Advanced Linear Algebra MAT 315

Oleg Viro

02/18/2020

Spaces associated to a linear map, continued

3.17 **Definition**

For a map $T:V\to W$, the **range** of T is $\operatorname{range} T=T(V)=\{Tv\mid v\in V\}$.

3.17 **Definition**

For a map $T:V\to W$, the **range** of T is $\operatorname{range} T=T(V)=\{Tv\mid v\in V\}$.

3.17 **Definition**

For a map $T:V\to W$, the **range** of T is $\operatorname{range} T=T(V)=\{Tv\mid v\in V\}$.

Another name: **image**.

3.17 **Definition**

For a map $T:V \to W$, the **range** of T is $\operatorname{range} T = T(V) = \{Tv \mid v \in V\}$.

Another name: **image**. Notation: $\operatorname{Im} T$.

3.17 **Definition**

For a map $T:V \to W$, the **range** of T is $\operatorname{range} T = T(V) = \{Tv \mid v \in V\}$.

Another name: **image**. Notation: $\operatorname{Im} T$.

3.18 Examples

3.17 **Definition**

For a map $T: V \to W$, the **range** of T is $\operatorname{range} T = T(V) = \{Tv \mid v \in V\}$.

Another name: **image**. Notation: $\operatorname{Im} T$.

3.18 Examples

ullet For $T:V o W:v\mapsto 0$,

$$range T =$$

3.17 **Definition**

For a map $T:V\to W$, the **range** of T is $\operatorname{range} T=T(V)=\{Tv\mid v\in V\}$.

Another name: **image**. Notation: $\operatorname{Im} T$.

3.18 Examples

• For $T: V \to W: v \mapsto 0$,

 $range T = \{0\}.$

3.17 **Definition**

For a map $T:V \to W$, the **range** of T is $\operatorname{range} T = T(V) = \{Tv \mid v \in V\}$.

Another name: **image**. Notation: $\operatorname{Im} T$.

3.18 Examples

• For $T: V \to W: v \mapsto 0$, range $T = \{0\}$.

ullet For differentiation $D:\mathcal{P}(\mathbb{R}) o\mathcal{P}(\mathbb{R})$, $\mathrm{range}\,D=$

3.17 **Definition**

For a map $T:V \to W$, the **range** of T is $\operatorname{range} T = T(V) = \{Tv \mid v \in V\}$.

Another name: **image**. Notation: $\operatorname{Im} T$.

3.18 Examples

• For $T: V \to W: v \mapsto 0$, range $T = \{0\}$.

• For differentiation $D:\mathcal{P}(\mathbb{R}) o \mathcal{P}(\mathbb{R})$, $\mathrm{range}\, D = \mathcal{P}(\mathbb{R}).$

3.17 **Definition**

For a map $T:V \to W$, the **range** of T is $\operatorname{range} T = T(V) = \{Tv \mid v \in V\}$.

Another name: **image**. Notation: $\operatorname{Im} T$.

3.18 Examples

- For $T: V \to W: v \mapsto 0$, range $T = \{0\}$.
- ullet For differentiation $D:\mathcal{P}(\mathbb{R}) o\mathcal{P}(\mathbb{R})$, $\mathrm{range}\,D=\mathcal{P}(\mathbb{R}).$
- \bullet For multiplication by x^3 $T:\mathcal{P}(\mathbb{F})\to\mathcal{P}(\mathbb{F}):Tp=x^3p(x)\,,$ $\mathrm{range}\,T=$

3.17 **Definition**

For a map $T:V \to W$, the **range** of T is $\operatorname{range} T = T(V) = \{Tv \mid v \in V\}$.

Another name: **image**. Notation: $\operatorname{Im} T$.

3.18 Examples

- For $T: V \to W: v \mapsto 0$, range $T = \{0\}$.
- ullet For differentiation $D:\mathcal{P}(\mathbb{R}) o\mathcal{P}(\mathbb{R})$, $\mathrm{range}\,D=\mathcal{P}(\mathbb{R}).$
- For multiplication by x^3 $T: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F}): Tp = x^3p(x)$, $\mathrm{range}\, T = \mathsf{polynomials}$ without monomials of degree < 3.

3.15 **Definition (reminder)**

A map $T:V \to W$ is called **surjective** if

3.15 **Definition (reminder)**

A map $T: V \to W$ is called **surjective** if range T = W.

3.15 **Definition (reminder)**

A map $T:V \to W$ is called **surjective** if range T=W.

3.14 The range of a linear map is a subspace.

3.15 **Definition (reminder)**

A map $T:V\to W$ is called **surjective** if $\operatorname{range} T=W$.

3.14 The range of a linear map is a subspace.

For $T \in \mathcal{L}(V, W)$, range T is a subspace of W.

3.15 **Definition (reminder)**

A map $T:V \to W$ is called **surjective** if $\operatorname{range} T = W$.

3.14 The range of a linear map is a subspace.

For $T \in \mathcal{L}(V, W)$, range T is a subspace of W.

Proof $0 \in \operatorname{range} T$, since T(0) = 0.

3.15 **Definition (reminder)**

A map $T:V \to W$ is called **surjective** if range T=W.

3.14 The range of a linear map is a subspace.

For $T \in \mathcal{L}(V, W)$, range T is a subspace of W.

Proof $0 \in \operatorname{range} T$, since T(0) = 0.

If $w \in \operatorname{range} T$ and $\lambda \in \mathbb{F}$, then $\exists v \in V : w = Tv$,

3.15 **Definition (reminder)**

A map $T:V \to W$ is called **surjective** if range T=W.

3.14 The range of a linear map is a subspace.

For $T \in \mathcal{L}(V, W)$, range T is a subspace of W.

Proof $0 \in \operatorname{range} T$, since T(0) = 0.

3.15 **Definition (reminder)**

A map $T:V\to W$ is called **surjective** if range T=W.

3.14 The range of a linear map is a subspace.

For $T \in \mathcal{L}(V, W)$, range T is a subspace of W.

Proof $0 \in \operatorname{range} T$, since T(0) = 0.

3.15 **Definition (reminder)**

A map $T:V \to W$ is called **surjective** if range T=W.

3.14 The range of a linear map is a subspace.

For $T \in \mathcal{L}(V, W)$, range T is a subspace of W.

Proof $0 \in \operatorname{range} T$, since T(0) = 0.

If $w \in \operatorname{range} T$ and $\lambda \in \mathbb{F}$, then $\exists v \in V : w = Tv$, $T(\lambda v) = \lambda Tv = \lambda w \in \operatorname{range} T$.

 $w_1, w_2 \in \text{range } T \implies \exists v_1, v_2 \in V : w_1 = Tv_1, w_2 = Tv_2$

3.15 **Definition (reminder)**

A map $T:V \to W$ is called **surjective** if range T=W.

3.14 The range of a linear map is a subspace.

For $T \in \mathcal{L}(V, W)$, range T is a subspace of W.

Proof $0 \in \operatorname{range} T$, since T(0) = 0.

$$w_1, w_2 \in \text{range } T \implies \exists v_1, v_2 \in V : w_1 = Tv_1, w_2 = Tv_2 \\ \implies w_1 + w_2 = Tv_1 + Tv_2 = T(v_1 + v_2)$$

3.15 **Definition (reminder)**

A map $T:V \to W$ is called **surjective** if range T=W.

3.14 The range of a linear map is a subspace.

For $T \in \mathcal{L}(V, W)$, range T is a subspace of W.

Proof $0 \in \operatorname{range} T$, since T(0) = 0.

$$w_1, w_2 \in \text{range } T \implies \exists v_1, v_2 \in V : w_1 = Tv_1, w_2 = Tv_2 \\ \implies w_1 + w_2 = Tv_1 + Tv_2 = T(v_1 + v_2) \in \text{range } T.$$

3.15 **Definition (reminder)**

A map $T:V \to W$ is called **surjective** if range T=W.

3.14 The range of a linear map is a subspace.

For $T \in \mathcal{L}(V, W)$, range T is a subspace of W.

Proof $0 \in \operatorname{range} T$, since T(0) = 0.

$$w_1, w_2 \in \text{range } T \implies \exists v_1, v_2 \in V : w_1 = Tv_1, w_2 = Tv_2 \\ \implies w_1 + w_2 = Tv_1 + Tv_2 = T(v_1 + v_2) \in \text{range } T.$$

Lists of vectors vs. linear maps

Let V be a vector space

Let V be a vector space and let $u=(u_1,\ldots,u_n)$ be a list of vectors of V.

Let V be a vector space and let $u=(u_1,\ldots,u_n)$ be a list of vectors of V.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \dots, x_n) \mapsto x_1u_1 + \dots + x_nu_n$ is linear.

Let V be a vector space and let $u=(u_1,\ldots,u_n)$ be a list of vectors of V.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \dots, x_n) \mapsto x_1u_1 + \dots + x_nu_n$ is linear.

Let V be a vector space and let $u=(u_1,\ldots,u_n)$ be a list of vectors of V.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \dots, x_n) \mapsto x_1u_1 + \dots + x_nu_n$ is linear.

