Advanced Linear Algebra MAT 315

Oleg Viro

02/25/2020, Lecture 3

LI	lassification of linear maps, revisited and continued	2
	Isomorphisms of linear maps	3
	Right-left equivalence	
	Example of linear map	5
	Isomorphism classification of linear maps	6
	Numerical invariants of a linear map	7
	Two more corollaries	8
	Bijectivity of an operator	ç
Ba	ack to matrices	10
	Encoding a linear map by its values on a basis	11
		10
	Coordinate systems	12
	From a linear map $\mathbb{F}^p \to \mathbb{F}^q$ to its matrix	13
	From a linear map $\mathbb{F}^p o \mathbb{F}^q$ to its matrix	13 14
	From a linear map $\mathbb{F}^p o \mathbb{F}^q$ to its matrix	13 14 15

Isomorphisms of linear maps

Recall that there is a **category of linear maps**, in which an **object** is a linear map $T:V\to W$,

and a **morphism**
$$\begin{array}{c} V & X \\ \downarrow_T \to & \downarrow_S \\ W & Y \end{array} \text{ is a commutative diagram } \begin{array}{c} V & \longrightarrow X \\ \downarrow_T & & \downarrow_S \\ W & \stackrel{M}{\longrightarrow} Y \end{array}$$

In this category, an **isomorphism** is a commutative diagram $V \xrightarrow{L} X$ $\downarrow_{T} \qquad \downarrow_{S} \downarrow$ in which L and M are isomorphisms of vector spaces. $W \xrightarrow{M} Y$

3 / 17

Right-left equivalence

is a pair of isomorphisms $V \xrightarrow{L} X$ and $W \xrightarrow{M} Y$ such that $S = MTL^{-1}$.

S is isomorphic to $T \iff$

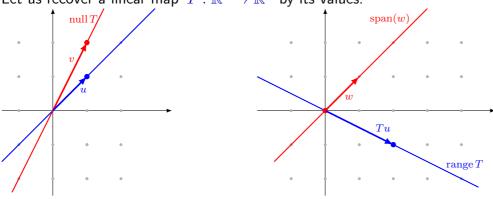
S can be obtained from T by multiplication from right and left by linear isomorphisms.

Another name: right-left equivalence or R-L-equivalence.

Riddle What is left-equivalence? right-eqivalence?

Example of linear map

Let us recover a linear map $T: \mathbb{R}^2 \to \mathbb{R}^2$ by its values.



Take (1,1). It's image is T(1,1)=(2,-1). What have we learned about T? $T(\mathrm{span}(1,1))=\mathrm{span}(2,-1)$.

Take (1,2). It's image is T(1,2) = (0,0). $T(\mathrm{span}(1,2)) = \{(0,0)\}$. $\mathrm{span}(1,2) \subset \mathrm{null}\, T$. In fact $\mathrm{span}(1,2) = \mathrm{null}\, T$. Why?

Choose a basis v of $\operatorname{null} T$. Extend it to a basis (v,u) of \mathbb{R}^2 . Tu is basis of $\operatorname{range} T$. Extend Tu to a basis (Tu,w) of \mathbb{R}^2 .

 $\mathbb{R}^2 = \operatorname{span}(v) \oplus \operatorname{span}(u) \xrightarrow{0 \oplus T} \operatorname{span}(w) \oplus \operatorname{span}(Tu) = \mathbb{R}^2$.

5 / 17

Isomorphism classification of linear maps

Theorem Let V and W be vector spaces over $\mathbb F$ of finite dimensions $p=\dim V$ and $q=\dim W$. Let $V\stackrel{T}{\to} W$ be a linear map with $\operatorname{rk} T=r$ and $\dim T=n$.

Then T is R-L-equivalent to $0 \oplus \mathrm{id} : \mathbb{F}^n \oplus \mathbb{F}^r \to \mathbb{F}^{q-r} \oplus \mathbb{F}^r$.

Proof. Let $v = (v_1, \dots, v_n)$ be a basis of $\operatorname{null} T$. Extend it to a basis

 $v_1, \ldots, v_n, u_1, \ldots, u_{p-n}$ of V. Denote $\operatorname{span}(u_1, \ldots, u_{p-n})$ by U.

Clearly, $V = \operatorname{span}(v_1, \ldots, v_n) \oplus \operatorname{span}(u_1, \ldots, u_{p-n}) = \operatorname{null} T \oplus U$.

The restriction $T|_U:U\to W$ is injective, because $U\cap\operatorname{null} T=0$, and

 $\phi = T_{(v_1,\dots,v_n)} \oplus T_{(u_1,\dots,u_{p-n})} : \mathbb{F}^n \oplus \mathbb{F}^{p-n} \to \operatorname{null} T \oplus U \text{ is an isomorphism.}$

 (Tu_1,\ldots,Tu_{p-n}) is a basis of $\operatorname{range} T$. Hence, p-n=r .

