphi \mid u\rangle
$$

Bilinear means $\langle\varphi \mid a u+b w\rangle=a\langle\varphi \mid u\rangle+b\langle\varphi \mid w\rangle$

$$
\text { and }\langle a \varphi+b \psi \mid u\rangle=a\langle\varphi \mid u\rangle+b\langle\psi \mid u\rangle \text {. }
$$

Duality

If $\operatorname{dim} V<\infty$, then $\left(V^{\vee}\right)^{\vee}$ is identified with V by Λ.
The space dual to V^{\vee} is identified with V.
This suggests more symmetric notations:
Denote $\varphi(u)$ by $\langle\varphi \mid u\rangle$ for $u \in V$ and $\varphi \in V^{\vee}$. We get a bilinear map

$$
V^{\vee} \times V \rightarrow \mathbb{F}:(\varphi, u) \mapsto\langle\varphi \mid u\rangle
$$

Bilinear means $\langle\varphi \mid a u+b w\rangle=a\langle\varphi \mid u\rangle+b\langle\varphi \mid w\rangle$

$$
\text { and }\langle a \varphi+b \psi \mid u\rangle=a\langle\varphi \mid u\rangle+b\langle\psi \mid u\rangle \text {. }
$$

The formula $T^{\vee}(\varphi)(u)=\varphi(T u)$ which defines T^{\vee} turns into $\left\langle T^{\vee} \varphi \mid u\right\rangle=\langle\varphi \mid T u\rangle$.

Duality

If $\operatorname{dim} V<\infty$, then $\left(V^{\vee}\right)^{\vee}$ is identified with V by Λ.
The space dual to V^{\vee} is identified with V.
This suggests more symmetric notations:
Denote $\varphi(u)$ by $\langle\varphi \mid u\rangle$ for $u \in V$ and $\varphi \in V^{\vee}$. We get a bilinear map

$$
V^{\vee} \times V \rightarrow \mathbb{F}:(\varphi, u) \mapsto\langle\varphi \mid u\rangle .
$$

Bilinear means $\langle\varphi \mid a u+b w\rangle=a\langle\varphi \mid u\rangle+b\langle\varphi \mid w\rangle$

$$
\text { and }\langle a \varphi+b \psi \mid u\rangle=a\langle\varphi \mid u\rangle+b\langle\psi \mid u\rangle \text {. }
$$

The formula $T^{\vee}(\varphi)(u)=\varphi(T u)$ which defines T^{\vee} turns into $\left\langle T^{\vee} \varphi \mid u\right\rangle=\langle\varphi \mid T u\rangle$.
Paul Dirac suggested to rename vectors and functionals according these their rôles in the bracket.

Duality

If $\operatorname{dim} V<\infty$, then $\left(V^{\vee}\right)^{\vee}$ is identified with V by Λ.
The space dual to V^{\vee} is identified with V.
This suggests more symmetric notations:
Denote $\varphi(u)$ by $\langle\varphi \mid u\rangle$ for $u \in V$ and $\varphi \in V^{\vee}$. We get a bilinear map

$$
V^{\vee} \times V \rightarrow \mathbb{F}:(\varphi, u) \mapsto\langle\varphi \mid u\rangle .
$$

Bilinear means $\langle\varphi \mid a u+b w\rangle=a\langle\varphi \mid u\rangle+b\langle\varphi \mid w\rangle$

$$
\text { and }\langle a \varphi+b \psi \mid u\rangle=a\langle\varphi \mid u\rangle+b\langle\psi \mid u\rangle \text {. }
$$

The formula $T^{\vee}(\varphi)(u)=\varphi(T u)$ which defines T^{\vee} turns into $\left\langle T^{\vee} \varphi \mid u\right\rangle=\langle\varphi \mid T u\rangle$.
Paul Dirac suggested to rename vectors and functionals according these their rôles in the bracket.
A functional φ is always enclosed like $\langle\varphi|$ and called a bra vector

Duality

If $\operatorname{dim} V<\infty$, then $\left(V^{\vee}\right)^{\vee}$ is identified with V by Λ.
The space dual to V^{\vee} is identified with V.
This suggests more symmetric notations:
Denote $\varphi(u)$ by $\langle\varphi \mid u\rangle$ for $u \in V$ and $\varphi \in V^{\vee}$. We get a bilinear map

$$
V^{\vee} \times V \rightarrow \mathbb{F}:(\varphi, u) \mapsto\langle\varphi \mid u\rangle .
$$

Bilinear means $\langle\varphi \mid a u+b w\rangle=a\langle\varphi \mid u\rangle+b\langle\varphi \mid w\rangle$

$$
\text { and }\langle a \varphi+b \psi \mid u\rangle=a\langle\varphi \mid u\rangle+b\langle\psi \mid u\rangle \text {. }
$$

The formula $T^{\vee}(\varphi)(u)=\varphi(T u)$ which defines T^{\vee} turns into $\left\langle T^{\vee} \varphi \mid u\right\rangle=\langle\varphi \mid T u\rangle$.
Paul Dirac suggested to rename vectors and functionals according these their rôles in the bracket.

A functional φ is always enclosed like $\langle\varphi|$ and called a bra vector a vector u is always enclosed like $|u\rangle$ and called a ket vector.