Proof

Additivity: Let $x=(x_1,\ldots,x_n)\in\mathbb{F}^n$ and $y=(y_1,\ldots,y_n)\in\mathbb{F}^n$

Let V be a vector space and let $u=(u_1,\ldots,u_n)$ be a list of vectors of V.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \dots, x_n) \mapsto x_1u_1 + \dots + x_nu_n$ is linear.

Additivity: Let
$$x=(x_1,\ldots,x_n)\in\mathbb{F}^n$$
 and $y=(y_1,\ldots,y_n)\in\mathbb{F}^n$ $T_u(x+y)=(x_1+y_1)u_1+\cdots+(x_n+y_n)u_n$

Let V be a vector space and let $u=(u_1,\ldots,u_n)$ be a list of vectors of V.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \dots, x_n) \mapsto x_1u_1 + \dots + x_nu_n$ is linear.

Additivity: Let
$$x = (x_1, \dots, x_n) \in \mathbb{F}^n$$
 and $y = (y_1, \dots, y_n) \in \mathbb{F}^n$ $T_u(x+y) = (x_1+y_1)u_1 + \dots + (x_n+y_n)u_n$ $= x_1u_1 + y_1u_1 + \dots + x_nu_n + y_nu_n$

Let V be a vector space and let $u = (u_1, \ldots, u_n)$ be a list of vectors of V.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \dots, x_n) \mapsto x_1u_1 + \dots + x_nu_n$ is linear.

Additivity: Let
$$x = (x_1, \dots, x_n) \in \mathbb{F}^n$$
 and $y = (y_1, \dots, y_n) \in \mathbb{F}^n$

$$T_u(x+y) = (x_1+y_1)u_1 + \dots + (x_n+y_n)u_n$$

$$= x_1u_1 + y_1u_1 + \dots + x_nu_n + y_nu_n$$

$$= x_1u_1 + \dots + x_nu_n + y_1u_1 + \dots + y_nu_n$$

Let V be a vector space and let $u=(u_1,\ldots,u_n)$ be a list of vectors of V.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \dots, x_n) \mapsto x_1u_1 + \dots + x_nu_n$ is linear.

Proof

Additivity: Let
$$x = (x_1, \dots, x_n) \in \mathbb{F}^n$$
 and $y = (y_1, \dots, y_n) \in \mathbb{F}^n$
$$T_u(x+y) = (x_1+y_1)u_1 + \dots + (x_n+y_n)u_n$$

$$= x_1u_1 + y_1u_1 + \dots + x_nu_n + y_nu_n$$

$$= x_1u_1 + \dots + x_nu_n + y_1u_1 + \dots + y_nu_n = T_u(x) + T_u(y)$$

Let V be a vector space and let $u=(u_1,\ldots,u_n)$ be a list of vectors of V.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \dots, x_n) \mapsto x_1u_1 + \dots + x_nu_n$ is linear.

Proof

Additivity: Let
$$x = (x_1, \dots, x_n) \in \mathbb{F}^n$$
 and $y = (y_1, \dots, y_n) \in \mathbb{F}^n$

$$T_u(x+y) = (x_1+y_1)u_1 + \dots + (x_n+y_n)u_n$$

$$= x_1u_1 + y_1u_1 + \dots + x_nu_n + y_nu_n$$

$$= x_1u_1 + \dots + x_nu_n + y_1u_1 + \dots + y_nu_n = T_u(x) + T_u(y)$$

Homogeneity: $T_u(\lambda x) = \lambda x_1 u_1 + \dots + \lambda x_n u_n = \lambda (x_1 u_1 + \dots + x_n u_n) = \lambda T_u(x)$.

Let V be a vector space and let $u = (u_1, \ldots, u_n)$ be a list of vectors of V.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \dots, x_n) \mapsto x_1u_1 + \dots + x_nu_n$ is linear.

Proof

Additivity: Let
$$x = (x_1, \dots, x_n) \in \mathbb{F}^n$$
 and $y = (y_1, \dots, y_n) \in \mathbb{F}^n$

$$T_u(x+y) = (x_1+y_1)u_1 + \dots + (x_n+y_n)u_n$$

$$= x_1u_1 + y_1u_1 + \dots + x_nu_n + y_nu_n$$

$$= x_1u_1 + \dots + x_nu_n + y_1u_1 + \dots + y_nu_n = T_u(x) + T_u(y)$$

Homogeneity: $T_u(\lambda x) = \lambda x_1 u_1 + \dots + \lambda x_n u_n = \lambda (x_1 u_1 + \dots + x_n u_n) = \lambda T_u(x)$.

Let V be a vector space and let $u=(u_1,\ldots,u_n)$ be a list of vectors of V.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \dots, x_n) \mapsto x_1u_1 + \dots + x_nu_n$ is linear.

Proof

Additivity: Let
$$x = (x_1, \dots, x_n) \in \mathbb{F}^n$$
 and $y = (y_1, \dots, y_n) \in \mathbb{F}^n$
$$T_u(x+y) = (x_1+y_1)u_1 + \dots + (x_n+y_n)u_n$$

$$= x_1u_1 + y_1u_1 + \dots + x_nu_n + y_nu_n$$

$$= x_1u_1 + \dots + x_nu_n + y_1u_1 + \dots + y_nu_n = T_u(x) + T_u(y)$$

Homogeneity: $T_u(\lambda x) = \lambda x_1 u_1 + \dots + \lambda x_n u_n = \lambda (x_1 u_1 + \dots + x_n u_n) = \lambda T_u(x)$.

Denote $e_1 = (1, 0, \dots, 0)$, $e_2 = (0, 1, 0, \dots, 0)$, ..., $e_n = (0, 0, \dots, 0, 1)$.

Let V be a vector space and let $u=(u_1,\ldots,u_n)$ be a list of vectors of V.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \dots, x_n) \mapsto x_1u_1 + \dots + x_nu_n$ is linear.

Proof

Additivity: Let
$$x = (x_1, \dots, x_n) \in \mathbb{F}^n$$
 and $y = (y_1, \dots, y_n) \in \mathbb{F}^n$

$$T_u(x+y) = (x_1+y_1)u_1 + \dots + (x_n+y_n)u_n$$

$$= x_1u_1 + y_1u_1 + \dots + x_nu_n + y_nu_n$$

$$= x_1u_1 + \dots + x_nu_n + y_1u_1 + \dots + y_nu_n = T_u(x) + T_u(y)$$

Homogeneity: $T_u(\lambda x) = \lambda x_1 u_1 + \dots + \lambda x_n u_n = \lambda (x_1 u_1 + \dots + x_n u_n) = \lambda T_u(x)$.

Denote
$$e_1=(1,0\dots,0)$$
, $e_2=(0,1,0,\dots,0)$, ..., $e_n=(0,0,\dots,0,1)$. Clearly, $(x_1,x_2,\dots,x_n)=x_1e_1+\dots+x_ne_n$ for any $(x_1,\dots,x_n)\in\mathbb{F}^n$.

Let V be a vector space and let $u = (u_1, \ldots, u_n)$ be a list of vectors of V.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \dots, x_n) \mapsto x_1u_1 + \dots + x_nu_n$ is linear.

Proof

Additivity: Let
$$x = (x_1, \dots, x_n) \in \mathbb{F}^n$$
 and $y = (y_1, \dots, y_n) \in \mathbb{F}^n$

$$T_u(x + y) = (x_1 + y_1)u_1 + \dots + (x_n + y_n)u_n$$

$$= x_1u_1 + y_1u_1 + \dots + x_nu_n + y_nu_n$$

$$= x_1u_1 + \dots + x_nu_n + y_1u_1 + \dots + y_nu_n = T_u(x) + T_u(y)$$

Homogeneity: $T_u(\lambda x) = \lambda x_1 u_1 + \dots + \lambda x_n u_n = \lambda (x_1 u_1 + \dots + x_n u_n) = \lambda T_u(x)$.

Denote
$$e_1=(1,0\dots,0)$$
, $e_2=(0,1,0,\dots,0)$, ..., $e_n=(0,0,\dots,0,1)$. Clearly, $(x_1,x_2,\dots,x_n)=x_1e_1+\dots+x_ne_n$ for any $(x_1,\dots,x_n)\in\mathbb{F}^n$.

Theorem. Any linear $T: \mathbb{F}^n \to V$ is $T_{(u_1, \dots, u_n)}$, where $u_i = T(e_i)$ for $\forall i$.

Let V be a vector space and let $u = (u_1, \ldots, u_n)$ be a list of vectors of V.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \dots, x_n) \mapsto x_1u_1 + \dots + x_nu_n$ is linear.