Extend Tu_1, \ldots, Tu_r to a basis $w_1, \ldots, w_{q-r}, Tu_1, \ldots, Tu_r$ of W.

Denote span (w_1, \ldots, w_{q-r}) by C.

 $\psi = T_{w_1,\dots,w_{q-r}} \oplus T_{Tu_1,\dots,Tu_r} : \mathbb{F}^{q-r} \oplus \mathbb{F}^r \to C \oplus \operatorname{range} T \text{ is an isomorphism.}$

Isomorphisms ϕ and ψ form an isomorphism $(0 \oplus \mathrm{id}) \to T$:

$$\mathbb{F}^{n} \oplus \mathbb{F}^{r} \xrightarrow{\phi} \text{null } T \oplus U \xrightarrow{=} V$$

$$\downarrow_{0 \oplus \text{id}} \qquad \downarrow_{0 \oplus T} \qquad \downarrow_{T} \qquad \downarrow$$

$$\mathbb{F}^{q-r} \oplus \mathbb{F}^{r} \xrightarrow{\psi} C \oplus \text{range } T \xrightarrow{=} W$$

Numerical invariants of a linear map

3.22 Corollary. Fundamental Theorem of Linear Maps.

Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V, W)$. Then $\operatorname{range} T$ is finite-dimensional and $\dim V = \dim \operatorname{null} T + \operatorname{rk} T$.

Proof. By Theorem applied to $T|: V \to \operatorname{range} T$

there exists an isomorphism $\,\mathbb{F}^{\dim \operatorname{null} T}\oplus \mathbb{F}^{\dim \operatorname{range} T} o V\,.\,$

 $\operatorname{rk} T \leq \dim W$ for any linear map $T: V \to W$.

Proof. range T is a subspace of W.

A linear map $T:V \to W$ with $\dim V=p$, $\dim W=q$ and $\operatorname{rk} T=r$ exists

 \iff $r \leq p$ and $r \leq q$.

Linear maps $T:V \to W$ and $T':V' \to W'$ are isomorphic

 $\iff \dim V = \dim V' \text{ , } \dim W = \dim W' \text{ and } \operatorname{rk} T = \operatorname{rk} T' \, .$

7 / 17

Two more corollaries

3.23 Theorem. A map to a smaller dimensional space is not injective If $\dim V > \dim W$ then any linear map $V \to W$ is not injective.

Proof. Let $T \in \mathcal{L}(V, W)$. Then $\dim \operatorname{null} T = \dim V - \dim \operatorname{range} T$ $\geq \dim V - \dim W > 0$. Hence $\operatorname{null} T > 0$.

3.24 Theorem. A map to a larger dimensional space is not surjective If $\dim V < \dim W$, then any linear map $V \to W$ is not surjective.

Proof. Let $T \in \mathcal{L}(V, W)$. Then $\dim \operatorname{range} T = \dim V - \dim \operatorname{null} T$ $\leq \dim V < \dim W$. Hence $\operatorname{range} T \neq W$.

Bijectivity of an operator

Recall:

3.67 A linear map from a vector space to itself is called an **operator**.

3.69 For an operator in a finite dimensional vector space

injectivity is equivalent to surjectivity

Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V)$. Then T is bijective $\iff T$ is injective $\iff T$ is surjective .

Proof. bijective \Longrightarrow **injective.** By definition.

injective \implies surjective. T is injective \implies $\operatorname{rk} T = \dim V - \dim \operatorname{null} T = \dim V$

surjective \Longrightarrow **injective.** T is surjective \Longrightarrow $\dim \operatorname{null} T = \dim V - \operatorname{rk} T = 0$

injective or surjective \implies surjective and injective \implies bijective

In infinite-dimensional space

Example: $\mathbb{F}^{\infty} \to \mathbb{F}^{\infty} : (x_1, x_2, \dots, x_n \dots) \mapsto (x_2, \dots, x_n \dots)$

Example: $\mathbb{F}^{\infty} \to \mathbb{F}^{\infty} : (x_1, x_2, \dots, x_n \dots) \mapsto (0, x_1, x_2, \dots, x_n \dots)$

9 / 17

Back to matrices

10 / 17

Encoding a linear map by its values on a basis

3.5 Linear maps and basis of domain

Let v_1,\ldots,v_n be a basis of V and $w_1,\ldots,w_n\in W$. Then \exists a unique linear map $T:V\to W$ such that $Tv_j=w_j$ for $j=1,\ldots,n$.

Proof. Existense.

