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Take (1, 1) . It’s image is T (1, 1) = (2,−1) . What have we learned about T ?
T (span(1, 1)) = span(2,−1) .
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Take (1, 2) . It’s image is T (1, 2) = (0, 0).
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Let us recover a linear map T : R2 → R
2 by its values.

Take (1, 2) . It’s image is T (1, 2) = (0, 0). T (span(1, 2)) = {(0, 0)} .
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Take (1, 2) . It’s image is T (1, 2) = (0, 0). T (span(1, 2)) = {(0, 0)} .
span(1, 2) ⊂ nullT .
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Let us recover a linear map T : R2 → R
2 by its values.

null T

Take (1, 2) . It’s image is T (1, 2) = (0, 0). T (span(1, 2)) = {(0, 0)} .
span(1, 2) ⊂ nullT . In fact span(1, 2) = nullT . Why?
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Choose a basis v of nullT . Extend it to a basis (v, u) of R
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Choose a basis v of nullT . Extend it to a basis (v, u) of R
2 . Tu is basis of rangeT .
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Let us recover a linear map T : R2 → R
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u

Tu

rangeT

w

Choose a basis v of nullT . Extend it to a basis (v, u) of R
2 . Tu is basis of rangeT .

Extend Tu to a basis (Tu,w) of R
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Let us recover a linear map T : R2 → R
2 by its values.

null T

v

u

Tu

rangeT

w

span(w)

Choose a basis v of nullT . Extend it to a basis (v, u) of R
2 . Tu is basis of rangeT .

Extend Tu to a basis (Tu,w) of R
2 .

R
2 = span(v)⊕ span(u)

0⊕T
−−−→ span(w)⊕ span(Tu) = R

2 .
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r → C ⊕ rangeT is an isomorphism.
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Extend Tu1, . . . , Tur to a basis w1, . . . , wq−r, Tu1, . . . , Tur of W .

Denote span(w1, . . . , wq−r) by C .

ψ = Tw1,...,wq−r
⊕ TTu1,...,Tur

: Fq−r ⊕ F
r → C ⊕ rangeT is an isomorphism.

Isomorphisms φ and ψ form an isomorphism (0⊕ id) → T :

F
n ⊕ F

r nullT ⊕ U V

F
q−r ⊕ F

r C ⊕ rangeT W

0⊕id

φ

0⊕T

=

T

ψ =

�
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Let V be a finite-dimensional vector space and T ∈ L(V,W ) .
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Proof. By Theorem applied to T | : V → rangeT
there exists an isomorphism F

dimnullT ⊕ F
dim rangeT → V . �
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Proof. rangeT is a subspace of W . �

A linear map T : V →W with dimV = p , dimW = q and rkT = r exists
⇐⇒ r ≤ p and r ≤ q .
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3.22 Corollary. Fundamental Theorem of Linear Maps.

Let V be a finite-dimensional vector space and T ∈ L(V,W ) .
Then rangeT is finite-dimensional and dimV = dimnullT + rkT .

Proof. By Theorem applied to T | : V → rangeT
there exists an isomorphism F

dimnullT ⊕ F
dim rangeT → V . �

rkT ≤ dimW for any linear map T : V →W .

Proof. rangeT is a subspace of W . �

A linear map T : V →W with dimV = p , dimW = q and rkT = r exists
⇐⇒ r ≤ p and r ≤ q .

Linear maps T : V →W and T ′ : V ′ →W ′ are isomorphic
⇐⇒ dimV = dimV ′ , dimW = dimW ′ and rkT = rkT ′ .
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≥ dimV − dimW > 0.
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3.23 Theorem. A map to a smaller dimensional space is not injective

If dimV > dimW then any linear map V →W is not injective.

Proof. Let T ∈ L(V,W ) . Then dimnullT = dimV − dim rangeT
≥ dimV − dimW > 0. Hence nullT > 0 . �

3.24 Theorem. A map to a larger dimensional space is not surjective

If dimV < dimW , then any linear map V →W is not surjective.

Proof. Let T ∈ L(V,W ) . Then dim rangeT = dimV − dimnullT
≤ dimV < dimW .
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3.23 Theorem. A map to a smaller dimensional space is not injective

If dimV > dimW then any linear map V →W is not injective.

