## Advanced Linear Algebra MAT 315

Oleg Viro

02/25/2020, Lecture 3

## Classification of linear maps, revisited and continued

Recall that there is a **category of linear maps**, in which

Recall that there is a **category of linear maps**, in which an **object** is a linear map  $T: V \to W$ , Recall that there is a **category of linear maps**, in which an **object** is a linear map  $T: V \to W$ , and a **morphism**  $V \qquad X$  $V \qquad X$  $\downarrow_T \rightarrow \downarrow_S$  is a commutative diagram  $W \qquad Y$  $W \qquad M \rightarrow Y$ 











In other words, an isomorphism

$$V \qquad X \qquad V \longrightarrow X$$
$$\downarrow_T \rightarrow \qquad \downarrow_S = \qquad \downarrow_T \qquad S \downarrow$$
$$W \qquad Y \qquad W \longrightarrow Y$$

is a pair of isomorphisms  $V \xrightarrow{L} X$  and  $W \xrightarrow{M} Y$  such that  $S = MTL^{-1}$ .

In other words, an isomorphism  $\downarrow_T \rightarrow \downarrow_S$ 

$$V \qquad X \qquad V \longrightarrow X$$
$$\downarrow_T \rightarrow \qquad \downarrow_S = \qquad \downarrow_T \qquad S \downarrow$$
$$W \qquad Y \qquad W \longrightarrow Y$$

is a pair of isomorphisms  $V \xrightarrow{L} X$  and  $W \xrightarrow{M} Y$  such that  $S = MTL^{-1}$ .

S is isomorphic to T  $\iff$ 

S can be obtained from T by multiplication from right and left by linear isomorphisms.

In other words, an isomorphism  $V \xrightarrow{X} V \xrightarrow{L} X$  $\downarrow_T \rightarrow \downarrow_S = \downarrow_T \xrightarrow{L} S \downarrow$  $W \xrightarrow{W} Y \xrightarrow{W} \xrightarrow{M} Y$ 

is a pair of isomorphisms  $V \xrightarrow{L} X$  and  $W \xrightarrow{M} Y$  such that  $S = MTL^{-1}$ .

S is isomorphic to  $T \iff S$  can be obtained from T by multiplication from right and left by linear isomorphisms.

Another name: right-left equivalence

In other words, an isomorphism  $V \xrightarrow{X} V \xrightarrow{L} X$  $\downarrow_T \rightarrow \downarrow_S = \downarrow_T \xrightarrow{L} S \downarrow$  $W \xrightarrow{W} Y \xrightarrow{W} \xrightarrow{M} Y$ 

is a pair of isomorphisms  $V \xrightarrow{L} X$  and  $W \xrightarrow{M} Y$  such that  $S = MTL^{-1}$ .

S is isomorphic to  $T \iff S$  can be obtained from T by multiplication from right and left by linear isomorphisms.

Another name: **right-left equivalence** or **R-L-equivalence**.

In other words, an isomorphism  $\begin{array}{ccc} V & X & V \longrightarrow X \\ \downarrow_T \rightarrow & \downarrow_S = & \downarrow_T & \downarrow_S \\ W & Y & W \xrightarrow{M} Y \end{array}$ 

is a pair of isomorphisms  $V \xrightarrow{L} X$  and  $W \xrightarrow{M} Y$  such that  $S = MTL^{-1}$ .

S is isomorphic to  $T \iff S$  can be obtained from T by multiplication from right and left by linear isomorphisms.

Another name: **right-left equivalence** or **R-L-equivalence**.

**Riddle** What is **left-equivalence**?

In other words, an isomorphism  $V \xrightarrow{X} V \xrightarrow{L} X$  $\downarrow_T \rightarrow \downarrow_S = \downarrow_T \xrightarrow{L} S \downarrow$  $W \xrightarrow{W} Y \xrightarrow{W} \xrightarrow{M} Y$ 

is a pair of isomorphisms  $V \xrightarrow{L} X$  and  $W \xrightarrow{M} Y$  such that  $S = MTL^{-1}$ .

S is isomorphic to  $T \iff S$  can be obtained from T by multiplication from right and left by linear isomorphisms.

Another name: **right-left equivalence** or **R-L-equivalence**.

**Riddle** What is **left-equivalence**? **right-eqivalence**?

Let us recover a linear map  $T: \mathbb{R}^2 \to \mathbb{R}^2$  by its values.





Take (1,1).



Take (1,1). It's image is T(1,1) = (2,-1).



Take (1,1). It's image is T(1,1) = (2,-1). What have we learned about T?



Take (1,1). It's image is T(1,1) = (2,-1). What have we learned about T?



Take (1,1). It's image is T(1,1) = (2,-1). What have we learned about T? T(span(1,1)) = span(2,-1).



Take (1,1) . It's image is T(1,1)=(2,-1) . What have we learned about T ?  $T(\mathrm{span}(1,1))=\mathrm{span}(2,-1)$  .



Take (1, 2).



Take (1,2). It's image is T(1,2) = (0,0).



Take (1,2). It's image is T(1,2) = (0,0).  $T(\text{span}(1,2)) = \{(0,0)\}$ .



Take (1,2). It's image is T(1,2) = (0,0).  $T(\text{span}(1,2)) = \{(0,0)\}$ .  $\text{span}(1,2) \subset \text{null } T$ .



Take (1,2). It's image is T(1,2) = (0,0).  $T(\text{span}(1,2)) = \{(0,0)\}$ . span $(1,2) \subset \text{null } T$ . In fact span(1,2) = null T. Why?



Choose a basis v of  $\operatorname{null} T$ .



Choose a basis v of  $\operatorname{null} T$ . Extend it to a basis (v, u) of  $\mathbb{R}^2$ .



Choose a basis v of null T. Extend it to a basis (v, u) of  $\mathbb{R}^2$ . Tu is basis of range T.



Choose a basis v of  $\operatorname{null} T$ . Extend it to a basis (v, u) of  $\mathbb{R}^2$ . Tu is basis of  $\operatorname{range} T$ .



Choose a basis v of null T. Extend it to a basis (v, u) of  $\mathbb{R}^2$ . Tu is basis of range T. Extend Tu to a basis (Tu, w) of  $\mathbb{R}^2$ .


Choose a basis v of null T. Extend it to a basis (v, u) of  $\mathbb{R}^2$ . Tu is basis of range T. Extend Tu to a basis (Tu, w) of  $\mathbb{R}^2$ .

 $\mathbb{R}^2 = \operatorname{span}(v) \oplus \operatorname{span}(u)$ 



Choose a basis v of null T. Extend it to a basis (v, u) of  $\mathbb{R}^2$ . Tu is basis of range T. Extend Tu to a basis (Tu, w) of  $\mathbb{R}^2$ .

 $\mathbb{R}^2 = \operatorname{span}(v) \oplus \operatorname{span}(u) \xrightarrow{0 \oplus T} \operatorname{span}(w) \oplus \operatorname{span}(Tu) = \mathbb{R}^2.$ 

**Proof.** Let  $v = (v_1, \ldots, v_n)$  be a basis of null T.

**Proof.** Let  $v = (v_1, \ldots, v_n)$  be a basis of null T. Extend it to a basis  $v_1, \ldots, v_n, u_1, \ldots, u_{p-n}$  of V.

**Proof.** Let  $v = (v_1, \ldots, v_n)$  be a basis of null T. Extend it to a basis  $v_1, \ldots, v_n, u_1, \ldots, u_{p-n}$  of V. Denote  $\operatorname{span}(u_1, \ldots, u_{p-n})$  by U.

**Proof.** Let  $v = (v_1, \ldots, v_n)$  be a basis of null T. Extend it to a basis  $v_1, \ldots, v_n, u_1, \ldots, u_{p-n}$  of V. Denote  $\operatorname{span}(u_1, \ldots, u_{p-n})$  by U. Clearly,  $V = \operatorname{span}(v_1, \ldots, v_n) \oplus \operatorname{span}(u_1, \ldots, u_{p-n}) = \operatorname{null} T \oplus U$ .

**Proof.** Let  $v = (v_1, \ldots, v_n)$  be a basis of null T. Extend it to a basis  $v_1, \ldots, v_n, u_1, \ldots, u_{p-n}$  of V. Denote  $\operatorname{span}(u_1, \ldots, u_{p-n})$  by U. Clearly,  $V = \operatorname{span}(v_1, \ldots, v_n) \oplus \operatorname{span}(u_1, \ldots, u_{p-n}) = \operatorname{null} T \oplus U$ . The restriction  $T|_U : U \to W$  is injective, because  $U \cap \operatorname{null} T = 0$ ,

**Proof.** Let  $v = (v_1, \ldots, v_n)$  be a basis of null T. Extend it to a basis  $v_1, \ldots, v_n, u_1, \ldots, u_{p-n}$  of V. Denote  $\operatorname{span}(u_1, \ldots, u_{p-n})$  by U. Clearly,  $V = \operatorname{span}(v_1, \ldots, v_n) \oplus \operatorname{span}(u_1, \ldots, u_{p-n}) = \operatorname{null} T \oplus U$ . The restriction  $T|_U : U \to W$  is injective, because  $U \cap \operatorname{null} T = 0$ , and  $\phi = T_{(v_1, \ldots, v_n)} \oplus T_{(u_1, \ldots, u_{p-n})} : \mathbb{F}^n \oplus \mathbb{F}^{p-n} \to \operatorname{null} T \oplus U$  is an isomorphism.

