Advanced Linear Algebra MAT 315

Oleg Viro

02/18/2020

Spaces associated to a linear map, continued	2
Range	3
Surjectivity and range	
Lists of vectors vs. linear maps	5
Linear maps $\mathbb{F}^n o V$ vs. lists of vectors	6
Properties of linear maps $\mathbb{F}^n o V$	7
Inverse to a linear map is linear	8
Isomorphism classifications of vector spaces and linear maps	9
Isomorphism classification of vector spaces	10
Direct sum of vector spaces	11
Isomorphism classification of linear maps	12
Numerical invariants of a linear map	

Range

3.17 **Definition**

For a map $T: V \to W$, the **range** of T is range $T = T(V) = \{Tv \mid v \in V\}$.

Another name: **image**. Notation: $\operatorname{Im} T$.

3.18 Examples

- $\bullet \quad \text{For} \ T:V\to W:v\mapsto 0\,, \qquad \qquad \text{range}\, T=\{0\}.$
- For differentiation $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$, range $D = \mathcal{P}(\mathbb{R})$.
- For multiplication by x^3 $T: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F}): Tp = x^3p(x)$, range T= polynomials without monomials of degree <3.

3 / 13

Surjectivity and range

3.15 **Definition (reminder)**

A map $T:V \to W$ is called **surjective** if $\operatorname{range} T = W$.

3.14 The range of a linear map is a subspace.

For $T \in \mathcal{L}(V, W)$, range T is a subspace of W.

Proof $0 \in \operatorname{range} T$, since T(0) = 0.

If $w \in \operatorname{range} T$ and $\lambda \in \mathbb{F}$, then $\exists v \in V : w = Tv$, $T(\lambda v) = \lambda Tv = \lambda w \in \operatorname{range} T$.

 $w_1, w_2 \in \text{range } T \implies \exists v_1, v_2 \in V : w_1 = Tv_1, w_2 = Tv_2 \\ \implies w_1 + w_2 = Tv_1 + Tv_2 = T(v_1 + v_2) \in \text{range } T.$

Linear maps $\mathbb{F}^n \to V$ vs. lists of vectors

Let V be a vector space and let $u=(u_1,\ldots,u_n)$ be a list of vectors of V.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \dots, x_n) \mapsto x_1u_1 + \dots + x_nu_n$ is linear.

Proof

Additivity: Let $x=(x_1,\ldots,x_n)\in\mathbb{F}^n$ and $y=(y_1,\ldots,y_n)\in\mathbb{F}^n$

$$T_u(x+y) = (x_1 + y_1)u_1 + \dots + (x_n + y_n)u_n$$

$$= x_1u_1 + y_1u_1 + \dots + x_nu_n + y_nu_n$$

$$= x_1u_1 + \dots + x_nu_n + y_1u_1 + \dots + y_nu_n = T_u(x) + T_u(y)$$

Homogeneity: $T_u(\lambda x) = \lambda x_1 u_1 + \dots + \lambda x_n u_n = \lambda (x_1 u_1 + \dots + x_n u_n) = \lambda T_u(x)$.

Denote
$$e_1 = (1, 0, \dots, 0)$$
, $e_2 = (0, 1, 0, \dots, 0)$, ..., $e_n = (0, 0, \dots, 0, 1)$.
Clearly, $(x_1, x_2, \dots, x_n) = x_1 e_1 + \dots + x_n e_n$ for any $(x_1, \dots, x_n) \in \mathbb{F}^n$.

Theorem. Any linear $T: \mathbb{F}^n \to V$ is $T_{(u_1,...,u_n)}$, where $u_i = T(e_i)$ for $\forall i$.

Proof
$$T(x_1, ..., x_n) = T(x_1e_1 + ... + x_ne_n) = T(x_1e_1) + ... + T(x_ne_n)$$

= $x_1T(e_1) + ... + x_nT(e_n) = x_1u_1 + ... + x_nu_n = T_u(x)$.

