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3.5 Linear maps and basis of domain
Let v1,...,v,, beabasisof V and wy,...,w, € W. Then
3 a unique linear map 1": V — W such that Tv; = w; for j=1,...,n.

Proof. Existense.
Consider linear maps 7, : " —V and T, : F* — W,

where v = (v1,...,v,) and w = (wy,...,w,).
T, is invertible, because v is a basis of V.
The map V£>IF”T—“’>W maps v; > e; > w; . n
Uniqueness. Let T': V. — W be any linear map with Tv; = w; for j=1,...,n.
Then F7 L v Low maps e; — vj — w;. Hence T, 0T =T,
and T =T,'0T,. =
Reformulation. Any map {vy,...,v,} — W of a basis of V' to a vector space W

extends uniquely to a linear map V. — W
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e Any basis u = (uy,...,u,) of V determines an isomorphism
Ty :F" =V (xy...,2,) — T1U1 + ... Ty, .

e Any isomorphism T :F* —V is T, , where u= (Tey,...,Te,).

Definition. An isomorphism T, : F"* — V is called

the coordinate system in 1V determined by a basis v = (u1,...,u,).
For a vector v € V', the coordinates x1,...,x, of T, !(v) are called

the coordinates of v in the basis w.

The coordinates z1,...,x, of v in a basis uy,...,u, are determined by the equality
V=XT1UL + "+ TplUp .
The equality v = zq1u1 + - - - + z,,u, Is called
a decomposition of v in the basis uq,...,u,, .
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Ai1z1 + Arozo + -+ Aj Aiqr Ay ... Ay
B T G SRR BN A N

\5’7.19) \Aq,lxl + Aq,2x2‘ +o Aq,pxp) \Acll,l Ac.z,2 A.q,p \x.p)

Conclusion: any linear map F? — F? is a multiplication by a ¢ X p-matrix.
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3.32 Definition. Let T € L(V,W), v = (v1,...,vp) a basisin V, w =

(w1,...,wy) abasisin W . The matrix of 1" with respect to these bases is the ¢g-by-p
matrix M(T') whose entries A;j are defned by Tvy = A; pwi + -+ + Ay rwy -

A1 ... ALp
(Tvy,...,Tv,) = (wi,...,w,) :
Agr .. Agp

The kth column of M(T) is formed of the coordinates of the kth basis vector vy .
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:Bl,k:(Al,lwl + A qwa + -+ - + Am,lwm)
+ By 1. (A1 w1 + Agowa + -+ + Ay 2Wi)

+Bn,k:(A1,nw1 + A2,nw2 + -+ Am,nwm)

n n

— Al,rBr,kwl + Z AZ,TBT,kw2 + -+ Z Am,rBr,kwm
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3.43 The matrix of a composition of linear maps
If T:U —V and S:V — W are linear maps, then M(ST)= M(S)M(T).

Proof. Let u,v,w be bases of U,V, W, respectively, and M(S)=A, M(T)=B.
(ST)uk = S(Bl’kln -+ Bg’kvg + -+ Bn,k”n) = BLkavl -+ BQ’kS'UQ —+ - 4 Bn’kS”Un
:Bl,k:(Al,lwl + A qwa + -+ - + Am,lwm)
+ By 1. (A1 w1 + Agowa + -+ + Ay 2Wi)

+Bn,k:(A1,nw1 + A2,nw2 + -+ Am,nwm)

= A1, Brgwi+ Y. A Brrws + -+ > A Brgwm
r=1 r=1 r=1
Al,l ce. Al,n Bl,k:
= (wr...wm) | ; z
Am’]_ o« o e Am,n Bn,k

Hence (STuy...STu,) = (wy...wy)
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(A1 + -+ Ay pxp =b1 where
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...................... A= ; ; |, B= |, X=1":
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Any system of ¢ linear equations with p unknowns looks as follows:

(A1 121 +
) Aoy +

. . + Al,pmp :bl
4 Aoy, =bo
+ AgpTp =04

It can be re-written as a matrix equation AX = B,
where

Al,l Al,p bl 1
A=+ B=|:]x=]:
Aq,l c. Aq D bq Lp

Y

Each solution of AX = B is a vector from T71(B),
where T : FP — 4 defined by matrix A, namely T': X — AX .
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Systems of linear equations vs. linear maps Lecture 3

Any system of ¢ linear equations with p unknowns looks as follows:

(Aj121 4 -
) Ag 1y + -+

-+ ALpZEp :bl
+ AQ,pxp :bQ
+ AgpTp =04

It can be re-written as a matrix equation AX = B,
where

Al,l c. Al,p bl I
A=+ B=|:]x=]:
Aq,l c. Aq,p bq Lp

Each solution of AX = B is a vector from T71(B),
where T : FP — 4 defined by matrix A, namely T': X — AX .

This allows to convert results about linear maps

into results about systems of linear equations.
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Recall: 3.23 dimV >dimW = no linear map V — W s injective.

3.26 (Corollary of 3.23) Homogeneous system of linear equations.
A homogeneous system of linear equations with more variables than equations
has nonzero solutions.

> k1 ALkzr =0 Define T : FP — 9 by
For a system : T(x1,...,2p) =
Zzl Aq,kﬂjk =0 (2221 Al,kxk, ey ZZ:1 Aq,kxk)

17 / 17



Linear Algebra MAT 315
Corollaries about systems of linear equations Lecture 3

Recall: 3.23 dimV >dimW = no linear map V — W s injective.

3.26 (Corollary of 3.23) Homogeneous system of linear equations.
A homogeneous system of linear equations with more variables than equations
has nonzero solutions.

22:1 Ay gz =0 Define T : FP — [F4 by
For a system : T(z1,...,zp) =
If p> g, then T is not injective by 3.23 and nullT # 0. m

17 / 17



Linear Algebra MAT 315
Corollaries about systems of linear equations Lecture 3

Recall: 3.23 dimV >dimW = no linear map V — W s injective.

3.26 (Corollary of 3.23) Homogeneous system of linear equations.
A homogeneous system of linear equations with more variables than equations
has nonzero solutions.

22:1 Ay gz =0 Define T : FP — [F4 by
For a system : T(z1,...,zp) =
If p> g, then T is not injective by 3.23 and nullT # 0. |

Recall:  3.24 dimV <dimW = no linear map V — W s surjective.

17 / 17



Linear Algebra MAT 315
Corollaries about systems of linear equations Lecture 3

Recall: 3.23 dimV >dimW = no linear map V — W s injective.

3.26 (Corollary of 3.23) Homogeneous system of linear equations.
A homogeneous system of linear equations with more variables than equations
has nonzero solutions.

22:1 A g =0 Define T : FP — [F4 by
For a system : T(z1,...,zp) =
If p> g, then T is not injective by 3.23 and nullT # 0. |

Recall:  3.24 dimV <dimW = no linear map V — W s surjective.

3.29 (Corollary of 2.34) Inhomogeneous system of linear equations

17 / 17



Linear Algebra MAT 315
Corollaries about systems of linear equations Lecture 3

Recall: 3.23 dimV >dimW = no linear map V — W s injective.

3.26 (Corollary of 3.23) Homogeneous system of linear equations.
A homogeneous system of linear equations with more variables than equations
has nonzero solutions.

22:1 A g =0 Define T : FP — [F4 by
For a system : T(z1,...,zp) =
If p> g, then T is not injective by 3.23 and nullT # 0. |

Recall:  3.24 dimV <dimW = no linear map V — W s surjective.

3.29 (Corollary of 2.34) Inhomogeneous system of linear equations
An inhomogeneous system of linear equations with more equations than variables
has no solution for some choice of the constant terms.
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