**Proof.** Let  $v = (v_1, \ldots, v_n)$  be a basis of null T. Extend it to a basis  $v_1, \ldots, v_n, u_1, \ldots, u_{p-n}$  of V. Denote  $\operatorname{span}(u_1, \ldots, u_{p-n})$  by U. Clearly,  $V = \operatorname{span}(v_1, \ldots, v_n) \oplus \operatorname{span}(u_1, \ldots, u_{p-n}) = \operatorname{null} T \oplus U$ . The restriction  $T|_U : U \to W$  is injective, because  $U \cap \operatorname{null} T = 0$ , and  $\phi = T_{(v_1, \ldots, v_n)} \oplus T_{(u_1, \ldots, u_{p-n})} : \mathbb{F}^n \oplus \mathbb{F}^{p-n} \to \operatorname{null} T \oplus U$  is an isomorphism.  $(Tu_1, \ldots, Tu_{p-n})$  is a basis of range T.

**Proof.** Let  $v = (v_1, \ldots, v_n)$  be a basis of null T. Extend it to a basis  $v_1, \ldots, v_n, u_1, \ldots, u_{p-n}$  of V. Denote  $\operatorname{span}(u_1, \ldots, u_{p-n})$  by U. Clearly,  $V = \operatorname{span}(v_1, \ldots, v_n) \oplus \operatorname{span}(u_1, \ldots, u_{p-n}) = \operatorname{null} T \oplus U$ . The restriction  $T|_U : U \to W$  is injective, because  $U \cap \operatorname{null} T = 0$ , and  $\phi = T_{(v_1, \ldots, v_n)} \oplus T_{(u_1, \ldots, u_{p-n})} : \mathbb{F}^n \oplus \mathbb{F}^{p-n} \to \operatorname{null} T \oplus U$  is an isomorphism.  $(Tu_1, \ldots, Tu_{p-n})$  is a basis of range T. Hence, p - n = r.

**Proof.** Let  $v = (v_1, \ldots, v_n)$  be a basis of null T. Extend it to a basis  $v_1, \ldots, v_n, u_1, \ldots, u_{p-n}$  of V. Denote  $\operatorname{span}(u_1, \ldots, u_{p-n})$  by U. Clearly,  $V = \operatorname{span}(v_1, \ldots, v_n) \oplus \operatorname{span}(u_1, \ldots, u_{p-n}) = \operatorname{null} T \oplus U$ . The restriction  $T|_U : U \to W$  is injective, because  $U \cap \operatorname{null} T = 0$ , and  $\phi = T_{(v_1, \ldots, v_n)} \oplus T_{(u_1, \ldots, u_{p-n})} : \mathbb{F}^n \oplus \mathbb{F}^{p-n} \to \operatorname{null} T \oplus U$  is an isomorphism.  $(Tu_1, \ldots, Tu_{p-n})$  is a basis of range T. Hence, p - n = r. Extend  $Tu_1, \ldots, Tu_r$  to a basis  $w_1, \ldots, w_{q-r}, Tu_1, \ldots, Tu_r$  of W.

**Proof.** Let  $v = (v_1, \ldots, v_n)$  be a basis of null T. Extend it to a basis  $v_1, \ldots, v_n, u_1, \ldots, u_{p-n}$  of V. Denote  $\operatorname{span}(u_1, \ldots, u_{p-n})$  by U. Clearly,  $V = \operatorname{span}(v_1, \ldots, v_n) \oplus \operatorname{span}(u_1, \ldots, u_{p-n}) = \operatorname{null} T \oplus U$ . The restriction  $T|_U : U \to W$  is injective, because  $U \cap \operatorname{null} T = 0$ , and  $\phi = T_{(v_1, \ldots, v_n)} \oplus T_{(u_1, \ldots, u_{p-n})} : \mathbb{F}^n \oplus \mathbb{F}^{p-n} \to \operatorname{null} T \oplus U$  is an isomorphism.  $(Tu_1, \ldots, Tu_{p-n})$  is a basis of range T. Hence, p - n = r. Extend  $Tu_1, \ldots, Tu_r$  to a basis  $w_1, \ldots, w_{q-r}, Tu_1, \ldots, Tu_r$  of W. Denote  $\operatorname{span}(w_1, \ldots, w_{q-r})$  by C.

**Proof.** Let  $v = (v_1, \ldots, v_n)$  be a basis of null T. Extend it to a basis  $v_1, \ldots, v_n, u_1, \ldots, u_{p-n}$  of V. Denote  $\operatorname{span}(u_1, \ldots, u_{p-n})$  by U. Clearly,  $V = \operatorname{span}(v_1, \ldots, v_n) \oplus \operatorname{span}(u_1, \ldots, u_{p-n}) = \operatorname{null} T \oplus U$ . The restriction  $T|_U : U \to W$  is injective, because  $U \cap \operatorname{null} T = 0$ , and  $\phi = T_{(v_1, \ldots, v_n)} \oplus T_{(u_1, \ldots, u_{p-n})} : \mathbb{F}^n \oplus \mathbb{F}^{p-n} \to \operatorname{null} T \oplus U$  is an isomorphism.  $(Tu_1, \ldots, Tu_{p-n})$  is a basis of range T. Hence, p - n = r. Extend  $Tu_1, \ldots, Tu_r$  to a basis  $w_1, \ldots, w_{q-r}, Tu_1, \ldots, Tu_r$  of W. Denote  $\operatorname{span}(w_1, \ldots, w_{q-r})$  by C.  $\psi = T_{w_1, \ldots, w_{q-r}} \oplus T_{Tu_1, \ldots, Tu_r} : \mathbb{F}^{q-r} \oplus \mathbb{F}^r \to C \oplus \operatorname{range} T$  is an isomorphism.

**Proof.** Let  $v = (v_1, \ldots, v_n)$  be a basis of null T. Extend it to a basis  $v_1, \ldots, v_n, u_1, \ldots, u_{p-n}$  of V. Denote  $\operatorname{span}(u_1, \ldots, u_{p-n})$  by U. Clearly,  $V = \operatorname{span}(v_1, \ldots, v_n) \oplus \operatorname{span}(u_1, \ldots, u_{p-n}) = \operatorname{null} T \oplus U$ . The restriction  $T|_U : U \to W$  is injective, because  $U \cap \operatorname{null} T = 0$ , and  $\phi = T_{(v_1, \ldots, v_n)} \oplus T_{(u_1, \ldots, u_{p-n})} : \mathbb{F}^n \oplus \mathbb{F}^{p-n} \to \operatorname{null} T \oplus U$  is an isomorphism.  $(Tu_1, \ldots, Tu_{p-n})$  is a basis of range T. Hence, p - n = r. Extend  $Tu_1, \ldots, Tu_r$  to a basis  $w_1, \ldots, w_{q-r}, Tu_1, \ldots, Tu_r$  of W. Denote  $\operatorname{span}(w_1, \ldots, w_{q-r})$  by C.  $\psi = T_{w_1, \ldots, w_{q-r}} \oplus T_{Tu_1, \ldots, Tu_r} : \mathbb{F}^{q-r} \oplus \mathbb{F}^r \to C \oplus \operatorname{range} T$  is an isomorphism. Isomorphisms  $\phi$  and  $\psi$  form an isomorphism  $(0 \oplus \operatorname{id}) \to T$ :

$$\begin{array}{cccc} \mathbb{F}^n \oplus \mathbb{F}^r & \stackrel{\phi}{\longrightarrow} & \operatorname{null} T \oplus U & \stackrel{=}{\longrightarrow} V \\ & & & & \downarrow^{0 \oplus \mathrm{id}} & & & \downarrow^T & \blacksquare \\ \mathbb{F}^{q-r} \oplus \mathbb{F}^r & \stackrel{\psi}{\longrightarrow} C \oplus \operatorname{range} T & \stackrel{=}{\longrightarrow} W \end{array}$$

## 3.22 Corollary. Fundamental Theorem of Linear Maps.

Let V be a finite-dimensional vector space and  $T \in \mathcal{L}(V, W)$ . Then range T is finite-dimensional and  $\dim V = \dim \operatorname{null} T + \operatorname{rk} T$ . 3.22 Corollary. Fundamental Theorem of Linear Maps. Let V be a finite-dimensional vector space and  $T \in \mathcal{L}(V, W)$ . Then range T is finite-dimensional and  $\dim V = \dim \operatorname{null} T + \operatorname{rk} T$ .

**Proof.** By Theorem applied to  $T : V \rightarrow \operatorname{range} T$ 

there exists an isomorphism  $\mathbb{F}^{\dim \operatorname{null} T} \oplus \mathbb{F}^{\dim \operatorname{range} T} \to V$ .

3.22 Corollary. Fundamental Theorem of Linear Maps. Let V be a finite-dimensional vector space and  $T \in \mathcal{L}(V, W)$ . Then range T is finite-dimensional and  $\dim V = \dim \operatorname{null} T + \operatorname{rk} T$ . Proof. By Theorem applied to  $T | : V \to \operatorname{range} T$ 

there exists an isomorphism  $\mathbb{F}^{\dim \operatorname{null} T} \oplus \mathbb{F}^{\dim \operatorname{range} T} \to V$ .  $\operatorname{rk} T \leq \dim W$  for any linear map  $T: V \to W$ . 3.22 Corollary. Fundamental Theorem of Linear Maps. Let V be a finite-dimensional vector space and  $T \in \mathcal{L}(V, W)$ . Then range T is finite-dimensional and  $\dim V = \dim \operatorname{null} T + \operatorname{rk} T$ . Proof. By Theorem applied to  $T | : V \to \operatorname{range} T$ there exists an isomorphism  $\mathbb{F}^{\dim \operatorname{null} T} \oplus \mathbb{F}^{\dim \operatorname{range} T} \to V$ .  $\operatorname{rk} T \leq \dim W$  for any linear map  $T : V \to W$ .