6 / 13

Properties of linear maps $\mathbb{F}^n \to V$

A linear map $T_u: \mathbb{F}^n \to V \iff$ a list u of n vectors in V

$$T_u(x_1,\ldots,x_n) = x_1u_1 + \cdots + x_nu_n$$

 T_u is surjective \iff u spans V

For any $v \in V$, $\exists (x_1,\ldots,x_n) \in \mathbb{F}^n \ v = x_1u_1 + \cdots + x_nu_n = T_u(x_1,\ldots,x_n)$.

 T_u is injective \iff u is a linear independent list

$$\operatorname{null}(T_u) = 0 \iff (x_1 u_1 + \dots + x_n u_n = 0 \implies \forall i \ x_i = 0)$$

 T_u is bijective \iff u is a basis of V

Inverse to a linear map is linear

Theorem If V and W are vector spaces and a linear map $T:V\to W$ is invertible, then T^{-1} is linear.

Proof. Additivity. Let $w_1, w_2 \in W$. Then

$$T^{-1}(w_1 + w_2) = T^{-1}(\mathrm{id}_W w_1 + \mathrm{id}_W w_2) = T^{-1}(TT^{-1}w_1 + TT^{-1}w_2)$$

= $T^{-1}T(T^{-1}w_1 + T^{-1}w_2) = \mathrm{id}_V(T^{-1}w_1 + T^{-1}w_2) = T^{-1}w_1 + T^{-1}w_2.$

Proof. Homogeneity.

$$T^{-1}(\lambda w) = T^{-1}(\lambda \operatorname{id}_W w) = T^{-1}(\lambda T T^{-1} w) = T^{-1}(\lambda T (T^{-1} w))$$
$$= T^{-1}T(\lambda T^{-1} w) = \operatorname{id}_V(\lambda T^{-1} w) = \lambda T^{-1} w.$$

Corollary 1 A linear map $T:V\to W$ is an isomorphism in the category of vector spaces, if and only if it is bijective.

Corollary 2 A linear map $T:V\to W$ is an isomorphism in the category of vector spaces, if and only if $\operatorname{null} T=0$ and $\operatorname{range} T=W$.

8 / 13

Isomorphism classifications of vector spaces and linear maps

9 / 13

Isomorphism classification of vector spaces

Proof. Let $u=(u_1,\ldots,u_{\dim V})$ be a basis of V. Then the linear map $T_u:\mathbb{F}^{\dim V}\to V$ is bijective. By Corollary 2 above, T_u is an isomorphism. \blacksquare

Proof. \iff If $\dim V = \dim W = n$, then by Theorem above V are isomorphic to \mathbb{F}^n . \implies If $T: \mathbb{F}^p \to \mathbb{F}^q$ is an isomorphism, $T = T_u$, where $u = (u_1, \dots, u_p)$, $u_i = Te_i$ is a basis in F^q . In \mathbb{F}^q we got a basis of length p. Hence p = q.

Direct sum of vector spaces

```
We have studied direct sums of subspaces.
```

In particular, if
$$U$$
 and W are subspaces of V , $U\cap W=\{0\}$ and $V=U+W$, then $V=U\oplus W$.

There is a construction, which starts with vector spaces U and W and produces $V=U'\oplus W'$, where U' is isomorphic to U and W is isomorphic to W.

Let
$$V = U \times W = \{(u, w) \mid u \in U, w \in W\}$$
. Define:

Addition:
$$(u_1, w_1) + (u_2, w_2) = (u_1 + u_2, w_1 + w_2)$$
,

Multiplication: $\lambda(u, w) = (\lambda u, \lambda w)$.

This V with these operations is a required vector space over the same field.

$$U' = U \times \{0\}$$
 , $W' = \{0\} \times W$.

In particular, $\mathbb{F}^p \oplus \mathbb{F}^q$ is naturally isomorphic to \mathbb{F}^{p+q} .

```
If f:A\to C and g:B\to D are linear maps, then define f\oplus g:A\oplus B\to C\oplus D as (a,c)\mapsto (f(a),g(c)).
```

This is a linear map, the direct sum of f and g.