Proof

Additivity: Let
$$x = (x_1, \dots, x_n) \in \mathbb{F}^n$$
 and $y = (y_1, \dots, y_n) \in \mathbb{F}^n$

$$T_u(x + y) = (x_1 + y_1)u_1 + \dots + (x_n + y_n)u_n$$

$$= x_1u_1 + y_1u_1 + \dots + x_nu_n + y_nu_n$$

$$= x_1u_1 + \dots + x_nu_n + y_1u_1 + \dots + y_nu_n = T_u(x) + T_u(y)$$

Homogeneity: $T_u(\lambda x) = \lambda x_1 u_1 + \dots + \lambda x_n u_n = \lambda (x_1 u_1 + \dots + x_n u_n) = \lambda T_u(x)$.

Denote
$$e_1=(1,0\dots,0)$$
, $e_2=(0,1,0,\dots,0)$, ..., $e_n=(0,0,\dots,0,1)$. Clearly, $(x_1,x_2,\dots,x_n)=x_1e_1+\dots+x_ne_n$ for any $(x_1,\dots,x_n)\in\mathbb{F}^n$.

Theorem. Any linear $T: \mathbb{F}^n \to V$ is $T_{(u_1, ..., u_n)}$, where $u_i = T(e_i)$ for $\forall i$.

Proof

Let V be a vector space and let $u = (u_1, \ldots, u_n)$ be a list of vectors of V.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \dots, x_n) \mapsto x_1u_1 + \dots + x_nu_n$ is linear.

Proof

Additivity: Let
$$x = (x_1, \dots, x_n) \in \mathbb{F}^n$$
 and $y = (y_1, \dots, y_n) \in \mathbb{F}^n$

$$T_u(x + y) = (x_1 + y_1)u_1 + \dots + (x_n + y_n)u_n$$

$$= x_1u_1 + y_1u_1 + \dots + x_nu_n + y_nu_n$$

$$= x_1u_1 + \dots + x_nu_n + y_1u_1 + \dots + y_nu_n = T_u(x) + T_u(y)$$

Homogeneity: $T_u(\lambda x) = \lambda x_1 u_1 + \dots + \lambda x_n u_n = \lambda (x_1 u_1 + \dots + x_n u_n) = \lambda T_u(x)$.

Denote
$$e_1=(1,0\dots,0)$$
, $e_2=(0,1,0,\dots,0)$, ..., $e_n=(0,0,\dots,0,1)$. Clearly, $(x_1,x_2,\dots,x_n)=x_1e_1+\dots+x_ne_n$ for any $(x_1,\dots,x_n)\in\mathbb{F}^n$.

Theorem. Any linear $T: \mathbb{F}^n \to V$ is $T_{(u_1, ..., u_n)}$, where $u_i = T(e_i)$ for $\forall i$.

Proof
$$T(x_1, ..., x_n) = T(x_1e_1 + ... + x_ne_n) = T(x_1e_1) + ... + T(x_ne_n)$$

Let V be a vector space and let $u=(u_1,\ldots,u_n)$ be a list of vectors of V.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \dots, x_n) \mapsto x_1u_1 + \dots + x_nu_n$ is linear.

Proof

Additivity: Let
$$x = (x_1, \dots, x_n) \in \mathbb{F}^n$$
 and $y = (y_1, \dots, y_n) \in \mathbb{F}^n$

$$T_u(x + y) = (x_1 + y_1)u_1 + \dots + (x_n + y_n)u_n$$

$$= x_1u_1 + y_1u_1 + \dots + x_nu_n + y_nu_n$$

$$= x_1u_1 + \dots + x_nu_n + y_1u_1 + \dots + y_nu_n = T_u(x) + T_u(y)$$

Homogeneity: $T_u(\lambda x) = \lambda x_1 u_1 + \dots + \lambda x_n u_n = \lambda (x_1 u_1 + \dots + x_n u_n) = \lambda T_u(x)$.

Denote
$$e_1=(1,0\dots,0)$$
, $e_2=(0,1,0,\dots,0)$, ..., $e_n=(0,0,\dots,0,1)$. Clearly, $(x_1,x_2,\dots,x_n)=x_1e_1+\dots+x_ne_n$ for any $(x_1,\dots,x_n)\in\mathbb{F}^n$.

Theorem. Any linear $T: \mathbb{F}^n \to V$ is $T_{(u_1, ..., u_n)}$, where $u_i = T(e_i)$ for $\forall i$.

Proof
$$T(x_1, ..., x_n) = T(x_1e_1 + ... + x_ne_n) = T(x_1e_1) + ... + T(x_ne_n)$$

= $x_1T(e_1) + ... + x_nT(e_n) = x_1u_1 + ... + x_nu_n = T_u(x)$.

Let V be a vector space and let $u=(u_1,\ldots,u_n)$ be a list of vectors of V.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \dots, x_n) \mapsto x_1u_1 + \dots + x_nu_n$ is linear.

Proof

Additivity: Let
$$x = (x_1, \dots, x_n) \in \mathbb{F}^n$$
 and $y = (y_1, \dots, y_n) \in \mathbb{F}^n$

$$T_u(x+y) = (x_1+y_1)u_1 + \dots + (x_n+y_n)u_n$$

$$= x_1u_1 + y_1u_1 + \dots + x_nu_n + y_nu_n$$

$$= x_1u_1 + \dots + x_nu_n + y_1u_1 + \dots + y_nu_n = T_u(x) + T_u(y)$$

Homogeneity: $T_u(\lambda x) = \lambda x_1 u_1 + \dots + \lambda x_n u_n = \lambda (x_1 u_1 + \dots + x_n u_n) = \lambda T_u(x)$.

Denote
$$e_1=(1,0\dots,0)$$
, $e_2=(0,1,0,\dots,0)$, ..., $e_n=(0,0,\dots,0,1)$. Clearly, $(x_1,x_2,\dots,x_n)=x_1e_1+\dots+x_ne_n$ for any $(x_1,\dots,x_n)\in\mathbb{F}^n$.

Theorem. Any linear $T: \mathbb{F}^n \to V$ is $T_{(u_1, ..., u_n)}$, where $u_i = T(e_i)$ for $\forall i$.

Proof
$$T(x_1, ..., x_n) = T(x_1e_1 + ... + x_ne_n) = T(x_1e_1) + ... + T(x_ne_n)$$

= $x_1T(e_1) + ... + x_nT(e_n) = x_1u_1 + ... + x_nu_n = T_u(x)$.

A linear map $T_u: \mathbb{F}^n \to V \iff$ a list u of n vectors in V

A linear map $T_u: \mathbb{F}^n \to V \iff$ a list u of n vectors in V

$$T_u(x_1,\ldots,x_n)=x_1u_1+\cdots+x_nu_n$$

A linear map $T_u: \mathbb{F}^n \to V \iff$ a list u of n vectors in V

$$T_u(x_1,\ldots,x_n) = x_1u_1 + \cdots + x_nu_n$$

 T_u is surjective \iff u spans V

A linear map $T_u: \mathbb{F}^n \to V \iff$ a list u of n vectors in V

$$T_u(x_1,\ldots,x_n)=x_1u_1+\cdots+x_nu_n$$

 T_u is surjective \iff u spans V

For any $v \in V$, $\exists (x_1,\ldots,x_n) \in \mathbb{F}^n$ $v = x_1u_1 + \cdots + x_nu_n = T_u(x_1,\ldots,x_n)$.

A linear map $T_u: \mathbb{F}^n \to V \iff$ a list u of n vectors in V

$$T_u(x_1,\ldots,x_n) = x_1u_1 + \cdots + x_nu_n$$

 T_u is surjective \iff u spans V

For any $v \in V$, $\exists (x_1,\ldots,x_n) \in \mathbb{F}^n$ $v = x_1u_1 + \cdots + x_nu_n = T_u(x_1,\ldots,x_n)$.

 T_u is injective \iff u is a linear independent list

A linear map $T_u: \mathbb{F}^n \to V \iff$ a list u of n vectors in V

$$T_u(x_1,\ldots,x_n) = x_1u_1 + \cdots + x_nu_n$$

 T_u is surjective \iff u spans V

For any
$$v \in V$$
, $\exists (x_1, \ldots, x_n) \in \mathbb{F}^n$ $v = x_1u_1 + \cdots + x_nu_n = T_u(x_1, \ldots, x_n)$.

 T_u is injective \iff u is a linear independent list

$$\operatorname{null}(T_u) = 0 \iff (x_1 u_1 + \dots + x_n u_n = 0 \implies \forall i \ x_i = 0)$$

A linear map $T_u: \mathbb{F}^n \to V \iff$ a list u of n vectors in V

$$T_u(x_1, \dots, x_n) = x_1 u_1 + \dots + x_n u_n$$

 T_u is surjective \iff u spans V

For any $v \in V$, $\exists (x_1,\ldots,x_n) \in \mathbb{F}^n$ $v = x_1u_1 + \cdots + x_nu_n = T_u(x_1,\ldots,x_n)$.

 T_u is injective \iff u is a linear independent list

$$\operatorname{null}(T_u) = 0 \iff (x_1 u_1 + \dots + x_n u_n = 0 \implies \forall i \ x_i = 0)$$

 T_u is bijective \iff u is a basis of V

Theorem If V and W are vector spaces and a linear map $T:V\to W$ is invertible,

Theorem If V and W are vector spaces and a linear map $T:V\to W$ is invertible, then T^{-1} is linear.

