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Classification of linear maps, revisited and continued 2 /17

Isomorphisms of linear maps
Recall that there is a category of linear maps, in which
an object is a linearmap 7 :V — W,
V X V—.— X
and a morphism J{T — Lg is a commutative diagram |, SJ,
W Y e 4
A+———X X+——V A+——V
e N I I I
composition: U g g T = U P
B Ry Vv My B oMy
—1
Vi—e—>nV V — X X +——/—V
identity: |, ldv TJ, inverse: J{T - SJ, = J,S - TJ,
Wy WMy Y e W
V—.—7X
In this category, an isomorphism is a commutative diagram |, SJ{
in which L and M are isomorphisms of vector spaces. w2y
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Right-left equivalence

% X Vv — X
In other words, an isomorphism J{T — J{S = |r SJ,
4 Y w2y

is a pair of isomorphisms V' Lo X and W2 Y such that S = MTL!.

S is isomorphic to T' <=
S can be obtained from 7' by multiplication from right and left by linear isomorphisms.

Another name: right-left equivalence or R-L-equivalence.

Riddle What is left-equivalence?
right-eqivalence?
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Example of linear map

Let us recover a linear map 7' : R? — R? by its values.
null 7 I span(w)

range T’

Take (1,1). It'simageis T'(1,1) = (2,—1). What have we learned about 7'7?
T'(span(1,1)) = span(2,—1).

Take (1,2). It'simageis 7(1,2) = (0,0). T'(span(1,2))={(0,0)}. span(1,2) C nullT".
In fact span(1,2) = null7". Why?
Choose a basis v of null 7. Extend it to a basis (v,u) of R*. Tu is basis of rangeT .
Extend Tu to a basis (T'u,w) of R?.

R? = span(v) @ span(u) REIN span(w) @ span(Tu) = R?.
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Isomorphism classification of linear maps

Theorem Let V' and W be vector spaces over [ of finite dimensions p = dim V' and
g=dimW . Let V LW be a linear map with kT =r and dim7 =n.

Then T is R-L-equivalent to 0 ®id : F* ¢ F" — FI" g F".

Proof. Let v = (vy,...,v,) be a basis of null7". Extend it to a basis
U1y ooy UpyUp,y ..., Uy, of V. Denote span(uy, ..., u,—n) by U.
Clearly, V = span(vy,...,v,) ®span(uy,...,up—p,) =nullT G U.
The restriction T'|y : U — W s injective, because U Nnull7 =0, and
¢ =Twr,.on) ® T,y * F* B FP" — null T & U is an isomorphism.
(Twy, ..., Tu,_,) is a basis of range7". Hence, p—n =r.
Extend Tuy,...,Tu, to a basis wy,..., we_p, Tus,...,Tu, of W.
Denote span(wy, ..., w,,) by C.
Y ="Ty. . wyr ®Tru,. . 1u F"OF — C @rangeT is an isomorphism.
Isomorphisms ¢ and v form an isomorphism (0 @ id) — T":

Frof — 5 mllTel —=—s V

Joos for s

FiraF Y O@rangeT —— W
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Numerical invariants of a linear map

3.22 Corollary. Fundamental Theorem of Linear Maps.
Let V' be a finite-dimensional vector space and 7" € L(V, ).
Then rangeT is finite-dimensional and dimV =dimnull 7'+ rk7T".

Proof. By Theorem applied to 7| : V — range T’
there exists an isomorphism FdimnullT @ pdimrangeT _y 37— g

rkT < dim W for any linear map 7: V — W .
Proof. rangeT is a subspace of W . =
Alinear map T :V — W with dimV =p, dimW = ¢ and tk7T = r exists
<~ r<pandr<gq.

Linear maps 7: V. — W and T : V' — W’ are isomorphic
<— dimV =dimV’, dimW =dim W’ and rkT =rkT".

7/ 17
Two more corollaries
3.23 Theorem. A map to a smaller dimensional space is not injective
If dimV > dim W then any linear map V' — W is not injective.
Proof. Let 7' L(V,W). Then dimnull 7' = dim V' — dimrange T’
>dimV —dimW > 0. Hence nullT > 0. n
3.24 Theorem. A map to a larger dimensional space is not surjective
If dimV < dim W, then any linear map V' — W s not surjective.
Proof. Let 7' L(V,W). Then dimrange7 = dimV — dimnull 7’
<dimV <dimW. Hence rangeT # W . "
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Bijectivity of an operator

3.67 A linear map from a vector space to itself is called an

Recall:
operator.

3.69 For an operator in a finite dimensional vector space

injectivity is equivalent to surjectivity

Let V' be a finite-dimensional vector space and 7" € L(V'). Then
T is bijective <= T'is injective <= T is surjective .

Proof. bijective — injective. By definition.

injective — surjective. 7T isinjective —> rtk7T =dimV —dimnull7 = dim V' "

surjective — injective. T is surjective =— dimnull7” =dimV —rkT =0 "
injective or surjective —> surjective and injective — bijective "
In infinite-dimensional space
surjectivity #- injectivity
Example: > — F>: (21, 29,..., 2y ...) = (T9,..., Ty ...)
injectivity = surjectivity
Example: > — F>: (21, 29,...,2y...) = (0,21, 29, ..., 2y ...)
9 /17
Back to matrices 10 / 17
Encoding a linear map by its values on a basis
3.5 Linear maps and basis of domain
Let vy,...,v, beabasisof V and wy,...,w, € W. Then
3 a unique linear map 7" : V' — W such that Tv; =w; for j =1,...,n.
Proof. Existense.
Consider linear maps 7T, : F* — V and T, : F"* — W,
where v = (vy,...,v,) and w = (wy,...,wy,).
T, is invertible, because v is a basis of V.
-1 .
The map v I Ty maps v; e — w; . "
Uniqueness. Let 7": V — W be any linear map with Tv; = w; for j =1,...,n.
Then F* = v Lo maps ¢e; — v; — w;. Hence T, 0T =T,
and T=T 'oT,. "
Reformulation. Any map {v,...,v,} — W of a basis of V' to a vector space W
extends uniquely to a linear map V' — WW.
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Coordinate systems

We have seen that:
e Any finite-dimensional vector space V' over F is isomorphic to F" with n =dimV .

e Any basis u = (uy,...,u,) of V' determines an isomorphism
Ty :F" = Voi(zg...,2,) = 21Uy + . Ty, .

e Any isomorphism T :F* — V is T,, where u = (Tey,...,Te,).