**Proof.** range T is a subspace of W.

3.22 Corollary. Fundamental Theorem of Linear Maps.
Let V be a finite-dimensional vector space and T ∈ L(V, W). Then range T is finite-dimensional and dim V = dim null T + rk T.
Proof. By Theorem applied to T : V → range T there exists an isomorphism F<sup>dim null T</sup> ⊕ F<sup>dim range T</sup> → V.

 $\operatorname{rk} T \leq \dim W$  for any linear map  $T: V \to W$ .

**Proof.** range T is a subspace of W.

A linear map  $T: V \to W$  with  $\dim V = p$ ,  $\dim W = q$  and  $\operatorname{rk} T = r$  exists  $\iff r \leq p$  and  $r \leq q$ .

3.22 **Corollary. Fundamental Theorem of Linear Maps.** Let V be a finite-dimensional vector space and  $T \in \mathcal{L}(V, W)$ . Then range T is finite-dimensional and  $\dim V = \dim \operatorname{null} T + \operatorname{rk} T$ . **Proof.** By Theorem applied to  $T : V \rightarrow \operatorname{range} T$ there exists an isomorphism  $\mathbb{F}^{\dim \operatorname{null} T} \oplus \mathbb{F}^{\dim \operatorname{range} T} \to V$ .  $\operatorname{rk} T \leq \dim W$  for any linear map  $T: V \to W$ . **Proof.** range T is a subspace of W. A linear map  $T: V \to W$  with  $\dim V = p$ ,  $\dim W = q$  and  $\operatorname{rk} T = r$  exists  $\iff$  r < p and r < q.

Linear maps  $T: V \to W$  and  $T': V' \to W'$  are isomorphic  $\iff \dim V = \dim V'$ ,  $\dim W = \dim W'$  and  $\operatorname{rk} T = \operatorname{rk} T'$ .

## 3.23 **Theorem.** A map to a smaller dimensional space is not injective

**Proof.** Let  $T \in \mathcal{L}(V, W)$ . Then dim null  $T = \dim V - \dim \operatorname{range} T$  $\geq \dim V - \dim W > 0.$ 

**Proof.** Let  $T \in \mathcal{L}(V, W)$ . Then  $\dim \operatorname{null} T = \dim V - \dim \operatorname{range} T$  $\geq \dim V - \dim W > 0$ . Hence  $\operatorname{null} T > 0$ .

**Proof.** Let  $T \in \mathcal{L}(V, W)$ . Then  $\dim \operatorname{null} T = \dim V - \dim \operatorname{range} T$  $\geq \dim V - \dim W > 0$ . Hence  $\operatorname{null} T > 0$ .

3.24 **Theorem. A map to a larger dimensional space is not surjective** 

**Proof.** Let  $T \in \mathcal{L}(V, W)$ . Then  $\dim \operatorname{null} T = \dim V - \dim \operatorname{range} T$  $\geq \dim V - \dim W > 0$ . Hence  $\operatorname{null} T > 0$ .

3.24 **Theorem. A map to a larger dimensional space is not surjective** If  $\dim V < \dim W$ , then any linear map  $V \to W$  is not surjective.

**Proof.** Let  $T \in \mathcal{L}(V, W)$ . Then  $\dim \operatorname{null} T = \dim V - \dim \operatorname{range} T$  $\geq \dim V - \dim W > 0$ . Hence  $\operatorname{null} T > 0$ .

3.24 Theorem. A map to a larger dimensional space is not surjective If  $\dim V < \dim W$ , then any linear map  $V \to W$  is not surjective.

**Proof.** Let  $T \in \mathcal{L}(V, W)$ . Then dim range  $T = \dim V - \dim \operatorname{null} T$  $\leq \dim V < \dim W$ .

**Proof.** Let  $T \in \mathcal{L}(V, W)$ . Then  $\dim \operatorname{null} T = \dim V - \dim \operatorname{range} T$  $\geq \dim V - \dim W > 0$ . Hence  $\operatorname{null} T > 0$ .

3.24 **Theorem. A map to a larger dimensional space is not surjective** If  $\dim V < \dim W$ , then any linear map  $V \to W$  is not surjective.

**Proof.** Let  $T \in \mathcal{L}(V, W)$ . Then dim range  $T = \dim V - \dim \operatorname{null} T$  $\leq \dim V < \dim W$ . Hence range  $T \neq W$ .

## 3.69 For an operator in a finite dimensional vector space injectivity is equivalent to surjectivity Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V)$ . Then T is bijective $\iff T$ is injective $\iff T$ is surjective.

3.69 For an operator in a finite dimensional vector space injectivity is equivalent to surjectivity Let V be a finite-dimensional vector space and  $T \in \mathcal{L}(V)$ . Then T is bijective  $\iff T$  is injective  $\iff T$  is surjective.

**Proof.** bijective  $\implies$  injective.

3.69 For an operator in a finite dimensional vector space injectivity is equivalent to surjectivity Let V be a finite-dimensional vector space and  $T \in \mathcal{L}(V)$ . Then T is bijective  $\iff T$  is injective  $\iff T$  is surjective.

**Proof. bijective**  $\implies$  **injective.** By definition.
3.69 For an operator in a finite dimensional vector space injectivity is equivalent to surjectivity Let V be a finite-dimensional vector space and  $T \in \mathcal{L}(V)$ . Then T is bijective  $\iff T$  is injective  $\iff T$  is surjective.

**Proof. bijective**  $\implies$  **injective.** By definition.

injective  $\implies$  surjective.

3.69 For an operator in a finite dimensional vector space injectivity is equivalent to surjectivity Let V be a finite-dimensional vector space and  $T \in \mathcal{L}(V)$ . Then T is bijective  $\iff T$  is injective  $\iff T$  is surjective.

**Proof. bijective**  $\implies$  **injective.** By definition.

**injective**  $\implies$  surjective. *T* is injective  $\implies$   $\operatorname{rk} T = \dim V - \dim \operatorname{null} T = \dim V \blacksquare$ 

3.69 For an operator in a finite dimensional vector space injectivity is equivalent to surjectivity Let V be a finite-dimensional vector space and  $T \in \mathcal{L}(V)$ . Then T is bijective  $\iff T$  is injective  $\iff T$  is surjective.

**Proof. bijective**  $\implies$  **injective.** By definition.

injective  $\implies$  surjective. *T* is injective  $\implies$   $\operatorname{rk} T = \dim V - \dim \operatorname{null} T = \dim V \blacksquare$ surjective  $\implies$  injective.

3.69 For an operator in a finite dimensional vector space injectivity is equivalent to surjectivity Let V be a finite-dimensional vector space and  $T \in \mathcal{L}(V)$ . Then T is bijective  $\iff T$  is injective  $\iff T$  is surjective.

**Proof. bijective**  $\implies$  **injective.** By definition.

**injective**  $\implies$  surjective. *T* is injective  $\implies$   $\operatorname{rk} T = \dim V - \dim \operatorname{null} T = \dim V \blacksquare$ 

surjective  $\implies$  injective. T is surjective  $\implies$  dim null  $T = \dim V - \operatorname{rk} T = 0$ 

3.69 For an operator in a finite dimensional vector space injectivity is equivalent to surjectivity Let V be a finite-dimensional vector space and  $T \in \mathcal{L}(V)$ . Then T is bijective  $\iff T$  is injective  $\iff T$  is surjective.

**Proof. bijective**  $\implies$  injective. By definition. injective  $\implies$  surjective. T is injective  $\implies$   $\operatorname{rk} T = \dim V - \dim \operatorname{null} T = \dim V \blacksquare$ surjective  $\implies$  injective. T is surjective  $\implies$   $\dim \operatorname{null} T = \dim V - \operatorname{rk} T = 0$   $\blacksquare$ injective or surjective  $\implies$  surjective and injective

3.69 For an operator in a finite dimensional vector space injectivity is equivalent to surjectivity Let V be a finite-dimensional vector space and  $T \in \mathcal{L}(V)$ . Then T is bijective  $\iff T$  is injective  $\iff T$  is surjective.

**Proof. bijective**  $\implies$  injective. By definition. injective  $\implies$  surjective. T is injective  $\implies$   $\operatorname{rk} T = \dim V - \dim \operatorname{null} T = \dim V \blacksquare$ surjective  $\implies$  injective. T is surjective  $\implies$   $\dim \operatorname{null} T = \dim V - \operatorname{rk} T = 0$ injective or surjective  $\implies$  surjective and injective  $\implies$  bijective

3.69 For an operator in a finite dimensional vector space injectivity is equivalent to surjectivity Let V be a finite-dimensional vector space and  $T \in \mathcal{L}(V)$ . Then T is bijective  $\iff T$  is injective  $\iff T$  is surjective.

