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Proof. Let uw = (v1,...,v,) be a basis of null7". Extend it to a basis

U1,...,0p,U1,..., Uy Of V. Notice that dimnull7=p and dimV =p+q.

Denote span(us,...,uq) by U. Clearly, V =span(vy,...,v,) @ span(uq,...,u,)
=nullT & U. The restriction Ty is injective, because U Nnull7 =0, and

¢ =Tw,,..v) P Luy,...ouy) : FP @ FT = null T @ U is an isomorphism.

(T'uy,...,Tug) is a basis of rangeT.

Extend it to a basis wi,...,w,,Tuy,...,Tu, of W . Denote span(wi,...,w,) by C.
Y ="Tu,, . w, ®Truy,. . Tu, : F ®FT — C S rangeT" is an isomorphism.

Isomorphisms ¢ and v form an isomorphism (0 ®id) — T':

FP Tl —2 s nill T U —=— V

J/O@id J/O@T’ J/T [ |

FroFe —Y C @rangeT —— W
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3.22 Corollary. Fundamental Theorem of Linear Maps.
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Then range T is finite-dimensional and dim V = dimnull 7'+dim range 7.

Proof. By Isomorphism Classification of Linear Maps Theorem,
there exists an isomorphism FdimnullT g pdimrangeT _, 7/ g

dimrangel" is called the rank of linear map 1'. It is denoted by rk T

rkT' < dim W for any linear map T': V — W .

Proof. By Isomorphism Classification of Linear Maps Theorem,
there exists an isomorphism Fdim W —dimrangeT g ppdimrange™ _, 73/ = g

Alinear map 7 :V — W with dimV =p, dimW = q and rkl' = r exists
<— r<pandr<gqg.

Linear maps T : V — W and T’ : V! — W' are isomorphic
— dimV =dimV’, dmW =dim W’ and rkT =rkT".
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