Theorem If V and W are vector spaces and a linear map $T:V\to W$ is invertible, then T^{-1} is linear.

Theorem If V and W are vector spaces and a linear map $T:V\to W$ is invertible, then T^{-1} is linear.

$$T^{-1}(w_1+w_2)$$

Theorem If V and W are vector spaces and a linear map $T:V\to W$ is invertible, then T^{-1} is linear.

$$T^{-1}(w_1 + w_2) = T^{-1}(\mathrm{id}_W w_1 + \mathrm{id}_W w_2)$$

Theorem If V and W are vector spaces and a linear map $T:V\to W$ is invertible, then T^{-1} is linear.

$$T^{-1}(w_1 + w_2) = T^{-1}(\mathrm{id}_W w_1 + \mathrm{id}_W w_2) = T^{-1}(TT^{-1}w_1 + TT^{-1}w_2)$$

Theorem If V and W are vector spaces and a linear map $T:V\to W$ is invertible, then T^{-1} is linear.

$$T^{-1}(w_1 + w_2) = T^{-1}(\mathrm{id}_W w_1 + \mathrm{id}_W w_2) = T^{-1}(TT^{-1}w_1 + TT^{-1}w_2)$$
$$= T^{-1}T(T^{-1}w_1 + T^{-1}w_2)$$

Theorem If V and W are vector spaces and a linear map $T:V\to W$ is invertible, then T^{-1} is linear.

$$T^{-1}(w_1 + w_2) = T^{-1}(\mathrm{id}_W w_1 + \mathrm{id}_W w_2) = T^{-1}(TT^{-1}w_1 + TT^{-1}w_2)$$
$$= T^{-1}T(T^{-1}w_1 + T^{-1}w_2) = \mathrm{id}_V(T^{-1}w_1 + T^{-1}w_2)$$

Theorem If V and W are vector spaces and a linear map $T:V\to W$ is invertible, then T^{-1} is linear.

$$T^{-1}(w_1 + w_2) = T^{-1}(\mathrm{id}_W w_1 + \mathrm{id}_W w_2) = T^{-1}(TT^{-1}w_1 + TT^{-1}w_2)$$
$$= T^{-1}T(T^{-1}w_1 + T^{-1}w_2) = \mathrm{id}_V(T^{-1}w_1 + T^{-1}w_2) = T^{-1}w_1 + T^{-1}w_2.$$

Theorem If V and W are vector spaces and a linear map $T:V\to W$ is invertible, then T^{-1} is linear.

Proof. Additivity. Let $w_1, w_2 \in W$. Then

$$T^{-1}(w_1 + w_2) = T^{-1}(\mathrm{id}_W w_1 + \mathrm{id}_W w_2) = T^{-1}(TT^{-1}w_1 + TT^{-1}w_2)$$
$$= T^{-1}T(T^{-1}w_1 + T^{-1}w_2) = \mathrm{id}_V(T^{-1}w_1 + T^{-1}w_2) = T^{-1}w_1 + T^{-1}w_2.$$

$$T^{-1}(\lambda w)$$

Theorem If V and W are vector spaces and a linear map $T:V\to W$ is invertible, then T^{-1} is linear.

Proof. Additivity. Let $w_1, w_2 \in W$. Then

$$T^{-1}(w_1 + w_2) = T^{-1}(\mathrm{id}_W w_1 + \mathrm{id}_W w_2) = T^{-1}(TT^{-1}w_1 + TT^{-1}w_2)$$
$$= T^{-1}T(T^{-1}w_1 + T^{-1}w_2) = \mathrm{id}_V(T^{-1}w_1 + T^{-1}w_2) = T^{-1}w_1 + T^{-1}w_2.$$

$$T^{-1}(\lambda w) = T^{-1}(\lambda \operatorname{id}_W w)$$

Theorem If V and W are vector spaces and a linear map $T:V\to W$ is invertible, then T^{-1} is linear.

Proof. Additivity. Let $w_1, w_2 \in W$. Then

$$T^{-1}(w_1 + w_2) = T^{-1}(\mathrm{id}_W w_1 + \mathrm{id}_W w_2) = T^{-1}(TT^{-1}w_1 + TT^{-1}w_2)$$
$$= T^{-1}T(T^{-1}w_1 + T^{-1}w_2) = \mathrm{id}_V(T^{-1}w_1 + T^{-1}w_2) = T^{-1}w_1 + T^{-1}w_2.$$

$$T^{-1}(\lambda w) = T^{-1}(\lambda id_W w) = T^{-1}(\lambda T T^{-1} w)$$

Theorem If V and W are vector spaces and a linear map $T:V\to W$ is invertible, then T^{-1} is linear.

Proof. Additivity. Let $w_1, w_2 \in W$. Then

$$T^{-1}(w_1 + w_2) = T^{-1}(\mathrm{id}_W w_1 + \mathrm{id}_W w_2) = T^{-1}(TT^{-1}w_1 + TT^{-1}w_2)$$
$$= T^{-1}T(T^{-1}w_1 + T^{-1}w_2) = \mathrm{id}_V(T^{-1}w_1 + T^{-1}w_2) = T^{-1}w_1 + T^{-1}w_2.$$

$$T^{-1}(\lambda w) = T^{-1}(\lambda \operatorname{id}_W w) = T^{-1}(\lambda T T^{-1} w) = T^{-1}(\lambda T (T^{-1} w))$$

Theorem If V and W are vector spaces and a linear map $T:V\to W$ is invertible, then T^{-1} is linear.

Proof. Additivity. Let $w_1, w_2 \in W$. Then

$$T^{-1}(w_1 + w_2) = T^{-1}(\mathrm{id}_W w_1 + \mathrm{id}_W w_2) = T^{-1}(TT^{-1}w_1 + TT^{-1}w_2)$$
$$= T^{-1}T(T^{-1}w_1 + T^{-1}w_2) = \mathrm{id}_V(T^{-1}w_1 + T^{-1}w_2) = T^{-1}w_1 + T^{-1}w_2.$$

$$T^{-1}(\lambda w) = T^{-1}(\lambda \operatorname{id}_W w) = T^{-1}(\lambda T T^{-1} w) = T^{-1}(\lambda T (T^{-1} w))$$
$$= T^{-1}T(\lambda T^{-1} w)$$

Theorem If V and W are vector spaces and a linear map $T:V\to W$ is invertible, then T^{-1} is linear.

Proof. Additivity. Let $w_1, w_2 \in W$. Then

$$T^{-1}(w_1 + w_2) = T^{-1}(\mathrm{id}_W w_1 + \mathrm{id}_W w_2) = T^{-1}(TT^{-1}w_1 + TT^{-1}w_2)$$
$$= T^{-1}T(T^{-1}w_1 + T^{-1}w_2) = \mathrm{id}_V(T^{-1}w_1 + T^{-1}w_2) = T^{-1}w_1 + T^{-1}w_2.$$

$$T^{-1}(\lambda w) = T^{-1}(\lambda \operatorname{id}_W w) = T^{-1}(\lambda T T^{-1} w) = T^{-1}(\lambda T (T^{-1} w))$$
$$= T^{-1}T(\lambda T^{-1} w) = \operatorname{id}_V(\lambda T^{-1} w)$$

Theorem If V and W are vector spaces and a linear map $T:V\to W$ is invertible, then T^{-1} is linear.

Proof. Additivity. Let $w_1, w_2 \in W$. Then

$$T^{-1}(w_1 + w_2) = T^{-1}(\mathrm{id}_W w_1 + \mathrm{id}_W w_2) = T^{-1}(TT^{-1}w_1 + TT^{-1}w_2)$$
$$= T^{-1}T(T^{-1}w_1 + T^{-1}w_2) = \mathrm{id}_V(T^{-1}w_1 + T^{-1}w_2) = T^{-1}w_1 + T^{-1}w_2.$$

$$T^{-1}(\lambda w) = T^{-1}(\lambda \operatorname{id}_W w) = T^{-1}(\lambda T T^{-1} w) = T^{-1}(\lambda T (T^{-1} w))$$
$$= T^{-1}T(\lambda T^{-1} w) = \operatorname{id}_V(\lambda T^{-1} w) = \lambda T^{-1} w.$$

Theorem If V and W are vector spaces and a linear map $T:V\to W$ is invertible, then T^{-1} is linear.

Proof. Additivity. Let $w_1, w_2 \in W$. Then

$$T^{-1}(w_1 + w_2) = T^{-1}(\mathrm{id}_W w_1 + \mathrm{id}_W w_2) = T^{-1}(TT^{-1}w_1 + TT^{-1}w_2)$$
$$= T^{-1}T(T^{-1}w_1 + T^{-1}w_2) = \mathrm{id}_V(T^{-1}w_1 + T^{-1}w_2) = T^{-1}w_1 + T^{-1}w_2.$$

$$T^{-1}(\lambda w) = T^{-1}(\lambda \operatorname{id}_W w) = T^{-1}(\lambda T T^{-1} w) = T^{-1}(\lambda T (T^{-1} w))$$
$$= T^{-1}T(\lambda T^{-1} w) = \operatorname{id}_V(\lambda T^{-1} w) = \lambda T^{-1} w.$$

Theorem If V and W are vector spaces and a linear map $T:V\to W$ is invertible, then T^{-1} is linear.