Proof. Let T ∈ L(V,W ) . Then dimnullT = dimV − dim rangeT
≥ dimV − dimW > 0. Hence nullT > 0 . �

3.24 Theorem. A map to a larger dimensional space is not surjective

If dimV < dimW , then any linear map V →W is not surjective.

Proof. Let T ∈ L(V,W ) . Then dim rangeT = dimV − dimnullT
≤ dimV < dimW . Hence rangeT 6=W . �
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Let V be a finite-dimensional vector space and T ∈ L(V ) . Then
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Recall: 3.67 A linear map from a vector space to itself is called an operator.

3.69 For an operator in a finite dimensional vector space

injectivity is equivalent to surjectivity

Let V be a finite-dimensional vector space and T ∈ L(V ) . Then
T is bijective ⇐⇒ T is injective ⇐⇒ T is surjective .

Proof. bijective =⇒ injective. By definition.

injective =⇒ surjective. T is injective =⇒ rkT = dimV −dimnullT = dimV �

surjective =⇒ injective. T is surjective =⇒ dimnullT = dimV − rkT = 0 �

injective or surjective =⇒ surjective and injective =⇒ bijective �

In infinite-dimensional space
surjectivity ; injectivity

Example: F
∞ → F

∞ : (x1, x2, . . . , xn . . . ) 7→ (x2, . . . , xn . . . )
injectivity ; surjectivity

Example: F
∞ → F

∞ : (x1, x2, . . . , xn . . . ) 7→ (0, x1, x2, . . . , xn . . . )
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3.5 Linear maps and basis of domain

Let v1, . . . , vn be a basis of V and w1, . . . , wn ∈W . Then
∃ a unique linear map T : V →W such that Tvj = wj for j = 1, . . . , n .

Proof. Existense.

Consider linear maps Tv : F
n → V and Tw : Fn →W ,

where v = (v1, . . . , vn) and w = (w1, . . . , wn) .

Tv is invertible, because v is a basis of V .

The map V
T−1

v−−−→ F
n Tw−−→W maps vj 7→ ej 7→ wj . �

Uniqueness. Let T : V →W be any linear map with Tvj = wj for j = 1, . . . , n .

Then F
n Tv−→ V

T
−→W maps ej 7→ vj 7→ wj . Hence Tv ◦ T = Tw

and T = T−1
v ◦ Tw . �

Reformulation. Any map {v1, . . . , vn} →W of a basis of V to a vector space W
extends uniquely to a linear map V →W .
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We have seen that:

• Any finite-dimensional vector space V over F is isomorphic to F
n with n = dimV .

• Any basis u = (u1, . . . , un) of V determines an isomorphism
Tu : Fn → V : (x1 . . . , xn) 7→ x1u1 + . . . xnun .

• Any isomorphism T : Fn → V is Tu , where u = (Te1, . . . , T en) .

Definition. An isomorphism Tu : Fn → V is called
the coordinate system in V determined by a basis u = (u1, . . . , un) .

For a vector v ∈ V , the coordinates x1, . . . , xn of T−1
u (v) are called

the coordinates of v in the basis u .

The coordinates x1, . . . , xn of v in a basis u1, . . . , un are determined by the equality
v = x1u1 + · · ·+ xnun .



Linear Algebra MAT 315

Lecture 3Coordinate systems

12 / 17

We have seen that:

• Any finite-dimensional vector space V over F is isomorphic to F
n with n = dimV .

• Any basis u = (u1, . . . , un) of V determines an isomorphism
Tu : Fn → V : (x1 . . . , xn) 7→ x1u1 + . . . xnun .

• Any isomorphism T : Fn → V is Tu , where u = (Te1, . . . , T en) .

Definition. An isomorphism Tu : Fn → V is called
the coordinate system in V determined by a basis u = (u1, . . . , un) .

For a vector v ∈ V , the coordinates x1, . . . , xn of T−1
u (v) are called

the coordinates of v in the basis u .

The coordinates x1, . . . , xn of v in a basis u1, . . . , un are determined by the equality
v = x1u1 + · · ·+ xnun .