11 / 13

Isomorphism classification of linear maps

Theorem Any linear map $T:V\to W$ between finite-dimensional vector spaces over a field $\mathbb F$ is isomorphic to

$$0 \oplus \mathrm{id} : \mathbb{F}^{\dim \mathrm{null}\, T} \oplus \mathbb{F}^{\dim \mathrm{range}\, T} \to \mathbb{F}^{\dim W - \dim \mathrm{range}\, W} \oplus \mathbb{F}^{\dim \mathrm{range}\, T}$$

Proof. Let $u = (v_1, \ldots, v_p)$ be a basis of $\operatorname{null} T$. Extend it to a basis $v_1, \ldots, v_p, u_1, \ldots, u_q$ of V. Notice that $\dim \operatorname{null} T = p$ and $\dim V = p + q$. Denote $\operatorname{span}(u_1, \ldots, u_q)$ by U. Clearly, $V = \operatorname{span}(v_1, \ldots, v_p) \oplus \operatorname{span}(u_1, \ldots, u_q)$ = $\operatorname{null} T \oplus U$. The restriction $T|_{V}$ is injective, because $U \cap \operatorname{null} T = 0$, and

 $=\operatorname{null} T\oplus U\,.\quad \text{The restriction}\quad T|_U \text{ is injective, because } U\cap\operatorname{null} T=0\,, \text{ and } \phi=T_{(v_1,\dots,v_p)}\oplus T_{(u_1,\dots,u_q)}:\mathbb{F}^p\oplus\mathbb{F}^q\to\operatorname{null} T\oplus U \text{ is an isomorphism.}$

 $\phi = I_{(v_1, \dots, v_p)} \oplus I_{(u_1, \dots, u_q)} : \mathbb{F}^p \oplus \mathbb{F}^q \to \text{null } I \oplus C$ $(Tu_1, \dots, Tu_q) \text{ is a basis of range } T.$

Extend it to a basis $w_1,\ldots,w_r,Tu_1,\ldots,Tu_q$ of W . Denote $\mathrm{span}(w_1,\ldots,w_r)$ by C .

 $\psi=T_{w_1,\dots,w_r}\oplus T_{Tu_1,\dots,Tu_q}:\mathbb{F}^r\oplus\mathbb{F}^q\to C\oplus\mathrm{range}\,T\ \ \text{is an isomorphism}.$

Isomorphisms ϕ and ψ form an isomorphism $(0 \oplus \mathrm{id}) \to T$:

$$\mathbb{F}^{p} \oplus \mathbb{F}^{q} \xrightarrow{\phi} \operatorname{null} T \oplus U \xrightarrow{=} V$$

$$\downarrow_{0 \oplus \operatorname{id}} \qquad \downarrow_{0 \oplus T'} \qquad \downarrow_{T} \quad \blacksquare$$

$$\mathbb{F}^{r} \oplus \mathbb{F}^{q} \xrightarrow{\psi} C \oplus \operatorname{range} T \xrightarrow{=} W$$

Numerical invariants of a linear map

3.22 Corollary. Fundamental Theorem of Linear Maps.

Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V, W)$. Then range T is finite-dimensional and $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$.

Proof. By Isomorphism Classification of Linear Maps Theorem,

there exists an isomorphism $\,\mathbb{F}^{\dim \operatorname{null} T} \oplus \mathbb{F}^{\dim \operatorname{range} T} o V\,.\,$

 $\dim \operatorname{range} T$ is called the **rank** of linear map T. It is denoted by $\operatorname{rk} T$.

 $\operatorname{rk} T \leq \dim W$ for any linear map $T: V \to W$.

Proof. By Isomorphism Classification of Linear Maps Theorem,

there exists an isomorphism $\mathbb{F}^{\dim W - \dim \operatorname{range} T} \oplus \mathbb{F}^{\dim \operatorname{range} T} o W$.

A linear map $T:V \to W$ with $\dim V=p$, $\dim W=q$ and $\operatorname{rk} T=r$ exists

 \iff $r \leq p$ and $r \leq q$.

Linear maps $T:V\to W$ and $T':V'\to W'$ are isomorphic $\iff \dim V=\dim V'$, $\dim W=\dim W'$ and $\operatorname{rk} T=\operatorname{rk} T'$.