**Proof. bijective**  $\implies$  injective. By definition. injective  $\implies$  surjective. T is injective  $\implies$   $\operatorname{rk} T = \dim V - \dim \operatorname{null} T = \dim V =$ surjective  $\implies$  injective. T is surjective  $\implies$   $\dim \operatorname{null} T = \dim V - \operatorname{rk} T = 0$ injective or surjective  $\implies$  surjective and injective  $\implies$  bijective

In infinite-dimensional space **surjectivity**  $\Rightarrow$  **injectivity** 

3.69 For an operator in a finite dimensional vector space injectivity is equivalent to surjectivity Let V be a finite-dimensional vector space and  $T \in \mathcal{L}(V)$ . Then T is bijective  $\iff T$  is injective  $\iff T$  is surjective.

**Proof. bijective**  $\implies$  injective. By definition. injective  $\implies$  surjective. T is injective  $\implies$   $\operatorname{rk} T = \dim V - \dim \operatorname{null} T = \dim V \blacksquare$ surjective  $\implies$  injective. T is surjective  $\implies$   $\dim \operatorname{null} T = \dim V - \operatorname{rk} T = 0$ injective or surjective  $\implies$  surjective and injective  $\implies$  bijective In infinite-dimensional space

surjectivity  $\Rightarrow$  injectivity Example:  $\mathbb{F}^{\infty} \rightarrow \mathbb{F}^{\infty} : (x_1, x_2, \dots, x_n \dots) \mapsto (x_2, \dots, x_n \dots)$ 

3.69 For an operator in a finite dimensional vector space injectivity is equivalent to surjectivity Let V be a finite-dimensional vector space and  $T \in \mathcal{L}(V)$ . Then T is bijective  $\iff T$  is injective  $\iff T$  is surjective.

**Proof. bijective**  $\implies$  injective. By definition. injective  $\implies$  surjective. T is injective  $\implies$   $\operatorname{rk} T = \dim V - \dim \operatorname{null} T = \dim V =$ surjective  $\implies$  injective. T is surjective  $\implies$  dim  $\operatorname{null} T = \dim V - \operatorname{rk} T = 0$ injective or surjective  $\implies$  surjective and injective  $\implies$  bijective In infinite-dimensional space surjectivity  $\Rightarrow$  injectivity Example:  $\mathbb{F}^{\infty} \to \mathbb{F}^{\infty} : (x_1, x_2, \dots, x_n \dots) \mapsto (x_2, \dots, x_n \dots)$ injectivity  $\Rightarrow$  surjectivity

3.69 For an operator in a finite dimensional vector space injectivity is equivalent to surjectivity Let V be a finite-dimensional vector space and  $T \in \mathcal{L}(V)$ . Then T is bijective  $\iff T$  is injective  $\iff T$  is surjective.

**Proof. bijective**  $\implies$  injective. By definition. injective  $\implies$  surjective. T is injective  $\implies$   $\operatorname{rk} T = \dim V - \dim \operatorname{null} T = \dim V \blacksquare$ surjective  $\implies$  injective. T is surjective  $\implies$  dim null  $T = \dim V - \operatorname{rk} T = 0$ injective or surjective  $\implies$  surjective and injective  $\implies$  bijective  $\blacksquare$  In infinite-dimensional space surjectivity  $\Rightarrow$  injectivity

Example:  $\mathbb{F}^{\infty} \to \mathbb{F}^{\infty} : (x_1, x_2, \dots, x_n \dots) \mapsto (x_2, \dots, x_n \dots)$ injectivity  $\Rightarrow$  surjectivity

Example:  $\mathbb{F}^{\infty} \to \mathbb{F}^{\infty} : (x_1, x_2, \dots, x_n \dots) \mapsto (0, x_1, x_2, \dots, x_n \dots)$ 

Linear Algebra MAT 315 Lecture 3

## **Back to matrices**

Let  $v_1, \ldots, v_n$  be a basis of V and  $w_1, \ldots, w_n \in W$ .

Let  $v_1, \ldots, v_n$  be a basis of V and  $w_1, \ldots, w_n \in W$ . Then

 $\exists$  a unique linear map  $T: V \to W$  such that  $Tv_j = w_j$  for  $j = 1, \ldots, n$ .

Let  $v_1, \ldots, v_n$  be a basis of V and  $w_1, \ldots, w_n \in W$ . Then  $\exists$  a unique linear map  $T: V \to W$  such that  $Tv_j = w_j$  for  $j = 1, \ldots, n$ .

### **Proof.** Existense.

Consider linear maps  $T_v : \mathbb{F}^n \to V$  and  $T_w : \mathbb{F}^n \to W$ , where  $v = (v_1, \dots, v_n)$  and  $w = (w_1, \dots, w_n)$ .

Let  $v_1, \ldots, v_n$  be a basis of V and  $w_1, \ldots, w_n \in W$ . Then  $\exists$  a unique linear map  $T: V \to W$  such that  $Tv_j = w_j$  for  $j = 1, \ldots, n$ .

### **Proof.** Existense.

Consider linear maps  $T_v : \mathbb{F}^n \to V$  and  $T_w : \mathbb{F}^n \to W$ , where  $v = (v_1, \dots, v_n)$  and  $w = (w_1, \dots, w_n)$ .  $T_v$  is invertible, because v is a basis of V.

Let  $v_1, \ldots, v_n$  be a basis of V and  $w_1, \ldots, w_n \in W$ . Then  $\exists$  a unique linear map  $T: V \to W$  such that  $Tv_j = w_j$  for  $j = 1, \ldots, n$ .

## **Proof. Existense.** Consider linear maps $T_v : \mathbb{F}^n \to V$ and $T_w : \mathbb{F}^n \to W$ , where $v = (v_1, \dots, v_n)$ and $w = (w_1, \dots, w_n)$ . $T_v$ is invertible, because v is a basis of V. The map $V \xrightarrow{T_v^{-1}} \mathbb{F}^n \xrightarrow{T_w} W$ maps $v_j \mapsto e_j \mapsto w_j$ .

Let  $v_1, \ldots, v_n$  be a basis of V and  $w_1, \ldots, w_n \in W$ . Then  $\exists$  a unique linear map  $T: V \to W$  such that  $Tv_j = w_j$  for  $j = 1, \ldots, n$ .

## **Proof. Existense.** Consider linear maps $T_v : \mathbb{F}^n \to V$ and $T_w : \mathbb{F}^n \to W$ , where $v = (v_1, \dots, v_n)$ and $w = (w_1, \dots, w_n)$ . $T_v$ is invertible, because v is a basis of V. The map $V \xrightarrow{T_v^{-1}} \mathbb{F}^n \xrightarrow{T_w} W$ maps $v_j \mapsto e_j \mapsto w_j$ .

Let  $v_1, \ldots, v_n$  be a basis of V and  $w_1, \ldots, w_n \in W$ . Then  $\exists$  a unique linear map  $T: V \to W$  such that  $Tv_j = w_j$  for  $j = 1, \ldots, n$ .

# **Proof. Existense.** Consider linear maps $T_v : \mathbb{F}^n \to V$ and $T_w : \mathbb{F}^n \to W$ , where $v = (v_1, \dots, v_n)$ and $w = (w_1, \dots, w_n)$ . $T_v$ is invertible, because v is a basis of V. The map $V \xrightarrow{T_v^{-1}} \mathbb{F}^n \xrightarrow{T_w} W$ maps $v_j \mapsto e_j \mapsto w_j$ .

**Uniqueness.** Let  $T: V \to W$  be any linear map with  $Tv_j = w_j$  for  $j = 1, \ldots, n$ .

Let  $v_1, \ldots, v_n$  be a basis of V and  $w_1, \ldots, w_n \in W$ . Then  $\exists$  a unique linear map  $T: V \to W$  such that  $Tv_j = w_j$  for  $j = 1, \ldots, n$ .

## **Proof. Existense.** Consider linear maps $T_v : \mathbb{F}^n \to V$ and $T_w : \mathbb{F}^n \to W$ , where $v = (v_1, \ldots, v_n)$ and $w = (w_1, \ldots, w_n)$ . $T_v$ is invertible, because v is a basis of V. The map $V \xrightarrow{T_v^{-1}} \mathbb{F}^n \xrightarrow{T_w} W$ maps $v_j \mapsto e_j \mapsto w_j$ . **Uniqueness.** Let $T : V \to W$ be any linear map with $Tv_j = w_j$ for $j = 1, \ldots, n$ . Then $\mathbb{F}^n \xrightarrow{T_v} V \xrightarrow{T} W$ maps $e_j \mapsto v_j \mapsto w_j$ .

Let  $v_1, \ldots, v_n$  be a basis of V and  $w_1, \ldots, w_n \in W$ . Then  $\exists$  a unique linear map  $T: V \to W$  such that  $Tv_j = w_j$  for  $j = 1, \ldots, n$ .

## **Proof. Existense.** Consider linear maps $T_v: \mathbb{F}^n \to V$ and $T_w: \mathbb{F}^n \to W$ , where $v = (v_1, \ldots, v_n)$ and $w = (w_1, \ldots, w_n)$ . $T_v$ is invertible, because v is a basis of V. The map $V \xrightarrow{T_v^{-1}} \mathbb{F}^n \xrightarrow{T_w} W$ maps $v_j \mapsto e_j \mapsto w_j$ . **Uniqueness.** Let $T: V \to W$ be any linear map with $Tv_j = w_j$ for $j = 1, \ldots, n$ . Then $\mathbb{F}^n \xrightarrow{T_v} V \xrightarrow{T} W$ maps $e_j \mapsto v_j \mapsto w_j$ . Hence $T_v \circ T = T_w$

Let  $v_1, \ldots, v_n$  be a basis of V and  $w_1, \ldots, w_n \in W$ . Then  $\exists$  a unique linear map  $T: V \to W$  such that  $Tv_j = w_j$  for  $j = 1, \ldots, n$ .