Consider linear maps $T_v:\mathbb{F}^n o V$ and $T_w:\mathbb{F}^n o W$,

where $v = (v_1, \ldots, v_n)$ and $w = (w_1, \ldots, w_n)$.

 T_v is invertible, because v is a basis of V.

The map $V \xrightarrow{T_v^{-1}} \mathbb{F}^n \xrightarrow{T_w} W$ maps $v_j \mapsto e_j \mapsto w_j$.

Uniqueness. Let $T: V \to W$ be any linear map with $Tv_j = w_j$ for $j = 1, \ldots, n$.

Then $\mathbb{F}^n \xrightarrow{T_v} V \xrightarrow{T} W$ maps $e_j \mapsto v_j \mapsto w_j$. Hence $T_v \circ T = T_w$

and $T = T_v^{-1} \circ T_w$.

Reformulation. Any map $\{v_1,\ldots,v_n\} \to W$ of a basis of V to a vector space W extends uniquely to a linear map $V \to W$.

Coordinate systems

We have seen that:

- Any finite-dimensional vector space V over \mathbb{F} is isomorphic to \mathbb{F}^n with $n = \dim V$.
- Any basis $u=(u_1,\ldots,u_n)$ of V determines an isomorphism $T_u:\mathbb{F}^n\to V:(x_1\ldots,x_n)\mapsto x_1u_1+\ldots x_nu_n$.
- Any isomorphism $T: \mathbb{F}^n \to V$ is T_u , where $u = (Te_1, \dots, Te_n)$.

Definition. An isomorphism $T_u: \mathbb{F}^n \to V$ is called

the **coordinate system** in V determined by a basis $u = (u_1, \ldots, u_n)$.

For a vector $v \in V$, the coordinates x_1, \ldots, x_n of $T_u^{-1}(v)$ are called

the **coordinates** of v in the basis u.

The coordinates x_1, \ldots, x_n of v in a basis u_1, \ldots, u_n are determined by the equality $v = x_1u_1 + \cdots + x_nu_n$.

The equality $v = x_1u_1 + \cdots + x_nu_n$ is called

a **decomposition** of v in the basis u_1, \ldots, u_n .

12 / 17

From a linear map $\mathbb{F}^p \to \mathbb{F}^q$ to its matrix

Any linear map $T: \mathbb{F}^p \to \mathbb{F}^q$ is defined by the list $u = (u_1, \dots, u_p) = (Te_1, \dots, Te_p)$ according to the formula $T(x_1, \dots, x_p) = x_1u_1 + \dots + x_pu_p = x_1Te_1 + \dots + x_pTe_p$.

Recall that $e_1 = (1, 0, \dots, 0)$, $e_2 = (0, 1, 0, \dots, 0)$, ..., $e_p = (0, \dots, 0, 1)$.

Let $Te_i = (A_{1,i}, \dots, A_{q,i})$ for each $i = 1, \dots, p$. Then

$$T(x_1, ..., x_p) = x_1 T e_1 + \dots + x_p T e_p$$

$$= x_1(A_{1,1}, ..., A_{q,1}) + x_2(A_{1,2}, ..., A_{q,2}) + \dots + x_p(A_{1,p}, ..., A_{q,p})$$

$$= (A_{1,1}x_1 + A_{1,2}x_2 + \dots + A_{1,p}x_p, ..., A_{q,1}x_1 + A_{q,2}x_2 + \dots + A_{q,p}x_p).$$

Let us think of elements of a coordinate space \mathbb{F}^m as columns of m numbers. Then

$$T\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix} = \begin{pmatrix} A_{1,1}x_1 + A_{1,2}x_2 + \dots + A_{1,p}x_p \\ A_{2,1}x_1 + A_{2,2}x_2 + \dots + A_{2,p}x_p \\ \vdots \\ A_{q,1}x_1 + A_{q,2}x_2 + \dots + A_{q,p}x_p \end{pmatrix} = \begin{pmatrix} A_{1,1} & A_{1,2} & \dots & A_{1,p} \\ A_{2,1} & A_{2,2} & \dots & A_{2,p} \\ \vdots & \vdots & \dots & \vdots \\ A_{q,1} & A_{q,2} & \dots & A_{q,p} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix}$$

Conclusion: any linear map $\mathbb{F}^p \to \mathbb{F}^q$ is a multiplication by a $q \times p$ -matrix.

Matrices

3.30 **Definition**. Let q and p denote positive integers.

A $q \times p$ matrix A is a rectangular array of elements of \mathbb{F} with q rows and p columns:

$$A = \begin{pmatrix} A_{1,1} & \dots & A_{1,p} \\ \vdots & & \vdots \\ A_{q,1} & \dots & A_{q,p} \end{pmatrix}.$$

 $A_{j,k}$ is the entry in row j and column k.