Proof. Additivity. Let $w_1, w_2 \in W$. Then

$$T^{-1}(w_1 + w_2) = T^{-1}(\operatorname{id}_W w_1 + \operatorname{id}_W w_2) = T^{-1}(TT^{-1}w_1 + TT^{-1}w_2)$$
$$= T^{-1}T(T^{-1}w_1 + T^{-1}w_2) = \operatorname{id}_V(T^{-1}w_1 + T^{-1}w_2) = T^{-1}w_1 + T^{-1}w_2.$$

Proof. Homogeneity.

$$T^{-1}(\lambda w) = T^{-1}(\lambda \operatorname{id}_W w) = T^{-1}(\lambda T T^{-1} w) = T^{-1}(\lambda T (T^{-1} w))$$
$$= T^{-1}T(\lambda T^{-1} w) = \operatorname{id}_V(\lambda T^{-1} w) = \lambda T^{-1} w.$$

Corollary 1 A linear map $T:V\to W$ is an isomorphism in the category of vector spaces, if and only if it is bijective.

Inverse to a linear map is linear

Theorem If V and W are vector spaces and a linear map $T:V\to W$ is invertible, then T^{-1} is linear.

Proof. Additivity. Let $w_1, w_2 \in W$. Then

$$T^{-1}(w_1 + w_2) = T^{-1}(\operatorname{id}_W w_1 + \operatorname{id}_W w_2) = T^{-1}(TT^{-1}w_1 + TT^{-1}w_2)$$
$$= T^{-1}T(T^{-1}w_1 + T^{-1}w_2) = \operatorname{id}_V(T^{-1}w_1 + T^{-1}w_2) = T^{-1}w_1 + T^{-1}w_2.$$

Proof. Homogeneity.

$$T^{-1}(\lambda w) = T^{-1}(\lambda \operatorname{id}_W w) = T^{-1}(\lambda T T^{-1} w) = T^{-1}(\lambda T (T^{-1} w))$$
$$= T^{-1}T(\lambda T^{-1} w) = \operatorname{id}_V(\lambda T^{-1} w) = \lambda T^{-1} w.$$

Corollary 1 A linear map $T:V\to W$ is an isomorphism in the category of vector spaces, if and only if it is bijective.

Corollary 2 A linear map $T:V\to W$ is an isomorphism in the category of vector spaces, if and only if $\operatorname{null} T=0$ and $\operatorname{range} T=W$.

Isomorphism classifications of vector spaces and linear maps

Theorem Each finite-dimensional vector space V over a field $\mathbb F$ is isomorphic to $\mathbb F^{\dim V}$.

Theorem Each finite-dimensional vector space V over a field $\mathbb F$ is isomorphic to $\mathbb F^{\dim V}$.

Proof. Let $u = (u_1, \ldots, u_{\dim V})$ be a basis of V.

Theorem Each finite-dimensional vector space V over a field $\mathbb F$ is isomorphic to $\mathbb F^{\dim V}$.

Proof. Let $u=(u_1,\ldots,u_{\dim V})$ be a basis of V. Then the linear map $T_u:\mathbb{F}^{\dim V}\to V$ is bijective.

Theorem Each finite-dimensional vector space V over a field $\mathbb F$ is isomorphic to $\mathbb F^{\dim V}$.

Proof. Let $u=(u_1,\ldots,u_{\dim V})$ be a basis of V. Then the linear map $T_u:\mathbb{F}^{\dim V}\to V$ is bijective. By Corollary 2 above, T_u is an isomorphism. \blacksquare

Theorem Each finite-dimensional vector space V over a field $\mathbb F$ is isomorphic to $\mathbb F^{\dim V}$.

Proof. Let $u=(u_1,\ldots,u_{\dim V})$ be a basis of V. Then the linear map $T_u:\mathbb{F}^{\dim V}\to V$ is bijective. By Corollary 2 above, T_u is an isomorphism. \blacksquare

Corollary Finite-dimensional vector spaces V and W over a field $\mathbb F$ are isomorphic iff $\dim V = \dim W$.

Theorem Each finite-dimensional vector space V over a field $\mathbb F$ is isomorphic to $\mathbb F^{\dim V}$.

Proof. Let $u=(u_1,\ldots,u_{\dim V})$ be a basis of V. Then the linear map $T_u:\mathbb{F}^{\dim V}\to V$ is bijective. By Corollary 2 above, T_u is an isomorphism. \blacksquare

Corollary Finite-dimensional vector spaces V and W over a field $\mathbb F$ are isomorphic iff $\dim V = \dim W$.

Proof. \longleftarrow If $\dim V = \dim W = n$, then by Theorem above V are isomorphic to \mathbb{F}^n .

Theorem Each finite-dimensional vector space V over a field $\mathbb F$ is isomorphic to $\mathbb F^{\dim V}$.

Proof. Let $u=(u_1,\ldots,u_{\dim V})$ be a basis of V. Then the linear map $T_u:\mathbb{F}^{\dim V}\to V$ is bijective. By Corollary 2 above, T_u is an isomorphism. \blacksquare

Corollary Finite-dimensional vector spaces V and W over a field $\mathbb F$ are isomorphic iff $\dim V = \dim W$.

Proof. \iff If $\dim V = \dim W = n$, then by Theorem above V are isomorphic to \mathbb{F}^n . \implies If $T: \mathbb{F}^p \to \mathbb{F}^q$ is an isomorphism, $T = T_u$, where $u = (u_1, \dots, u_p)$, $u_i = Te_i$

Theorem Each finite-dimensional vector space V over a field $\mathbb F$ is isomorphic to $\mathbb F^{\dim V}$.

Proof. Let $u=(u_1,\ldots,u_{\dim V})$ be a basis of V. Then the linear map $T_u:\mathbb{F}^{\dim V}\to V$ is bijective. By Corollary 2 above, T_u is an isomorphism. \blacksquare

Corollary Finite-dimensional vector spaces V and W over a field $\mathbb F$ are isomorphic iff $\dim V = \dim W$.

Proof. \iff If $\dim V = \dim W = n$, then by Theorem above V are isomorphic to \mathbb{F}^n . \implies If $T: \mathbb{F}^p \to \mathbb{F}^q$ is an isomorphism, $T = T_u$, where $u = (u_1, \dots, u_p)$, $u_i = Te_i$ is a basis in F^q .

Theorem Each finite-dimensional vector space V over a field $\mathbb F$ is isomorphic to $\mathbb F^{\dim V}$.

Proof. Let $u=(u_1,\ldots,u_{\dim V})$ be a basis of V. Then the linear map $T_u:\mathbb{F}^{\dim V}\to V$ is bijective. By Corollary 2 above, T_u is an isomorphism. \blacksquare

Corollary Finite-dimensional vector spaces V and W over a field $\mathbb F$ are isomorphic iff $\dim V = \dim W$.

Proof. \iff If $\dim V = \dim W = n$, then by Theorem above V are isomorphic to \mathbb{F}^n . \implies If $T: \mathbb{F}^p \to \mathbb{F}^q$ is an isomorphism, $T = T_u$, where $u = (u_1, \dots, u_p)$, $u_i = Te_i$ is a basis in F^q . In \mathbb{F}^q we got a basis of length p.

Theorem Each finite-dimensional vector space V over a field $\mathbb F$ is isomorphic to $\mathbb F^{\dim V}$.

Proof. Let $u=(u_1,\ldots,u_{\dim V})$ be a basis of V. Then the linear map $T_u:\mathbb{F}^{\dim V}\to V$ is bijective. By Corollary 2 above, T_u is an isomorphism. \blacksquare

Corollary Finite-dimensional vector spaces V and W over a field $\mathbb F$ are isomorphic iff $\dim V = \dim W$.

Proof. \Leftarrow If $\dim V = \dim W = n$, then by Theorem above V are isomorphic to \mathbb{F}^n . \Longrightarrow If $T: \mathbb{F}^p \to \mathbb{F}^q$ is an isomorphism, $T = T_u$, where $u = (u_1, \dots, u_p)$, $u_i = Te_i$ is a basis in F^q . In \mathbb{F}^q we got a basis of length p. Hence p = q.

We have studied direct sums of **subspaces**.

We have studied direct sums of **subspaces**. In particular, if U and W are subspaces of V,

We have studied direct sums of **subspaces**.

In particular, if U and W are subspaces of V , $U\cap W=\{0\}$ and V=U+W

We have studied direct sums of **subspaces**.

In particular, if U and W are subspaces of V , $U\cap W=\{0\}$ and V=U+W , then $V=U\oplus W$.