## **Proof. Existense.** Consider linear maps $T_v: \mathbb{F}^n \to V$ and $T_w: \mathbb{F}^n \to W$ , where $v = (v_1, \ldots, v_n)$ and $w = (w_1, \ldots, w_n)$ . $T_v$ is invertible, because v is a basis of V. The map $V \xrightarrow{T_v^{-1}} \mathbb{F}^n \xrightarrow{T_w} W$ maps $v_j \mapsto e_j \mapsto w_j$ . **Uniqueness.** Let $T: V \to W$ be any linear map with $Tv_j = w_j$ for $j = 1, \ldots, n$ . Then $\mathbb{F}^n \xrightarrow{T_v} V \xrightarrow{T} W$ maps $e_j \mapsto v_j \mapsto w_j$ . Hence $T_v \circ T = T_w$ and $T = T_v^{-1} \circ T_w$ .

Let  $v_1, \ldots, v_n$  be a basis of V and  $w_1, \ldots, w_n \in W$ . Then  $\exists$  a unique linear map  $T: V \to W$  such that  $Tv_j = w_j$  for  $j = 1, \ldots, n$ .

## **Proof. Existense.** Consider linear maps $T_v : \mathbb{F}^n \to V$ and $T_w : \mathbb{F}^n \to W$ , where $v = (v_1, \ldots, v_n)$ and $w = (w_1, \ldots, w_n)$ . $T_v$ is invertible, because v is a basis of V. The map $V \xrightarrow{T_v^{-1}} \mathbb{F}^n \xrightarrow{T_w} W$ maps $v_j \mapsto e_j \mapsto w_j$ . **Uniqueness.** Let $T : V \to W$ be any linear map with $Tv_j = w_j$ for $j = 1, \ldots, n$ . Then $\mathbb{F}^n \xrightarrow{T_v} V \xrightarrow{T} W$ maps $e_j \mapsto v_j \mapsto w_j$ . Hence $T_v \circ T = T_w$ and $T = T_v^{-1} \circ T_w$ .

**Reformulation.** Any map  $\{v_1, \ldots, v_n\} \to W$  of a basis of V to a vector space W extends uniquely to a linear map  $V \to W$ .

• Any finite-dimensional vector space V over  $\mathbb{F}$  is isomorphic to  $\mathbb{F}^n$  with  $n = \dim V$ .

- Any finite-dimensional vector space V over  $\mathbb{F}$  is isomorphic to  $\mathbb{F}^n$  with  $n = \dim V$ .
- Any basis  $u = (u_1, \dots, u_n)$  of V determines an isomorphism  $T_u : \mathbb{F}^n \to V : (x_1 \dots, x_n) \mapsto x_1 u_1 + \dots x_n u_n$ .

- Any finite-dimensional vector space V over  $\mathbb{F}$  is isomorphic to  $\mathbb{F}^n$  with  $n = \dim V$ .
- Any basis  $u = (u_1, \dots, u_n)$  of V determines an isomorphism  $T_u : \mathbb{F}^n \to V : (x_1 \dots, x_n) \mapsto x_1 u_1 + \dots x_n u_n$ .
- Any isomorphism  $T: \mathbb{F}^n \to V$  is  $T_u$ , where  $u = (Te_1, \ldots, Te_n)$ .

- Any finite-dimensional vector space V over  $\mathbb{F}$  is isomorphic to  $\mathbb{F}^n$  with  $n = \dim V$ .
- Any basis  $u = (u_1, \dots, u_n)$  of V determines an isomorphism  $T_u : \mathbb{F}^n \to V : (x_1 \dots, x_n) \mapsto x_1 u_1 + \dots x_n u_n$ .
- Any isomorphism  $T: \mathbb{F}^n \to V$  is  $T_u$ , where  $u = (Te_1, \ldots, Te_n)$ .

**Definition.** An isomorphism  $T_u : \mathbb{F}^n \to V$  is called the **coordinate system** in V determined by a basis  $u = (u_1, \dots, u_n)$ .

- Any finite-dimensional vector space V over  $\mathbb F$  is isomorphic to  $\mathbb F^n$  with  $n = \dim V$ .
- Any basis  $u = (u_1, \dots, u_n)$  of V determines an isomorphism  $T_u : \mathbb{F}^n \to V : (x_1 \dots, x_n) \mapsto x_1 u_1 + \dots x_n u_n$ .
- Any isomorphism  $T:\mathbb{F}^n o V$  is  $T_u$ , where  $u=(Te_1,\ldots,Te_n)$ .

**Definition.** An isomorphism  $T_u : \mathbb{F}^n \to V$  is called the **coordinate system** in V determined by a basis  $u = (u_1, \ldots, u_n)$ . For a vector  $v \in V$ , the coordinates  $x_1, \ldots, x_n$  of  $T_u^{-1}(v)$  are called the **coordinates** of v in the basis u.

- Any finite-dimensional vector space V over  $\mathbb{F}$  is isomorphic to  $\mathbb{F}^n$  with  $n = \dim V$ .
- Any basis  $u = (u_1, \dots, u_n)$  of V determines an isomorphism  $T_u : \mathbb{F}^n \to V : (x_1 \dots, x_n) \mapsto x_1 u_1 + \dots x_n u_n$ .
- Any isomorphism  $T: \mathbb{F}^n \to V$  is  $T_u$ , where  $u = (Te_1, \ldots, Te_n)$ .

**Definition.** An isomorphism  $T_u : \mathbb{F}^n \to V$  is called the **coordinate system** in V determined by a basis  $u = (u_1, \ldots, u_n)$ . For a vector  $v \in V$ , the coordinates  $x_1, \ldots, x_n$  of  $T_u^{-1}(v)$  are called the **coordinates** of v in the basis u.

The coordinates  $x_1, \ldots, x_n$  of v in a basis  $u_1, \ldots, u_n$  are determined by the equality  $v = x_1u_1 + \cdots + x_nu_n$ .

- Any finite-dimensional vector space V over  $\mathbb{F}$  is isomorphic to  $\mathbb{F}^n$  with  $n = \dim V$ .
- Any basis  $u = (u_1, \dots, u_n)$  of V determines an isomorphism  $T_u : \mathbb{F}^n \to V : (x_1 \dots, x_n) \mapsto x_1 u_1 + \dots x_n u_n$ .
- Any isomorphism  $T: \mathbb{F}^n \to V$  is  $T_u$ , where  $u = (Te_1, \ldots, Te_n)$ .

**Definition.** An isomorphism  $T_u : \mathbb{F}^n \to V$  is called the **coordinate system** in V determined by a basis  $u = (u_1, \dots, u_n)$ . For a vector  $v \in V$ , the coordinates  $x_1, \dots, x_n$  of  $T_u^{-1}(v)$  are called the **coordinates** of v in the basis u.

The coordinates  $x_1, \ldots, x_n$  of v in a basis  $u_1, \ldots, u_n$  are determined by the equality  $v = x_1u_1 + \cdots + x_nu_n$ .

The equality  $v = x_1u_1 + \cdots + x_nu_n$  is called

a **decomposition** of v in the basis  $u_1, \ldots, u_n$ .

Linear Algebra MAT 315 Lecture 3

Any linear map  $T: \mathbb{F}^p \to \mathbb{F}^q$  is defined by the list  $u = (u_1, \ldots, u_p) = (Te_1, \ldots, Te_p)$ 

Any linear map  $T: \mathbb{F}^p \to \mathbb{F}^q$  is defined by the list  $u = (u_1, \ldots, u_p) = (Te_1, \ldots, Te_p)$ according to the formula  $T(x_1, \ldots, x_p) = x_1u_1 + \cdots + x_pu_p = x_1Te_1 + \cdots + x_pTe_p$ .

Any linear map  $T: \mathbb{F}^p \to \mathbb{F}^q$  is defined by the list  $u = (u_1, \dots, u_p) = (Te_1, \dots, Te_p)$ according to the formula  $T(x_1, \dots, x_p) = x_1u_1 + \dots + x_pu_p = x_1Te_1 + \dots + x_pTe_p$ .

Recall that  $e_1 = (1, 0, \dots, 0)$ ,  $e_2 = (0, 1, 0, \dots, 0)$ ,  $\dots$ ,  $e_p = (0, \dots, 0, 1)$ .

Any linear map  $T: \mathbb{F}^p \to \mathbb{F}^q$  is defined by the list  $u = (u_1, \ldots, u_p) = (Te_1, \ldots, Te_p)$ according to the formula  $T(x_1, \ldots, x_p) = x_1u_1 + \cdots + x_pu_p = x_1Te_1 + \cdots + x_pTe_p$ .

Recall that  $e_1 = (1, 0, \dots, 0)$ ,  $e_2 = (0, 1, 0, \dots, 0)$ ,  $\dots$ ,  $e_p = (0, \dots, 0, 1)$ .

Let  $Te_i = (A_{1,i}, ..., A_{q,i})$  for each i = 1, ..., p.