The equality v = x1u1 + · · ·+ xnun is called
a decomposition of v in the basis u1, . . . , un .
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Any linear map T : Fp → F
q is defined by the list u = (u1, . . . , up) = (Te1, . . . , T ep)
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Any linear map T : Fp → F
q is defined by the list u = (u1, . . . , up) = (Te1, . . . , T ep)

according to the formula T (x1, . . . , xp) = x1u1 + · · ·+ xpup = x1Te1 + · · ·+ xpTep .
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Any linear map T : Fp → F
q is defined by the list u = (u1, . . . , up) = (Te1, . . . , T ep)

according to the formula T (x1, . . . , xp) = x1u1 + · · ·+ xpup = x1Te1 + · · ·+ xpTep .

Recall that e1 = (1, 0, . . . , 0) , e2 = (0, 1, 0, . . . , 0) , . . . , ep = (0, . . . , 0, 1) .
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q is defined by the list u = (u1, . . . , up) = (Te1, . . . , T ep)

according to the formula T (x1, . . . , xp) = x1u1 + · · ·+ xpup = x1Te1 + · · ·+ xpTep .

Recall that e1 = (1, 0, . . . , 0) , e2 = (0, 1, 0, . . . , 0) , . . . , ep = (0, . . . , 0, 1) .

Let Tei = (A1,i, . . . , Aq,i) for each i = 1, . . . , p .
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Any linear map T : Fp → F
q is defined by the list u = (u1, . . . , up) = (Te1, . . . , T ep)

according to the formula T (x1, . . . , xp) = x1u1 + · · ·+ xpup = x1Te1 + · · ·+ xpTep .

Recall that e1 = (1, 0, . . . , 0) , e2 = (0, 1, 0, . . . , 0) , . . . , ep = (0, . . . , 0, 1) .

Let Tei = (A1,i, . . . , Aq,i) for each i = 1, . . . , p . Then

T (x1, . . . , xp) = x1Te1 + · · ·+ xpTep

= x1(A1,1, . . . , Aq,1) + x2(A1,2, ..., Aq,2) + · · ·+ xp(A1,p, . . . , Aq,p)

.
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Any linear map T : Fp → F
q is defined by the list u = (u1, . . . , up) = (Te1, . . . , T ep)

according to the formula T (x1, . . . , xp) = x1u1 + · · ·+ xpup = x1Te1 + · · ·+ xpTep .
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= (A1,1x1 +A1,2x2 + · · ·+A1,pxp, . . . , Aq,1x1 +Aq,2x2 + · · ·+Aq,pxp).
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Any linear map T : Fp → F
q is defined by the list u = (u1, . . . , up) = (Te1, . . . , T ep)

according to the formula T (x1, . . . , xp) = x1u1 + · · ·+ xpup = x1Te1 + · · ·+ xpTep .

Recall that e1 = (1, 0, . . . , 0) , e2 = (0, 1, 0, . . . , 0) , . . . , ep = (0, . . . , 0, 1) .

Let Tei = (A1,i, . . . , Aq,i) for each i = 1, . . . , p . Then

T (x1, . . . , xp) = x1Te1 + · · ·+ xpTep

= x1(A1,1, . . . , Aq,1) + x2(A1,2, ..., Aq,2) + · · ·+ xp(A1,p, . . . , Aq,p)

= (A1,1x1 +A1,2x2 + · · ·+A1,pxp, . . . , Aq,1x1 +Aq,2x2 + · · ·+Aq,pxp).

Let us think of elements of a coordinate space F
m as columns of m numbers.
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T











x1
x2
...
xp











=
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Any linear map T : Fp → F
q is defined by the list u = (u1, . . . , up) = (Te1, . . . , T ep)

according to the formula T (x1, . . . , xp) = x1u1 + · · ·+ xpup = x1Te1 + · · ·+ xpTep .

Recall that e1 = (1, 0, . . . , 0) , e2 = (0, 1, 0, . . . , 0) , . . . , ep = (0, . . . , 0, 1) .

