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Theorem If V is finite-dimensional, then Λ : V → (V ∨)∨ is an isomorphism.

Lemma If V is finite-dimensional, then Λ : V → (V ∨)∨ is injective.

Proof of Lemma. Let u ∈ V , u 6= 0 . Include u as the first vector to a basis of V .
Let ϕ be the first element of the dual basis. Then Λ(u)ϕ = ϕ(u) = 1 6= 0 .
Hence u 6∈ null Λ. So, null Λ = 0 and Λ is injective. �

Proof of Theorem. As we know, dimV ∨ = dimV . Therefore
dim(V ∨)∨ = dimV ∨ = dimV . We know that an injective linear map of a vector space
to a vector space of the same dimension is an isomorphism. �

In the proof of Lemma, we used the assumption that V is finite-dimensional. Lemma
holds true without this assumption. For infinite-dimensional space it requires tools like
transfinite induction. But Theorem holds true only for a finite-dimensional V , anyway.
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