Definition. An isomorphism T, : " — V is called
the coordinate system in V' determined by a basis u = (uy,...,uy,).
For a vector v € V', the coordinates z1,...,x, of T, !(v) are called
the coordinates of v in the basis u.

The coordinates zq,...,x, of v in a basis uy,...,u, are determined by the equality
V=2T1U] + + TpUy .
The equality v = zquy + - - - + z,u, is called

a decomposition of v in the basis uq,...,u,.
12 /17
From a linear map [F? — [F¢ to its matrix
Any linear map 7' : F? — [F? is defined by the list u = (uy,...,uy) = (Tey,...,Te,)
according to the formula T'(z1,...,2,) = 21wy + -+ - + 2pu, = v1Te; + - - - + 2,1, .
Recall that e; = (1,0,...,0), ex =(0,1,0,...,0), ..., ¢, =(0,...,0,1).
Let Te; = (A1, ..., Ay) foreach i=1,...,p. Then
T(x,...,xp) =x1Te; +-- -+ x,Te,
= xl(Al,b e 7Aq,1) + .CL’Q(ALQ, ceey Aq,g) + -+ xp(Al,pu ooy Aq,p)
= (Al,lxl + ALQIQ + 4 A17p$p, ey Aq711'1 + Aq72$2 + 4 A‘LPZCP)'
Let us think of elements of a coordinate space "™ as columns of m numbers. Then
T A1,1$1 + ALQI'Q + -t Al,pl’p Al,l ALZ . Al,p I
+ T2 | Ag1xy 4 Ag oo + - 4 Ag py As1 Agg ... Ay, T
ZCp Aq711'1 + Aq72$2 —+ 4 AquZCp Aq71 Aq72 Ce Aq,p ZCp
Conclusion: any linear map F? — [F? is a multiplication by a ¢ x p-matrix.
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Matrices

3.30 Definition. Let ¢ and p denote positive integers.
A ¢ x p matrix A is a rectangular array of elements of ' with ¢ rows and p columns:

Al,l 500 Al,p
A= : 5
A Agp

q,1

A1 is the entry in row j and column k.

3.32 Definition. Let T € L(V,W), v = (v1,...,vp) a basisin V, w= (wy,...,w,) a
basis in TW'. The matrix of 7" with respect to these bases is the g-by-p matrix M(T") whose
entries A, are defned by Tv, = A; ywy + - - + Ay pwy -

Al,l ce ALP
(Tvl,...,TUp):(wl,...,wq)
A Agp

q,1

The kth column of M(T) is formed of the coordinates of the kth basis vector vy, .

14 / 17
The matrix of composition
3.43 The matrix of a composition of linear maps
If T:U —V and S:V — W are linear maps, then M(ST) = M(S)M(T).
Proof. Let u,v,w be bases of U, V, W, respectively, and M(S)=A, M(T)=B.
(ST)uk = S(BLkvl + BQJg’UQ + -+ Bn,kvn) = B1,k5U1 + BZkS’UQ + -+ Bn,ksvn
=B k(A 1wy + Agqwa + - - -+ A1)
+Bs (A1 2wy + Az owy + - - - + Ay 2w0p,)
+Bn,k(A1,nw1 + A2,nw2 + -+ Am,nwm)
- Al,rBr,kwl + Z AQ,rBr,kw2 +-+ Z Am,rBr,kwm
r=1 r=1 r=1
A171 e Al,n Bl,k
= (wy ... W) : : :
Am,l s Am,n Bn,k’
A171 . Al,n Bl,l e Bl,p
Hence (STuy...STuy) = (wy...wy,) ; : : ;
Ama . Apn B,: ... B,
15 /17



Systems of linear equations vs. linear maps

Any system of ¢ linear equations with p unknowns looks as follows:
Apjzy + -+ Az, =by

Agixy + -+ Ay, =by

Agrzy + -+ Agpry =by
It can be re-written as a matrix equation AX = B,
where
Al,l e Al,p bl T

) )

Aga Agp bq Lp
Each solution of AX = B is a vector from T~ 1(B),

where T': F? — T defined by matrix A, namely T : X — AX.

This allows to convert results about linear maps
into results about systems of linear equations.
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Corollaries about systems of linear equations

Recall:  3.23 dimV >dimW = any linear map V — W is not injective.

3.26 (Corollary of 3.23) Homogeneous system of linear equations.
A homogeneous system of linear equations with more variables than equations
has nonzero solutions.

D
g Ay gz =0
k=1

For a system

p
E Ang{Ijk =0
k=1

Define T': F? — F? by
T(.’L’l, e ,.CL'p) = (Zi:l Al,kxkp ey Zi:l Aq,kxk')
If p> q, then T is not injective by 3.23 and null7" # 0.

Recall: 3.24 dimV < dimW = any linear map V' — W is not surjective.
3.29 (Corollary of 2.34) Inhomogeneous system of linear equations

An inhomogeneous system of linear equations with more equations than variables
has no solution for some choice of the constant terms.
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