Any linear map  $T: \mathbb{F}^p \to \mathbb{F}^q$  is defined by the list  $u = (u_1, \ldots, u_p) = (Te_1, \ldots, Te_p)$ according to the formula  $T(x_1, \ldots, x_p) = x_1u_1 + \cdots + x_pu_p = x_1Te_1 + \cdots + x_pTe_p$ .

Recall that  $e_1 = (1, 0, \dots, 0)$ ,  $e_2 = (0, 1, 0, \dots, 0)$ ,  $\dots$ ,  $e_p = (0, \dots, 0, 1)$ .

Let  $Te_i = (A_{1,i}, \ldots, A_{q,i})$  for each  $i = 1, \ldots, p$ . Then

$$T(x_1,\ldots,x_p) = x_1 T e_1 + \cdots + x_p T e_p$$

Any linear map  $T: \mathbb{F}^p \to \mathbb{F}^q$  is defined by the list  $u = (u_1, \dots, u_p) = (Te_1, \dots, Te_p)$ according to the formula  $T(x_1, \dots, x_p) = x_1u_1 + \dots + x_pu_p = x_1Te_1 + \dots + x_pTe_p$ .

Recall that 
$$e_1 = (1, 0, \dots, 0)$$
,  $e_2 = (0, 1, 0, \dots, 0)$ ,  $\dots$ ,  $e_p = (0, \dots, 0, 1)$ .

Let  $Te_i = (A_{1,i}, \ldots, A_{q,i})$  for each  $i = 1, \ldots, p$ . Then

$$T(x_1, \dots, x_p) = x_1 T e_1 + \dots + x_p T e_p$$
  
=  $x_1(A_{1,1}, \dots, A_{q,1}) + x_2(A_{1,2}, \dots, A_{q,2}) + \dots + x_p(A_{1,p}, \dots, A_{q,p})$
Any linear map  $T: \mathbb{F}^p \to \mathbb{F}^q$  is defined by the list  $u = (u_1, \dots, u_p) = (Te_1, \dots, Te_p)$ according to the formula  $T(x_1, \dots, x_p) = x_1u_1 + \dots + x_pu_p = x_1Te_1 + \dots + x_pTe_p$ .

Recall that 
$$e_1 = (1, 0, \dots, 0)$$
,  $e_2 = (0, 1, 0, \dots, 0)$ ,  $\dots$ ,  $e_p = (0, \dots, 0, 1)$ .

Let  $Te_i = (A_{1,i}, \ldots, A_{q,i})$  for each  $i = 1, \ldots, p$ . Then

$$T(x_1, \dots, x_p) = x_1 T e_1 + \dots + x_p T e_p$$
  
=  $x_1(A_{1,1}, \dots, A_{q,1}) + x_2(A_{1,2}, \dots, A_{q,2}) + \dots + x_p(A_{1,p}, \dots, A_{q,p})$   
=  $(A_{1,1}x_1 + A_{1,2}x_2 + \dots + A_{1,p}x_p, \dots, A_{q,1}x_1 + A_{q,2}x_2 + \dots + A_{q,p}x_p).$ 

Any linear map  $T : \mathbb{F}^p \to \mathbb{F}^q$  is defined by the list  $u = (u_1, \dots, u_p) = (Te_1, \dots, Te_p)$ according to the formula  $T(x_1, \dots, x_p) = x_1u_1 + \dots + x_pu_p = x_1Te_1 + \dots + x_pTe_p$ . Recall that  $e_1 = (1, 0, \dots, 0)$ ,  $e_2 = (0, 1, 0, \dots, 0)$ ,  $\dots$ ,  $e_p = (0, \dots, 0, 1)$ . Let  $Te_i = (A_{1,i}, \dots, A_{q,i})$  for each  $i = 1, \dots, p$ . Then  $T(x_1, \dots, x_p) = x_1Te_1 + \dots + x_pTe_p$  $= x_1(A_{1,1}, \dots, A_{q,1}) + x_2(A_{1,2}, \dots, A_{q,2}) + \dots + x_p(A_{1,p}, \dots, A_{q,p})$  $= (A_{1,1}x_1 + A_{1,2}x_2 + \dots + A_{1,p}x_p, \dots, A_{q,1}x_1 + A_{q,2}x_2 + \dots + A_{q,p}x_p).$ 

Let us think of elements of a coordinate space  $\mathbb{F}^m$  as columns of m numbers.

Any linear map  $T : \mathbb{F}^p \to \mathbb{F}^q$  is defined by the list  $u = (u_1, \dots, u_p) = (Te_1, \dots, Te_p)$ according to the formula  $T(x_1, \dots, x_p) = x_1u_1 + \dots + x_pu_p = x_1Te_1 + \dots + x_pTe_p$ . Recall that  $e_1 = (1, 0, \dots, 0)$ ,  $e_2 = (0, 1, 0, \dots, 0)$ ,  $\dots$ ,  $e_p = (0, \dots, 0, 1)$ . Let  $Te_i = (A_{1,i}, \dots, A_{q,i})$  for each  $i = 1, \dots, p$ . Then  $T(x_1, \dots, x_p) = x_1Te_1 + \dots + x_pTe_p$  $= x_1(A_{1,1}, \dots, A_{q,1}) + x_2(A_{1,2}, \dots, A_{q,2}) + \dots + x_p(A_{1,p}, \dots, A_{q,p})$  $= (A_{1,1}x_1 + A_{1,2}x_2 + \dots + A_{1,p}x_p, \dots, A_{q,1}x_1 + A_{q,2}x_2 + \dots + A_{q,p}x_p).$ 

Let us think of elements of a coordinate space  $\mathbb{F}^m$  as columns of m numbers. Then



Any linear map  $T : \mathbb{F}^p \to \mathbb{F}^q$  is defined by the list  $u = (u_1, \dots, u_p) = (Te_1, \dots, Te_p)$ according to the formula  $T(x_1, \dots, x_p) = x_1u_1 + \dots + x_pu_p = x_1Te_1 + \dots + x_pTe_p$ . Recall that  $e_1 = (1, 0, \dots, 0)$ ,  $e_2 = (0, 1, 0, \dots, 0)$ ,  $\dots$ ,  $e_p = (0, \dots, 0, 1)$ . Let  $Te_i = (A_{1,i}, \dots, A_{q,i})$  for each  $i = 1, \dots, p$ . Then  $T(x_1, \dots, x_p) = x_1Te_1 + \dots + x_pTe_p$  $= x_1(A_{1,1}, \dots, A_{q,1}) + x_2(A_{1,2}, \dots, A_{q,2}) + \dots + x_p(A_{1,p}, \dots, A_{q,p})$  $= (A_{1,1}x_1 + A_{1,2}x_2 + \dots + A_{1,p}x_p, \dots, A_{q,1}x_1 + A_{q,2}x_2 + \dots + A_{q,p}x_p).$ 

Let us think of elements of a coordinate space  $\mathbb{F}^m$  as columns of m numbers. Then

$$T\begin{pmatrix} x_1\\ x_2\\ \vdots\\ x_p \end{pmatrix} = \begin{pmatrix} A_{1,1}x_1 + A_{1,2}x_2 + \dots + A_{1,p}x_p\\ A_{2,1}x_1 + A_{2,2}x_2 + \dots + A_{2,p}x_p\\ \vdots\\ A_{q,1}x_1 + A_{q,2}x_2 + \dots + A_{q,p}x_p \end{pmatrix} =$$

Any linear map  $T : \mathbb{F}^p \to \mathbb{F}^q$  is defined by the list  $u = (u_1, \dots, u_p) = (Te_1, \dots, Te_p)$ according to the formula  $T(x_1, \dots, x_p) = x_1u_1 + \dots + x_pu_p = x_1Te_1 + \dots + x_pTe_p$ . Recall that  $e_1 = (1, 0, \dots, 0)$ ,  $e_2 = (0, 1, 0, \dots, 0)$ ,  $\dots$ ,  $e_p = (0, \dots, 0, 1)$ . Let  $Te_i = (A_{1,i}, \dots, A_{q,i})$  for each  $i = 1, \dots, p$ . Then  $T(x_1, \dots, x_p) = x_1Te_1 + \dots + x_pTe_p$  $= x_1(A_{1,1}, \dots, A_{q,1}) + x_2(A_{1,2}, \dots, A_{q,2}) + \dots + x_p(A_{1,p}, \dots, A_{q,p})$  $= (A_{1,1}x_1 + A_{1,2}x_2 + \dots + A_{1,p}x_p, \dots, A_{q,1}x_1 + A_{q,2}x_2 + \dots + A_{q,p}x_p).$ 

Let us think of elements of a coordinate space  $\mathbb{F}^m$  as columns of m numbers. Then

$$T\begin{pmatrix}x_{1}\\x_{2}\\\vdots\\x_{p}\end{pmatrix} = \begin{pmatrix}A_{1,1}x_{1} + A_{1,2}x_{2} + \dots + A_{1,p}x_{p}\\A_{2,1}x_{1} + A_{2,2}x_{2} + \dots + A_{2,p}x_{p}\\\vdots\\A_{q,1}x_{1} + A_{q,2}x_{2} + \dots + A_{q,p}x_{p}\end{pmatrix} = \begin{pmatrix}A_{1,1} & A_{1,2} & \dots & A_{1,p}\\A_{2,1} & A_{2,2} & \dots & A_{2,p}\\\vdots\\A_{q,1} & A_{q,2} & \dots & A_{q,p}\end{pmatrix}\begin{pmatrix}x_{1}\\x_{2}\\\vdots\\x_{p}\end{pmatrix}.$$