We have studied direct sums of subspaces.

In particular, if U and W are subspaces of V , $U\cap W=\{0\}$ and V=U+W , then $V=U\oplus W$.

There is a construction, which starts with vector spaces U and W and produces $V=U'\oplus W'$, where U' is isomorphic to U and W is isomorphic to W.

We have studied direct sums of **subspaces**.

In particular, if U and W are subspaces of V , $U\cap W=\{0\}$ and V=U+W , then $V=U\oplus W$.

There is a construction, which starts with vector spaces U and W and produces $V=U'\oplus W'$, where U' is isomorphic to U and W is isomorphic to W.

Let $V = U \times W$

We have studied direct sums of subspaces.

In particular, if U and W are subspaces of V , $U\cap W=\{0\}$ and V=U+W , then $V=U\oplus W$.

There is a construction, which starts with vector spaces U and W and produces $V=U'\oplus W'$, where U' is isomorphic to U and W is isomorphic to W.

Let $V = U \times W = \{(u, w) \mid u \in U, w \in W\}$.

We have studied direct sums of subspaces.

In particular, if U and W are subspaces of V , $U\cap W=\{0\}$ and V=U+W , then $V=U\oplus W$.

There is a construction, which starts with vector spaces U and W and produces $V=U'\oplus W'$, where U' is isomorphic to U and W is isomorphic to W.

Let $V = U \times W = \{(u, w) \mid u \in U, w \in W\}$. Define:

Addition: $(u_1, w_1) + (u_2, w_2) = (u_1 + u_2, w_1 + w_2)$,

Multiplication: $\lambda(u, w) = (\lambda u, \lambda w)$.

We have studied direct sums of **subspaces**.

In particular, if U and W are subspaces of V , $U\cap W=\{0\}$ and V=U+W , then $V=U\oplus W$.

There is a construction, which starts with vector spaces U and W and produces $V=U'\oplus W'$, where U' is isomorphic to U and W is isomorphic to W.

Let $V = U \times W = \{(u, w) \mid u \in U, w \in W\}$. Define:

Addition: $(u_1, w_1) + (u_2, w_2) = (u_1 + u_2, w_1 + w_2)$,

Multiplication: $\lambda(u, w) = (\lambda u, \lambda w)$.

This V with these operations is a required vector space over the same field.

We have studied direct sums of subspaces.

In particular, if U and W are subspaces of V , $U\cap W=\{0\}$ and V=U+W , then $V=U\oplus W$.

There is a construction, which starts with vector spaces U and W and produces $V=U'\oplus W'$, where U' is isomorphic to U and W is isomorphic to W.

Let $V = U \times W = \{(u, w) \mid u \in U, w \in W\}$. Define:

Addition: $(u_1, w_1) + (u_2, w_2) = (u_1 + u_2, w_1 + w_2)$,

Multiplication: $\lambda(u, w) = (\lambda u, \lambda w)$.

This V with these operations is a required vector space over the same field.

$$U' = U \times \{0\}$$
 , $W' = \{0\} \times W$.

We have studied direct sums of subspaces.

In particular, if U and W are subspaces of V , $U\cap W=\{0\}$ and V=U+W , then $V=U\oplus W$.

There is a construction, which starts with vector spaces U and W and produces $V=U'\oplus W'$, where U' is isomorphic to U and W is isomorphic to W.

Let $V = U \times W = \{(u, w) \mid u \in U, w \in W\}$. Define:

Addition: $(u_1, w_1) + (u_2, w_2) = (u_1 + u_2, w_1 + w_2)$,

Multiplication: $\lambda(u, w) = (\lambda u, \lambda w)$.

This V with these operations is a required vector space over the same field.

$$U' = U \times \{0\}, \ W' = \{0\} \times W.$$

In particular, $\mathbb{F}^p \oplus \mathbb{F}^q$ is naturally isomorphic to \mathbb{F}^{p+q} .

We have studied direct sums of subspaces.

In particular, if U and W are subspaces of V , $U\cap W=\{0\}$ and V=U+W , then $V=U\oplus W$.

There is a construction, which starts with vector spaces U and W and produces $V=U'\oplus W'$, where U' is isomorphic to U and W is isomorphic to W.

Let $V = U \times W = \{(u, w) \mid u \in U, w \in W\}$. Define:

Addition: $(u_1, w_1) + (u_2, w_2) = (u_1 + u_2, w_1 + w_2)$,

Multiplication: $\lambda(u, w) = (\lambda u, \lambda w)$.

This V with these operations is a required vector space over the same field.

$$U' = U \times \{0\}, \ W' = \{0\} \times W.$$

In particular, $\mathbb{F}^p \oplus \mathbb{F}^q$ is naturally isomorphic to \mathbb{F}^{p+q} .

If $f:A\to C$ and $g:B\to D$ are linear maps, then

We have studied direct sums of subspaces.

In particular, if U and W are subspaces of V , $U\cap W=\{0\}$ and V=U+W , then $V=U\oplus W$.

There is a construction, which starts with vector spaces U and W and produces $V=U'\oplus W'$, where U' is isomorphic to U and W is isomorphic to W.

Let $V = U \times W = \{(u, w) \mid u \in U, w \in W\}$. Define:

Addition: $(u_1, w_1) + (u_2, w_2) = (u_1 + u_2, w_1 + w_2)$,

Multiplication: $\lambda(u, w) = (\lambda u, \lambda w)$.

This V with these operations is a required vector space over the same field.

$$U' = U \times \{0\}, \ W' = \{0\} \times W.$$

In particular, $\mathbb{F}^p \oplus \mathbb{F}^q$ is naturally isomorphic to \mathbb{F}^{p+q} .

If $f:A\to C$ and $g:B\to D$ are linear maps, then define $f\oplus g:A\oplus B\to C\oplus D$ as $(a,c)\mapsto (f(a),g(c))$.

We have studied direct sums of subspaces.

In particular, if U and W are subspaces of V , $U\cap W=\{0\}$ and V=U+W , then $V=U\oplus W$.

There is a construction, which starts with vector spaces U and W and produces $V=U'\oplus W'$, where U' is isomorphic to U and W is isomorphic to W.

Let $V = U \times W = \{(u, w) \mid u \in U, w \in W\}$. Define:

Addition: $(u_1, w_1) + (u_2, w_2) = (u_1 + u_2, w_1 + w_2)$,

Multiplication: $\lambda(u, w) = (\lambda u, \lambda w)$.

This V with these operations is a required vector space over the same field.

$$U' = U \times \{0\}, \ W' = \{0\} \times W.$$

In particular, $\mathbb{F}^p \oplus \mathbb{F}^q$ is naturally isomorphic to \mathbb{F}^{p+q} .

If $f:A\to C$ and $g:B\to D$ are linear maps, then define $f\oplus g:A\oplus B\to C\oplus D$ as $(a,c)\mapsto (f(a),g(c))$.

This is a linear map, the direct sum of f and g.

Theorem Any linear map $T:V\to W$ between finite-dimensional vector spaces over a field $\mathbb F$ is isomorphic to

 $0 \oplus \operatorname{id} : \mathbb{F}^{\dim \operatorname{null} T} \oplus \mathbb{F}^{\dim \operatorname{range} T} \to \mathbb{F}^{\dim W - \dim \operatorname{range} W} \oplus \mathbb{F}^{\dim \operatorname{range} T}$

Theorem Any linear map $T:V\to W$ between finite-dimensional vector spaces over a field $\mathbb F$ is isomorphic to

 $0 \oplus \operatorname{id} : \mathbb{F}^{\dim \operatorname{null} T} \oplus \mathbb{F}^{\dim \operatorname{range} T} \to \mathbb{F}^{\dim W - \dim \operatorname{range} W} \oplus \mathbb{F}^{\dim \operatorname{range} T}$

Proof. Let $u = (v_1, \dots, v_p)$ be a basis of null T.

Theorem Any linear map $T:V\to W$ between finite-dimensional vector spaces over a field $\mathbb F$ is isomorphic to

 $0 \oplus \mathrm{id} : \mathbb{F}^{\dim \mathrm{null}\, T} \oplus \mathbb{F}^{\dim \mathrm{range}\, T} \to \mathbb{F}^{\dim W - \dim \mathrm{range}\, W} \oplus \mathbb{F}^{\dim \mathrm{range}\, T}$

Proof. Let $u=(v_1,\ldots,v_p)$ be a basis of $\operatorname{null} T$. Extend it to a basis $v_1,\ldots,v_p,u_1,\ldots,u_q$ of V.

Theorem Any linear map $T:V\to W$ between finite-dimensional vector spaces over a field $\mathbb F$ is isomorphic to

 $0 \oplus \operatorname{id} : \mathbb{F}^{\dim \operatorname{null} T} \oplus \mathbb{F}^{\dim \operatorname{range} T} \to \mathbb{F}^{\dim W - \dim \operatorname{range} W} \oplus \mathbb{F}^{\dim \operatorname{range} T}$

Proof. Let $u=(v_1,\ldots,v_p)$ be a basis of $\operatorname{null} T$. Extend it to a basis $v_1,\ldots,v_p,u_1,\ldots,u_q$ of V. Notice that $\dim\operatorname{null} T=p$ and $\dim V=p+q$.