3.32 **Definition.** Let $T \in \mathcal{L}(V,W)$, $v = (v_1,\ldots,v_p)$ a basis in V, $w = (w_1,\ldots,w_q)$ a basis in W. The matrix of T with respect to these bases is the q-by-p matrix $\mathcal{M}(T)$ whose entries $A_{j,k}$ are defined by $Tv_k = A_{1,k}w_1 + \cdots + A_{q,k}w_q$.

$$(Tv_1, \dots, Tv_p) = (w_1, \dots, w_q) \begin{pmatrix} A_{1,1} & \dots & A_{1,p} \\ \vdots & & \vdots \\ A_{q,1} & \dots & A_{q,p} \end{pmatrix}$$

The kth column of $\mathcal{M}(T)$ is formed of the coordinates of the kth basis vector v_k .

14 / 17

The matrix of composition

3.43 The matrix of a composition of linear maps

If $T: U \to V$ and $S: V \to W$ are linear maps, then $\mathcal{M}(ST) = \mathcal{M}(S)\mathcal{M}(T)$.

Proof. Let u, v, w be bases of U, V, W, respectively, and $\mathcal{M}(S) = A$, $\mathcal{M}(T) = B$.

$$(ST)u_k = S(B_{1,k}v_1 + B_{2,k}v_2 + \dots + B_{n,k}v_n) = B_{1,k}Sv_1 + B_{2,k}Sv_2 + \dots + B_{n,k}Sv_n$$

$$= B_{1,k}(A_{1,1}w_1 + A_{2,1}w_2 + \dots + A_{m,1}w_m)$$

$$+ B_{2,k}(A_{1,2}w_1 + A_{2,2}w_2 + \dots + A_{m,2}w_m)$$

$$+B_{n,k}(A_{1,n}w_1 + A_{2,n}w_2 + \dots + A_{m,n}w_m)$$

$$= \sum_{r=1}^{n} A_{1,r}B_{r,k}w_1 + \sum_{r=1}^{n} A_{2,r}B_{r,k}w_2 + \dots + \sum_{r=1}^{n} A_{m,r}B_{r,k}w_m$$

$$= (w_1 \dots w_m) \begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{pmatrix} \begin{pmatrix} B_{1,k} \\ \vdots \\ B_{n,k} \end{pmatrix}$$

Hence
$$(STu_1 \dots STu_p) = (w_1 \dots w_m) \begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{pmatrix} \begin{pmatrix} B_{1,1} & \dots & B_{1,p} \\ \vdots & & \vdots \\ B_{n,1} & \dots & B_{n,p} \end{pmatrix}$$

Systems of linear equations vs. linear maps

Any system of q linear equations with p unknowns looks as follows:

$$\begin{cases} A_{1,1}x_1 + \dots + A_{1,p}x_p = b_1 \\ A_{2,1}x_1 + \dots + A_{2,p}x_p = b_2 \\ \dots \\ A_{q,1}x_1 + \dots + A_{q,p}x_p = b_q \end{cases}$$

It can be re-written as a matrix equation AX = B, where

$$A = \begin{pmatrix} A_{1,1} & \dots & A_{1,p} \\ \vdots & \vdots & \vdots \\ A_{q,1} & \dots & A_{q,p} \end{pmatrix}, B = \begin{pmatrix} b_1 \\ \vdots \\ b_q \end{pmatrix}, X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}.$$

Each solution of AX = B is a vector from $T^{-1}(B)$,

where $T:\mathbb{F}^p o \mathbb{F}^q$ defined by matrix A , namely $T:X\mapsto AX$.

This allows to convert results about linear maps

into results about systems of linear equations.

16 / 17

Corollaries about systems of linear equations

3.23 $\dim V > \dim W \implies$ any linear map $V \to W$ is not injective. Recall:

3.26 (Corollary of 3.23) Homogeneous system of linear equations.

A homogeneous system of linear equations with more variables than equations has nonzero solutions.

For a system
$$\begin{cases} \sum_{k=1}^p A_{1,k} x_k = 0 \\ \vdots \\ \sum_{k=1}^p A_{q,k} x_k = 0 \end{cases}$$

Define $T:\mathbb{F}^p o \mathbb{F}^q$ by

$$T(x_1, \dots, x_p) = (\sum_{k=1}^p A_{1,k} x_k, \dots, \sum_{k=1}^p A_{q,k} x_k)$$

If p > q, then T is not injective by 3.23 and $\operatorname{null} T \neq 0$.

Recall: 3.24 $\dim V < \dim W \implies$ any linear map $V \to W$ is not surjective.

3.29 (Corollary of 2.34) Inhomogeneous system of linear equations

An inhomogeneous system of linear equations with more equations than variables has no solution for some choice of the constant terms.