Any linear map  $T : \mathbb{F}^p \to \mathbb{F}^q$  is defined by the list  $u = (u_1, \dots, u_p) = (Te_1, \dots, Te_p)$ according to the formula  $T(x_1, \dots, x_p) = x_1u_1 + \dots + x_pu_p = x_1Te_1 + \dots + x_pTe_p$ . Recall that  $e_1 = (1, 0, \dots, 0)$ ,  $e_2 = (0, 1, 0, \dots, 0)$ ,  $\dots$ ,  $e_p = (0, \dots, 0, 1)$ . Let  $Te_i = (A_{1,i}, \dots, A_{q,i})$  for each  $i = 1, \dots, p$ . Then  $T(x_1, \dots, x_p) = x_1Te_1 + \dots + x_pTe_p$  $= x_1(A_{1,1}, \dots, A_{q,1}) + x_2(A_{1,2}, \dots, A_{q,2}) + \dots + x_p(A_{1,p}, \dots, A_{q,p})$  $= (A_{1,1}x_1 + A_{1,2}x_2 + \dots + A_{1,p}x_p, \dots, A_{q,1}x_1 + A_{q,2}x_2 + \dots + A_{q,p}x_p).$ 

Let us think of elements of a coordinate space  $\mathbb{F}^m$  as columns of m numbers. Then

$$T\begin{pmatrix}x_{1}\\x_{2}\\\vdots\\x_{p}\end{pmatrix} = \begin{pmatrix}A_{1,1}x_{1} + A_{1,2}x_{2} + \dots + A_{1,p}x_{p}\\A_{2,1}x_{1} + A_{2,2}x_{2} + \dots + A_{2,p}x_{p}\\\vdots\\A_{q,1}x_{1} + A_{q,2}x_{2} + \dots + A_{q,p}x_{p}\end{pmatrix} = \begin{pmatrix}A_{1,1} & A_{1,2} & \dots & A_{1,p}\\A_{2,1} & A_{2,2} & \dots & A_{2,p}\\\vdots\\A_{q,1} & A_{q,2} & \dots & A_{q,p}\end{pmatrix}\begin{pmatrix}x_{1}\\x_{2}\\\vdots\\x_{p}\end{pmatrix}.$$

**Conclusion:** any linear map  $\mathbb{F}^p \to \mathbb{F}^q$  is a multiplication by a  $q \times p$ -matrix.

$$A = \begin{pmatrix} A_{1,1} & \dots & A_{1,p} \\ \vdots & & \vdots \\ A_{q,1} & \dots & A_{q,p} \end{pmatrix}$$

$$A = \begin{pmatrix} A_{1,1} & \dots & A_{1,p} \\ \vdots & & \vdots \\ A_{q,1} & \dots & A_{q,p} \end{pmatrix}$$

 $A_{j,k}$  is the entry in row j and column k.

$$A = \begin{pmatrix} A_{1,1} & \dots & A_{1,p} \\ \vdots & & \vdots \\ A_{q,1} & \dots & A_{q,p} \end{pmatrix}$$

 $A_{j,k}$  is the entry in row j and column k.

3.32 **Definition.** Let  $T \in \mathcal{L}(V, W)$ ,  $v = (v_1, \ldots, v_p)$  a basis in V,  $w = (w_1, \ldots, w_q)$  a basis in W.

$$A = \begin{pmatrix} A_{1,1} & \dots & A_{1,p} \\ \vdots & & \vdots \\ A_{q,1} & \dots & A_{q,p} \end{pmatrix}$$

 $A_{j,k}$  is the entry in row j and column k.

3.32 **Definition.** Let  $T \in \mathcal{L}(V, W)$ ,  $v = (v_1, \ldots, v_p)$  a basis in V,  $w = (w_1, \ldots, w_q)$  a basis in W. The matrix of T with respect to these bases is the q-by-p matrix  $\mathcal{M}(T)$  whose entries  $A_{j,k}$  are defined by  $Tv_k = A_{1,k}w_1 + \cdots + A_{q,k}w_q$ .

$$A = \begin{pmatrix} A_{1,1} & \dots & A_{1,p} \\ \vdots & & \vdots \\ A_{q,1} & \dots & A_{q,p} \end{pmatrix}$$

 $A_{j,k}$  is the entry in row j and column k.

3.32 **Definition.** Let  $T \in \mathcal{L}(V, W)$ ,  $v = (v_1, \ldots, v_p)$  a basis in V,  $w = (w_1, \ldots, w_q)$  a basis in W. The matrix of T with respect to these bases is the q-by-p matrix  $\mathcal{M}(T)$  whose entries  $A_{j,k}$  are defined by  $Tv_k = A_{1,k}w_1 + \cdots + A_{q,k}w_q$ .

$$(Tv_1, \dots, Tv_p) = (w_1, \dots, w_q) \begin{pmatrix} A_{1,1} & \dots & A_{1,p} \\ \vdots & & \vdots \\ A_{q,1} & \dots & A_{q,p} \end{pmatrix}$$

$$A = \begin{pmatrix} A_{1,1} & \dots & A_{1,p} \\ \vdots & & \vdots \\ A_{q,1} & \dots & A_{q,p} \end{pmatrix}$$

 $A_{j,k}$  is the entry in row j and column k.

**3.32 Definition.** Let  $T \in \mathcal{L}(V, W)$ ,  $v = (v_1, \ldots, v_p)$  a basis in V,  $w = (w_1, \ldots, w_q)$  a basis in W. The matrix of T with respect to these bases is the q-by-p matrix  $\mathcal{M}(T)$  whose entries  $A_{j,k}$  are defined by  $Tv_k = A_{1,k}w_1 + \cdots + A_{q,k}w_q$ .

$$(Tv_1, \dots, Tv_p) = (w_1, \dots, w_q) \begin{pmatrix} A_{1,1} & \dots & A_{1,p} \\ \vdots & & \vdots \\ A_{q,1} & \dots & A_{q,p} \end{pmatrix}$$

The k th column of  $\mathcal{M}(T)$  is formed of the coordinates of the k th basis vector  $v_k$ .

If  $T: U \to V$  and  $S: V \to W$  are linear maps, then  $\mathcal{M}(ST) = \mathcal{M}(S)\mathcal{M}(T)$ .

**Proof.** Let u, v, w be bases of U, V, W, respectively, and  $\mathcal{M}(S) = A$ ,  $\mathcal{M}(T) = B$ .

If  $T: U \to V$  and  $S: V \to W$  are linear maps, then  $\mathcal{M}(ST) = \mathcal{M}(S)\mathcal{M}(T)$ .

**Proof.** Let u, v, w be bases of U, V, W, respectively, and  $\mathcal{M}(S) = A$ ,  $\mathcal{M}(T) = B$ .  $(ST)u_k = S(B_{1,k}v_1 + B_{2,k}v_2 + \dots + B_{n,k}v_n) =$ 

If  $T: U \to V$  and  $S: V \to W$  are linear maps, then  $\mathcal{M}(ST) = \mathcal{M}(S)\mathcal{M}(T)$ .

**Proof.** Let u, v, w be bases of U, V, W, respectively, and  $\mathcal{M}(S) = A$ ,  $\mathcal{M}(T) = B$ .  $(ST)u_k = S(B_{1,k}v_1 + B_{2,k}v_2 + \dots + B_{n,k}v_n) = B_{1,k}Sv_1 + B_{2,k}Sv_2 + \dots + B_{n,k}Sv_n$ 

If  $T: U \to V$  and  $S: V \to W$  are linear maps, then  $\mathcal{M}(ST) = \mathcal{M}(S)\mathcal{M}(T)$ .

**Proof.** Let u, v, w be bases of U, V, W, respectively, and  $\mathcal{M}(S) = A$ ,  $\mathcal{M}(T) = B$ .  $(ST)u_k = S(B_{1,k}v_1 + B_{2,k}v_2 + \dots + B_{n,k}v_n) = B_{1,k}Sv_1 + B_{2,k}Sv_2 + \dots + B_{n,k}Sv_n$   $= B_{1,k}(A_{1,1}w_1 + A_{2,1}w_2 + \dots + A_{m,1}w_m)$   $+ B_{2,k}(A_{1,2}w_1 + A_{2,2}w_2 + \dots + A_{m,2}w_m)$  $\dots + B_{n,k}(A_{1,n}w_1 + A_{2,n}w_2 + \dots + A_{m,n}w_m)$ 

**Proof.** Let 
$$u, v, w$$
 be bases of  $U, V, W$ , respectively, and  $\mathcal{M}(S) = A$ ,  $\mathcal{M}(T) = B$ .  
 $(ST)u_k = S(B_{1,k}v_1 + B_{2,k}v_2 + \dots + B_{n,k}v_n) = B_{1,k}Sv_1 + B_{2,k}Sv_2 + \dots + B_{n,k}Sv_n$   
 $= B_{1,k}(A_{1,1}w_1 + A_{2,1}w_2 + \dots + A_{m,1}w_m)$   
 $+ B_{2,k}(A_{1,2}w_1 + A_{2,2}w_2 + \dots + A_{m,2}w_m)$   
 $\dots + B_{n,k}(A_{1,n}w_1 + A_{2,n}w_2 + \dots + A_{m,n}w_m)$   
 $= \sum_{r=1}^n A_{1,r}B_{r,k}w_1 + \sum_{r=1}^n A_{2,r}B_{r,k}w_2 + \dots + \sum_{r=1}^n A_{m,r}B_{r,k}w_m$ 