Theorem Any linear map $T:V\to W$ between finite-dimensional vector spaces over a field $\mathbb F$ is isomorphic to

 $0 \oplus \operatorname{id} : \mathbb{F}^{\dim \operatorname{null} T} \oplus \mathbb{F}^{\dim \operatorname{range} T} \to \mathbb{F}^{\dim W - \dim \operatorname{range} W} \oplus \mathbb{F}^{\dim \operatorname{range} T}$

Proof. Let $u=(v_1,\ldots,v_p)$ be a basis of $\operatorname{null} T$. Extend it to a basis $v_1,\ldots,v_p,u_1,\ldots,u_q$ of V. Notice that $\dim\operatorname{null} T=p$ and $\dim V=p+q$. Denote $\operatorname{span}(u_1,\ldots,u_q)$ by U.

Theorem Any linear map $T:V\to W$ between finite-dimensional vector spaces over a field $\mathbb F$ is isomorphic to

```
0 \oplus \operatorname{id}: \operatorname{\mathbb{F}^{\dim \operatorname{null} T}} \oplus \operatorname{\mathbb{F}^{\dim \operatorname{range} T}} \to \operatorname{\mathbb{F}^{\dim W - \dim \operatorname{range} W}} \oplus \operatorname{\mathbb{F}^{\dim \operatorname{range} T}}
```

Proof. Let $u=(v_1,\ldots,v_p)$ be a basis of $\operatorname{null} T$. Extend it to a basis $v_1,\ldots,v_p,u_1,\ldots,u_q$ of V. Notice that $\dim\operatorname{null} T=p$ and $\dim V=p+q$. Denote $\operatorname{span}(u_1,\ldots,u_q)$ by U. Clearly, $V=\operatorname{span}(v_1,\ldots,v_p)\oplus\operatorname{span}(u_1,\ldots,u_q)=\operatorname{null} T\oplus U$.

Theorem Any linear map $T:V\to W$ between finite-dimensional vector spaces over a field $\mathbb F$ is isomorphic to

```
0 \oplus \operatorname{id}: \operatorname{\mathbb{F}^{\dim \operatorname{null} T}} \oplus \operatorname{\mathbb{F}^{\dim \operatorname{range} T}} \to \operatorname{\mathbb{F}^{\dim W - \dim \operatorname{range} W}} \oplus \operatorname{\mathbb{F}^{\dim \operatorname{range} T}}
```

Proof. Let $u=(v_1,\ldots,v_p)$ be a basis of $\operatorname{null} T$. Extend it to a basis $v_1,\ldots,v_p,u_1,\ldots,u_q$ of V. Notice that $\dim\operatorname{null} T=p$ and $\dim V=p+q$. Denote $\operatorname{span}(u_1,\ldots,u_q)$ by U. Clearly, $V=\operatorname{span}(v_1,\ldots,v_p)\oplus\operatorname{span}(u_1,\ldots,u_q)=\operatorname{null} T\oplus U$. The restriction $T|_U$ is injective, because $U\cap\operatorname{null} T=0$,

Theorem Any linear map $T:V\to W$ between finite-dimensional vector spaces over a field $\mathbb F$ is isomorphic to

```
0 \oplus \operatorname{id}: \operatorname{\mathbb{F}^{\dim \operatorname{null} T}} \oplus \operatorname{\mathbb{F}^{\dim \operatorname{range} T}} \to \operatorname{\mathbb{F}^{\dim W - \dim \operatorname{range} W}} \oplus \operatorname{\mathbb{F}^{\dim \operatorname{range} T}}
```

Proof. Let $u=(v_1,\ldots,v_p)$ be a basis of $\operatorname{null} T$. Extend it to a basis $v_1,\ldots,v_p,u_1,\ldots,u_q$ of V. Notice that $\dim\operatorname{null} T=p$ and $\dim V=p+q$. Denote $\operatorname{span}(u_1,\ldots,u_q)$ by U. Clearly, $V=\operatorname{span}(v_1,\ldots,v_p)\oplus\operatorname{span}(u_1,\ldots,u_q)=\operatorname{null} T\oplus U$. The restriction $T|_U$ is injective, because $U\cap\operatorname{null} T=0$, and $\phi=T_{(v_1,\ldots,v_p)}\oplus T_{(u_1,\ldots,u_q)}:\mathbb{F}^p\oplus\mathbb{F}^q\to\operatorname{null} T\oplus U$ is an isomorphism.

Theorem Any linear map $T:V\to W$ between finite-dimensional vector spaces over a field $\mathbb F$ is isomorphic to

```
0 \oplus \operatorname{id}: \operatorname{\mathbb{F}^{\dim \operatorname{null} T}} \oplus \operatorname{\mathbb{F}^{\dim \operatorname{range} T}} \to \operatorname{\mathbb{F}^{\dim W - \dim \operatorname{range} W}} \oplus \operatorname{\mathbb{F}^{\dim \operatorname{range} T}}
```

Proof. Let $u=(v_1,\ldots,v_p)$ be a basis of $\operatorname{null} T$. Extend it to a basis $v_1,\ldots,v_p,u_1,\ldots,u_q$ of V. Notice that $\dim\operatorname{null} T=p$ and $\dim V=p+q$. Denote $\operatorname{span}(u_1,\ldots,u_q)$ by U. Clearly, $V=\operatorname{span}(v_1,\ldots,v_p)\oplus\operatorname{span}(u_1,\ldots,u_q)=\operatorname{null} T\oplus U$. The restriction $T|_U$ is injective, because $U\cap\operatorname{null} T=0$, and $\phi=T_{(v_1,\ldots,v_p)}\oplus T_{(u_1,\ldots,u_q)}:\mathbb{F}^p\oplus\mathbb{F}^q\to\operatorname{null} T\oplus U$ is an isomorphism. (Tu_1,\ldots,Tu_q) is a basis of range T.

Theorem Any linear map $T:V\to W$ between finite-dimensional vector spaces over a field $\mathbb F$ is isomorphic to

```
0 \oplus \operatorname{id} : \mathbb{F}^{\dim \operatorname{null} T} \oplus \mathbb{F}^{\dim \operatorname{range} T} \to \mathbb{F}^{\dim W - \dim \operatorname{range} W} \oplus \mathbb{F}^{\dim \operatorname{range} T}
```

```
Proof. Let u=(v_1,\ldots,v_p) be a basis of \operatorname{null} T. Extend it to a basis v_1,\ldots,v_p,u_1,\ldots,u_q of V. Notice that \dim\operatorname{null} T=p and \dim V=p+q. Denote \operatorname{span}(u_1,\ldots,u_q) by U. Clearly, V=\operatorname{span}(v_1,\ldots,v_p)\oplus\operatorname{span}(u_1,\ldots,u_q)=\operatorname{null} T\oplus U. The restriction T|_U is injective, because U\cap\operatorname{null} T=0, and \phi=T_{(v_1,\ldots,v_p)}\oplus T_{(u_1,\ldots,u_q)}:\mathbb{F}^p\oplus\mathbb{F}^q\to\operatorname{null} T\oplus U is an isomorphism. (Tu_1,\ldots,Tu_q) is a basis of \operatorname{range} T. Extend it to a basis w_1,\ldots,w_r,Tu_1,\ldots,Tu_q of W.
```

Theorem Any linear map $T:V\to W$ between finite-dimensional vector spaces over a field $\mathbb F$ is isomorphic to

```
0 \oplus \operatorname{id} : \mathbb{F}^{\dim \operatorname{null} T} \oplus \mathbb{F}^{\dim \operatorname{range} T} \to \mathbb{F}^{\dim W - \dim \operatorname{range} W} \oplus \mathbb{F}^{\dim \operatorname{range} T}
```

```
Proof. Let u=(v_1,\ldots,v_p) be a basis of \operatorname{null} T. Extend it to a basis v_1,\ldots,v_p,u_1,\ldots,u_q of V. Notice that \dim\operatorname{null} T=p and \dim V=p+q. Denote \operatorname{span}(u_1,\ldots,u_q) by U. Clearly, V=\operatorname{span}(v_1,\ldots,v_p)\oplus\operatorname{span}(u_1,\ldots,u_q)=\operatorname{null} T\oplus U. The restriction T|_U is injective, because U\cap\operatorname{null} T=0, and \phi=T_{(v_1,\ldots,v_p)}\oplus T_{(u_1,\ldots,u_q)}:\mathbb{F}^p\oplus\mathbb{F}^q\to\operatorname{null} T\oplus U is an isomorphism. (Tu_1,\ldots,Tu_q) is a basis of \operatorname{range} T. Extend it to a basis w_1,\ldots,w_r,Tu_1,\ldots,Tu_q of W. Denote \operatorname{span}(w_1,\ldots,w_r) by C.
```