Let Tei = (A1,i, . . . , Aq,i) for each i = 1, . . . , p . Then

T (x1, . . . , xp) = x1Te1 + · · ·+ xpTep

= x1(A1,1, . . . , Aq,1) + x2(A1,2, ..., Aq,2) + · · ·+ xp(A1,p, . . . , Aq,p)

= (A1,1x1 +A1,2x2 + · · ·+A1,pxp, . . . , Aq,1x1 +Aq,2x2 + · · ·+Aq,pxp).

Let us think of elements of a coordinate space F
m as columns of m numbers. Then
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








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...
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
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
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...
... . . .

...
Aq,1 Aq,2 . . . Aq,p
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

















x1
x2
...
xp











.
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Any linear map T : Fp → F
q is defined by the list u = (u1, . . . , up) = (Te1, . . . , T ep)

according to the formula T (x1, . . . , xp) = x1u1 + · · ·+ xpup = x1Te1 + · · ·+ xpTep .

Recall that e1 = (1, 0, . . . , 0) , e2 = (0, 1, 0, . . . , 0) , . . . , ep = (0, . . . , 0, 1) .

Let Tei = (A1,i, . . . , Aq,i) for each i = 1, . . . , p . Then

T (x1, . . . , xp) = x1Te1 + · · ·+ xpTep

= x1(A1,1, . . . , Aq,1) + x2(A1,2, ..., Aq,2) + · · ·+ xp(A1,p, . . . , Aq,p)

= (A1,1x1 +A1,2x2 + · · ·+A1,pxp, . . . , Aq,1x1 +Aq,2x2 + · · ·+Aq,pxp).

Let us think of elements of a coordinate space F
m as columns of m numbers. Then

T











x1
x2
...
xp











=











A1,1x1 +A1,2x2 + · · ·+A1,pxp
A2,1x1 +A2,2x2 + · · ·+A2,pxp

...
Aq,1x1 +Aq,2x2 + · · ·+Aq,pxp











=











A1,1 A1,2 . . . A1,p

A2,1 A2,2 . . . A2,p

...
... . . .

...
Aq,1 Aq,2 . . . Aq,p





















x1
x2
...
xp











.

Conclusion: any linear map F
p → F

q is a multiplication by a q × p -matrix.
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3.30 Definition. Let q and p denote positive integers.
A q×p matrix A is a rectangular array of elements of F with q rows and p columns:

A =







A1,1 . . . A1,p

...
...

Aq,1 . . . Aq,p






.



Linear Algebra MAT 315

Lecture 3Matrices

14 / 17

3.30 Definition. Let q and p denote positive integers.
A q×p matrix A is a rectangular array of elements of F with q rows and p columns:

A =







A1,1 . . . A1,p

...
...

Aq,1 . . . Aq,p






.

Aj,k is the entry in row j and column k .
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A q×p matrix A is a rectangular array of elements of F with q rows and p columns:

A =







A1,1 . . . A1,p

...
...

Aq,1 . . . Aq,p






.

Aj,k is the entry in row j and column k .

3.32 Definition. Let T ∈ L(V,W ) , v = (v1, . . . , vp) a basis in V , w =
(w1, . . . , wq) a basis in W .
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3.32 Definition. Let T ∈ L(V,W ) , v = (v1, . . . , vp) a basis in V , w =
(w1, . . . , wq) a basis in W . The matrix of T with respect to these bases is the q-by-p
matrix M(T ) whose entries Aj,k are defned by Tvk = A1,kw1 + · · ·+Aq,kwq .
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3.30 Definition. Let q and p denote positive integers.
A q×p matrix A is a rectangular array of elements of F with q rows and p columns:

A =







A1,1 . . . A1,p

...
...

Aq,1 . . . Aq,p






.

Aj,k is the entry in row j and column k .

3.32 Definition. Let T ∈ L(V,W ) , v = (v1, . . . , vp) a basis in V , w =
(w1, . . . , wq) a basis in W . The matrix of T with respect to these bases is the q-by-p
matrix M(T ) whose entries Aj,k are defned by Tvk = A1,kw1 + · · ·+Aq,kwq .

(Tv1, . . . , T vp) = (w1, . . . , wq)







A1,1 . . . A1,p

...
...

