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Let V be a vector space, v ∈ V and U be a subspace of V . Then
v + U = {v + u | u ∈ U} is called an affine subset of V parallel to U .

3.85 Two affine subsets parallel to U are equal or disjoint
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are disoint i.e., A ∩B = ∅ for any A,B ∈ Γ
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3.85 means that affine sets parallel to U form a partition of V .

The set of elements of a partition of X is called the quotient set of X by the partition.
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The set of affine subsets of V parallel to U is called the quotient space V/U .

In formula: V/U = {v + U | v ∈ V } .
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