Any system of q linear equations with p unknowns looks as follows:

$$\begin{cases} A_{1,1}x_1 + \dots + A_{1,p}x_p = b_1 \\ A_{2,1}x_1 + \dots + A_{2,p}x_p = b_2 \\ \dots \\ A_{q,1}x_1 + \dots + A_{q,p}x_p = b_q \end{cases}$$

Any system of q linear equations with p unknowns looks as follows:

It can be re-written as a matrix equation AX = B

$$\begin{cases} A_{1,1}x_1 + \dots + A_{1,p}x_p = b_1 \\ A_{2,1}x_1 + \dots + A_{2,p}x_p = b_2 \\ \dots \\ A_{q,1}x_1 + \dots + A_{q,p}x_p = b_q \end{cases}$$

Any system of q linear equations with p unknowns looks as follows:

$$\begin{cases} A_{1,1}x_1 + \dots + A_{1,p}x_p = b_1 \\ A_{2,1}x_1 + \dots + A_{2,p}x_p = b_2 \\ \dots & \dots & \dots \\ A_{q,1}x_1 + \dots + A_{q,p}x_p = b_q \end{cases} \qquad \text{It can be re-written as a matrix equation } AX = B, \\ \text{where} \\ A = \begin{pmatrix} A_{1,1} & \dots & A_{1,p} \\ \vdots & \vdots & \vdots \\ A_{q,1} & \dots & A_{q,p} \end{pmatrix}, B = \begin{pmatrix} b_1 \\ \vdots \\ b_q \end{pmatrix}, X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}.$$

Any system of q linear equations with p unknowns looks as follows:

Each solution of AX = B is a vector from  $T^{-1}(B)$ , where  $T : \mathbb{F}^p \to \mathbb{F}^q$  defined by matrix A

Any system of q linear equations with p unknowns looks as follows:

Each solution of AX = B is a vector from  $T^{-1}(B)$ , where  $T : \mathbb{F}^p \to \mathbb{F}^q$  defined by matrix A, namely  $T : X \mapsto AX$ .

Any system of q linear equations with p unknowns looks as follows:

 $\begin{cases} A_{1,1}x_1 + \dots + A_{1,p}x_p = b_1 \\ A_{2,1}x_1 + \dots + A_{2,p}x_p = b_2 \\ \dots & \dots & \dots \\ A_{q,1}x_1 + \dots + A_{q,p}x_p = b_q \end{cases} \qquad \qquad \text{It can be re-written as a matrix equation } AX = B, \\ \text{where} \\ A = \begin{pmatrix} A_{1,1} & \dots & A_{1,p} \\ \vdots & \vdots & \vdots \\ A_{q,1} & \dots & A_{q,p} \end{pmatrix}, B = \begin{pmatrix} b_1 \\ \vdots \\ b_q \end{pmatrix}, X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}.$ 

Each solution of AX = B is a vector from  $T^{-1}(B)$ , where  $T : \mathbb{F}^p \to \mathbb{F}^q$  defined by matrix A, namely  $T : X \mapsto AX$ .

This allows to convert results about linear maps into results about systems of linear equations.

Linear Algebra MAT 315 Lecture 3

Recall: 3.23  $\dim V > \dim W \implies$  no linear map  $V \rightarrow W$  is injective.

Linear Algebra MAT 315 Lecture 3

| Recall: | 3.23 | $\dim V > \dim W$ | $\implies$ | no linear map | $V \to W$ | is injective. |
|---------|------|-------------------|------------|---------------|-----------|---------------|
|---------|------|-------------------|------------|---------------|-----------|---------------|

3.26 (Corollary of 3.23) Homogeneous system of linear equations.

Recall: 3.23  $\dim V > \dim W \implies$  no linear map  $V \rightarrow W$  is injective.

#### 3.26 (Corollary of 3.23) Homogeneous system of linear equations.

A homogeneous system of linear equations with more variables than equations has nonzero solutions.

Linear Algebra MAT 315 Lecture 3

Recall: 3.23  $\dim V > \dim W \implies$  no linear map  $V \rightarrow W$  is injective.

### 3.26 (Corollary of 3.23) Homogeneous system of linear equations.

A homogeneous system of linear equations with more variables than equations has nonzero solutions.

$$\begin{array}{ll} \sum_{k=1}^{p} A_{1,k} x_{k} = 0 & \text{Define } T : \mathbb{F}^{p} \to \mathbb{F}^{q} \text{ by} \\ \\ \text{For a system} & \vdots & T(x_{1}, \ldots, x_{p}) = \\ & \sum_{k=1}^{p} A_{q,k} x_{k} = 0 & (\sum_{k=1}^{p} A_{1,k} x_{k}, \ldots, \sum_{k=1}^{p} A_{q,k} x_{k}) \end{array}$$

Linear Algebra MAT 315 Lecture 3

Recall: 3.23  $\dim V > \dim W \implies$  no linear map  $V \rightarrow W$  is injective.

#### 3.26 (Corollary of 3.23) **Homogeneous system of linear equations.** A homogeneous system of linear equations with more variables than equations

homogeneous system of linear equations with more variables than equations has nonzero solutions.

For a system 
$$\begin{array}{ll} \sum_{k=1}^{p} A_{1,k} x_{k} = 0 & \text{Define } T : \mathbb{F}^{p} \to \mathbb{F}^{q} \text{ by} \\ \vdots & T(x_{1}, \dots, x_{p}) = \\ \sum_{k=1}^{p} A_{q,k} x_{k} = 0 & (\sum_{k=1}^{p} A_{1,k} x_{k}, \dots, \sum_{k=1}^{p} A_{q,k} x_{k}) \end{array}$$

If p > q, then T is not injective by 3.23 and  $\operatorname{null} T \neq 0$ .

Linear Algebra MAT 315 Lecture 3

Recall: 3.23  $\dim V > \dim W \implies$  no linear map  $V \rightarrow W$  is injective.

3.26 (Corollary of 3.23) Homogeneous system of linear equations.A homogeneous system of linear equations with more variables than equations has nonzero solutions.

$$\begin{split} \sum_{k=1}^{p} A_{1,k} x_k &= 0 & \text{Define } T : \mathbb{F}^p \to \mathbb{F}^q \text{ by} \\ \\ \text{For a system} & \vdots & T(x_1, \dots, x_p) = \\ & \sum_{k=1}^{p} A_{q,k} x_k = 0 & (\sum_{k=1}^{p} A_{1,k} x_k, \dots, \sum_{k=1}^{p} A_{q,k} x_k) \end{split}$$

If p > q, then T is not injective by 3.23 and  $\operatorname{null} T \neq 0$ .

Recall: 3.24  $\dim V < \dim W \implies$  no linear map  $V \rightarrow W$  is surjective.

Linear Algebra MAT 315 Lecture 3

Recall: 3.23  $\dim V > \dim W \implies$  no linear map  $V \rightarrow W$  is injective.

### 3.26 (Corollary of 3.23) Homogeneous system of linear equations.

A homogeneous system of linear equations with more variables than equations has nonzero solutions.

$$\begin{array}{ll} \sum_{k=1}^{p} A_{1,k} x_{k} = 0 & \text{Define } T : \mathbb{F}^{p} \to \mathbb{F}^{q} \text{ by} \\ \vdots & T(x_{1}, \dots, x_{p}) = \\ \sum_{k=1}^{p} A_{q,k} x_{k} = 0 & (\sum_{k=1}^{p} A_{1,k} x_{k}, \dots, \sum_{k=1}^{p} A_{q,k} x_{k}) \end{array}$$

If p > q, then T is not injective by 3.23 and  $\operatorname{null} T \neq 0$ .

Recall: 3.24  $\dim V < \dim W \implies$  no linear map  $V \rightarrow W$  is surjective.

#### 3.29 (Corollary of 2.34) Inhomogeneous system of linear equations
## **Corollaries about systems of linear equations**

Linear Algebra MAT 315 Lecture 3

Recall: 3.23  $\dim V > \dim W \implies$  no linear map  $V \rightarrow W$  is injective.

3.26 (Corollary of 3.23) Homogeneous system of linear equations.A homogeneous system of linear equations with more variables than equations has nonzero solutions.

$$\begin{array}{ll} \sum_{k=1}^{p} A_{1,k} x_{k} = 0 & \text{Define } T : \mathbb{F}^{p} \to \mathbb{F}^{q} \text{ by} \\ \\ \text{For a system} & \vdots & T(x_{1}, \ldots, x_{p}) = \\ & \sum_{k=1}^{p} A_{q,k} x_{k} = 0 & (\sum_{k=1}^{p} A_{1,k} x_{k}, \ldots, \sum_{k=1}^{p} A_{q,k} x_{k}) \end{array}$$

If p > q, then T is not injective by 3.23 and  $\operatorname{null} T \neq 0$ .

Recall: 3.24 dim  $V < \dim W \implies$  no linear map  $V \rightarrow W$  is surjective.

3.29 (Corollary of 2.34) **Inhomogeneous system of linear equations** An inhomogeneous system of linear equations with more equations than variables has no solution for some choice of the constant terms.