Aq,1 . . . Aq,p







The k th column of M(T ) is formed of the coordinates of the k th basis vector vk .
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3.43 The matrix of a composition of linear maps

If T : U → V and S : V →W are linear maps, then M(ST ) = M(S)M(T ) .
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3.43 The matrix of a composition of linear maps

If T : U → V and S : V →W are linear maps, then M(ST ) = M(S)M(T ) .

Proof. Let u, v, w be bases of U, V,W , respectively, and M(S) = A , M(T ) = B .
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If T : U → V and S : V →W are linear maps, then M(ST ) = M(S)M(T ) .

Proof. Let u, v, w be bases of U, V,W , respectively, and M(S) = A , M(T ) = B .

(ST )uk = S(B1,kv1 +B2,kv2 + · · ·+Bn,kvn) =
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If T : U → V and S : V →W are linear maps, then M(ST ) = M(S)M(T ) .
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3.43 The matrix of a composition of linear maps

If T : U → V and S : V →W are linear maps, then M(ST ) = M(S)M(T ) .

Proof. Let u, v, w be bases of U, V,W , respectively, and M(S) = A , M(T ) = B .
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+Bn,k(A1,nw1 +A2,nw2 + · · ·+Am,nwm)
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3.43 The matrix of a composition of linear maps

If T : U → V and S : V →W are linear maps, then M(ST ) = M(S)M(T ) .

Proof. Let u, v, w be bases of U, V,W , respectively, and M(S) = A , M(T ) = B .
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=
n
∑

r=1
A1,rBr,kw1 +

n
∑

r=1
A2,rBr,kw2 + · · ·+

n
∑

r=1
Am,rBr,kwm
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3.43 The matrix of a composition of linear maps

If T : U → V and S : V →W are linear maps, then M(ST ) = M(S)M(T ) .

Proof. Let u, v, w be bases of U, V,W , respectively, and M(S) = A , M(T ) = B .
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∑
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





A1,1 . . . A1,n

...
...

Am,1 . . . Am,n













B1,k

...
Bn,k









Linear Algebra MAT 315

Lecture 3The matrix of composition

15 / 17

3.43 The matrix of a composition of linear maps
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+Bn,k(A1,nw1 +A2,nw2 + · · ·+Am,nwm)

=
n
∑

r=1
A1,rBr,kw1 +

n
∑

r=1
A2,rBr,kw2 + · · ·+

n
∑

r=1
Am,rBr,kwm

= (w1 . . . wm)







A1,1 . . . A1,n

...
...

Am,1 . . . Am,n













B1,k

...
Bn,k







Hence (STu1 . . . STup) = (w1 . . . wm)







A1,1 . . . A1,n

...
...

Am,1 . . . Am,n













B1,1 . . . B1,p

...
...

Bn,1 . . . Bn,p






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Any system of q linear equations with p unknowns looks as follows:



















A1,1x1 + · · ·+A1,pxp =b1

A2,1x1 + · · ·+A2,pxp =b2

. . . . . . . . . . . . . . . . . . . . . .

Aq,1x1 + · · ·+Aq,pxp =bq

It can be re-written as a matrix equation AX = B ,
where

A =







A1,1 . . . A1,p

...
...

...
Aq,1 . . . Aq,p






, B =







b1
...
bq






, X =







x1
...
xp






.

Each solution of AX = B is a vector from T−1(B) ,
where T : Fp → F

q defined by matrix A , namely T : X 7→ AX .

This allows to convert results about linear maps
into results about systems of linear equations.
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Recall: 3.23 dimV > dimW =⇒ no linear map V →W is injective.

3.26 (Corollary of 3.23) Homogeneous system of linear equations.

A homogeneous system of linear equations with more variables than equations
has nonzero solutions.

∑p

k=1A1,kxk = 0

For a system
...
∑p

k=1Aq,kxk = 0

Define T : Fp → F
q by

T (x1, . . . , xp) =

(
∑p

k=1A1,kxk, . . . ,
∑p

k=1Aq,kxk)

If p > q , then T is not injective by 3.23 and nullT 6= 0 . �

Recall: 3.24 dimV < dimW =⇒ no linear map V →W is surjective.

3.29 (Corollary of 2.34) Inhomogeneous system of linear equations

An inhomogeneous system of linear equations with more equations than variables
has no solution for some choice of the constant terms.
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