Theorem Any linear map $T:V\to W$ between finite-dimensional vector spaces over a field $\mathbb F$ is isomorphic to

```
0 \oplus \operatorname{id}: \operatorname{\mathbb{F}^{\dim \operatorname{null} T}} \oplus \operatorname{\mathbb{F}^{\dim \operatorname{range} T}} \to \operatorname{\mathbb{F}^{\dim W - \dim \operatorname{range} W}} \oplus \operatorname{\mathbb{F}^{\dim \operatorname{range} T}}
```

Proof. Let $u=(v_1,\ldots,v_p)$ be a basis of $\operatorname{null} T$. Extend it to a basis $v_1,\ldots,v_p,u_1,\ldots,u_q$ of V. Notice that $\dim\operatorname{null} T=p$ and $\dim V=p+q$. Denote $\operatorname{span}(u_1,\ldots,u_q)$ by U. Clearly, $V=\operatorname{span}(v_1,\ldots,v_p)\oplus\operatorname{span}(u_1,\ldots,u_q)=\operatorname{null} T\oplus U$. The restriction $T|_U$ is injective, because $U\cap\operatorname{null} T=0$, and $\phi=T_{(v_1,\ldots,v_p)}\oplus T_{(u_1,\ldots,u_q)}:\mathbb{F}^p\oplus\mathbb{F}^q\to\operatorname{null} T\oplus U$ is an isomorphism. (Tu_1,\ldots,Tu_q) is a basis of $\operatorname{range} T$. Extend it to a basis $w_1,\ldots,w_r,Tu_1,\ldots,Tu_q$ of W. Denote $\operatorname{span}(w_1,\ldots,w_r)$ by C. $\psi=T_{w_1,\ldots,w_r}\oplus T_{Tu_1,\ldots,Tu_q}:\mathbb{F}^r\oplus\mathbb{F}^q\to C\oplus\operatorname{range} T$ is an isomorphism.

Theorem Any linear map $T:V\to W$ between finite-dimensional vector spaces over a field $\mathbb F$ is isomorphic to

 $0 \oplus \operatorname{id}: \operatorname{\mathbb{F}^{\dim \operatorname{null} T}} \oplus \operatorname{\mathbb{F}^{\dim \operatorname{range} T}} \to \operatorname{\mathbb{F}^{\dim W - \dim \operatorname{range} W}} \oplus \operatorname{\mathbb{F}^{\dim \operatorname{range} T}}$

Proof. Let $u = (v_1, \ldots, v_p)$ be a basis of null T. Extend it to a basis $v_1,\ldots,v_p,u_1,\ldots,u_q$ of V . Notice that $\dim \operatorname{null} T=p$ and $\dim V=p+q$. Denote span (u_1,\ldots,u_q) by U. Clearly, $V=\operatorname{span}(v_1,\ldots,v_p)\oplus\operatorname{span}(u_1,\ldots,u_q)$ $=\operatorname{null} T\oplus U$. The restriction $T|_U$ is injective, because $U\cap\operatorname{null} T=0$, and $\phi = T_{(v_1, \dots, v_p)} \oplus T_{(u_1, \dots, u_q)} : \mathbb{F}^p \oplus \mathbb{F}^q \to \operatorname{null} T \oplus U$ is an isomorphism. (Tu_1,\ldots,Tu_q) is a basis of range T. Extend it to a basis $w_1,\ldots,w_r,Tu_1,\ldots,Tu_q$ of W . Denote $\mathrm{span}(w_1,\ldots,w_r)$ by C . $\psi = T_{w_1,...,w_r} \oplus T_{Tu_1,...,Tu_q} : \mathbb{F}^r \oplus \mathbb{F}^q \to C \oplus \operatorname{range} T$ is an isomorphism. Isomorphisms ϕ and ψ form an isomorphism $(0 \oplus \mathrm{id}) \to T$: $\mathbb{F}^p \oplus \mathbb{F}^q \xrightarrow{\phi} \text{null } T \oplus U \xrightarrow{=} V$ $\downarrow^{0 \oplus \mathrm{id}} \qquad \downarrow^{0 \oplus T'} \qquad \downarrow^{T} \qquad \blacksquare$ $\mathbb{F}^r \oplus \mathbb{F}^q \xrightarrow{\psi} C \oplus \operatorname{range} T \xrightarrow{=} W$

3.22 Corollary. Fundamental Theorem of Linear Maps.

Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V, W)$.

Then range T is finite-dimensional and $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$.

```
3.22 Corollary. Fundamental Theorem of Linear Maps.
```

Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V,W)$. Then $\operatorname{range} T$ is finite-dimensional and $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$.

Proof. By Isomorphism Classification of Linear Maps Theorem, there exists an isomorphism $\mathbb{F}^{\dim \operatorname{null} T} \oplus \mathbb{F}^{\dim \operatorname{range} T} \to V$.

3.22 Corollary. Fundamental Theorem of Linear Maps.

Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V,W)$. Then $\operatorname{range} T$ is finite-dimensional and $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$.

Proof. By Isomorphism Classification of Linear Maps Theorem, there exists an isomorphism $\mathbb{F}^{\dim \operatorname{null} T} \oplus \mathbb{F}^{\dim \operatorname{range} T} o V$.

 $\dim \operatorname{range} T$ is called the **rank** of linear map T. It is denoted by $\operatorname{rk} T$.

3.22 Corollary. Fundamental Theorem of Linear Maps.

Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V,W)$. Then $\operatorname{range} T$ is finite-dimensional and $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$.

Proof. By Isomorphism Classification of Linear Maps Theorem, there exists an isomorphism $\mathbb{F}^{\dim \operatorname{null} T} \oplus \mathbb{F}^{\dim \operatorname{range} T} o V$.

 $\dim \operatorname{range} T$ is called the **rank** of linear map T. It is denoted by $\operatorname{rk} T$.

 $\operatorname{rk} T \leq \dim W$ for any linear map $T: V \to W$.

3.22 Corollary. Fundamental Theorem of Linear Maps.

Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V,W)$. Then $\operatorname{range} T$ is finite-dimensional and $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$.

Proof. By Isomorphism Classification of Linear Maps Theorem, there exists an isomorphism $\mathbb{F}^{\dim \operatorname{null} T} \oplus \mathbb{F}^{\dim \operatorname{range} T} o V$.

 $\dim \operatorname{range} T$ is called the **rank** of linear map T. It is denoted by $\operatorname{rk} T$.

 $\operatorname{rk} T \leq \dim W$ for any linear map $T: V \to W$.

Proof. By Isomorphism Classification of Linear Maps Theorem, there exists an isomorphism $\mathbb{F}^{\dim W - \dim \operatorname{range} T} \oplus \mathbb{F}^{\dim \operatorname{range} T} \to W$.

3.22 Corollary. Fundamental Theorem of Linear Maps.

Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V,W)$. Then $\operatorname{range} T$ is finite-dimensional and $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$.

Proof. By Isomorphism Classification of Linear Maps Theorem, there exists an isomorphism $\mathbb{F}^{\dim \operatorname{null} T} \oplus \mathbb{F}^{\dim \operatorname{range} T} o V$.

 $\dim \operatorname{range} T$ is called the **rank** of linear map T. It is denoted by $\operatorname{rk} T$.

 $\operatorname{rk} T \leq \dim W$ for any linear map $T: V \to W$.

Proof. By Isomorphism Classification of Linear Maps Theorem, there exists an isomorphism $\mathbb{F}^{\dim W - \dim \operatorname{range} T} \oplus \mathbb{F}^{\dim \operatorname{range} T} \to W$.

A linear map $T:V\to W$ with $\dim V=p$, $\dim W=q$ and $\operatorname{rk} T=r$ exists $\iff r\le p$ and $r\le q$.

3.22 Corollary. Fundamental Theorem of Linear Maps.

Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V,W)$. Then $\operatorname{range} T$ is finite-dimensional and $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$.

Proof. By Isomorphism Classification of Linear Maps Theorem, there exists an isomorphism $\mathbb{F}^{\dim \operatorname{null} T} \oplus \mathbb{F}^{\dim \operatorname{range} T} \to V$.

 $\dim \operatorname{range} T$ is called the **rank** of linear map T. It is denoted by $\operatorname{rk} T$.

 $\operatorname{rk} T \leq \dim W$ for any linear map $T: V \to W$.

Proof. By Isomorphism Classification of Linear Maps Theorem, there exists an isomorphism $\mathbb{F}^{\dim W - \dim \operatorname{range} T} \oplus \mathbb{F}^{\dim \operatorname{range} T} \to W$.

A linear map $T:V\to W$ with $\dim V=p$, $\dim W=q$ and $\operatorname{rk} T=r$ exists $\iff r\le p$ and $r\le q$.

Linear maps $T:V\to W$ and $T':V'\to W'$ are isomorphic $\iff \dim V=\dim V'$, $\dim W=\dim W'$ and $\operatorname{rk} T=\operatorname{rk} T'$.