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Linear maps
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Linear maps

Let V' and W be vector spaces over a field IF.
3.2 Definition
T(u+v)=Tu+Tv forall u,v eV
T(Av) = A(Tv) forall A\eF andall v eV

Amap T :V — W is said to be linear if:

(T is additive);

(T is homogeneous).

Linear maps or linear transformations?

Tv or T'(v)?

3.3 Notation

Other notations:

L(V, W) = {all the linear maps V. — W}

Homp(V, W) or Hom(V,W).
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Examples of linear maps
Zero 0eL(V,W):x—0
Identity ITel(V,V):xw—x Other notations: id, or idy, or 1.
Inclusion ime LV.W):z—az if VCW
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Examples of linear maps

Differentiation D:PR)—P[R): Dp=yp

1
Integration T:PR)—>R:Tp= /p(g:) dx
0

Multiplication by z* T:P(F)— P(F): (Tp)(z) = 2°p(x)

Backward shift T € L(F>®,F®): T(xy,x9,x3,...) = (T2, T3, Tg,...)
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A linear map takes 0 to 0

3.11 Theorem Let T:V — W be a linear map. Then 7'(0) = 0.

Proof  T(0) =T(0+0) = T(0) + 7(0).

So,  T(0)=T(0)+T(0).

Add —T'(0) to both sides.

0="1T(0). n
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Linear operations in L(V, V)
3.6 Definition Let S,T:V — W be mapsand A € FF.
Thesum S+ 7T and the product AT are maps V — W defined by
(S+T)(v)=Sv+Tv and (AT)(v) = A(Tv) forall veV.

Theorem If S,T are linear maps, then S + 7T and AT are linear maps.

Proof. Exercise! It's easy!

3.7  Theorem With the operations of addition and scalar multiplication,
L(V,W) is a vector space.

Proof. Exercise! It's easy!
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Composition
Definition Let T:U —V and S:V — W be maps.
The composition SoT isa map U — W defined by formula
(SoT)(u)=S(T(u) foral ueU. U -5V =5 W
SoT
Composition is also called a product. (Say, in Axler's textbook.)
Often S oT is denoted by ST, like a product.
Theorem If S and T are linear maps, then S o7 is a linear map.
Proof. Exercise! It's easy!
|
3.9 Algebraic properties of composition
aSSOCiatiVity (TlTQ)Tg = Tl (TQTg)
identity Tldv =T = 1dW T
distributivity (S1 4+ S52)T =S1T+ ST and (Th +T12)S=T1S+T>S.
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Language of categories 9/21

Categories

A category provides a framework with a convenient language to speak about

objects of unspecified nature, but related to each other in a very specific way.
A category consists of:

objects and

morphisms: for any two objects X,Y morphisms X — Y, and

compositions of morphisms: x -1ty y 2.y

W

The composition is associative: ho(go f) =(hog)o f

Bl _ 4 Bl _ 4
J{V J{ho(qof — gi Y‘gihog
C’—>D CT>D

With any object X', the identity morphism idx : X — X is associated:
for A —1 X 29X, X we have idyof=f

S~ and for X “% X — %4 B we have goidyx =g.

10 / 21

Examples of categories

Example 1. The category of sets
Objects are sets, morphisms are maps, compositions are compositions of maps.

Example 2. The category of vector spaces over a field
Objects are vector spaces over [, morphisms are linear maps,
compositions are compositions of linear maps.

Example 3. The category of linear maps Let F be a field.

Objects are linear maps V' — W, where V' and W are vector spaces over .

A morphism (V/ 5 W) — (X EN Y) is a pair (V L xw i Y') of linear maps such that
MoT=S5oL.

V—.—>X
It is presented by a diagram: T SJ, which is commutative: M o7 = So L.
w2,y
A+——— X XV A—V
N NoL
Composition: U SJ, o s T = J{U T
B+t y v <M ow B LMW
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Operators

3.67 Definition
A linear map from a vector space to itself is called an operator.
Notation  L(V) = {all linear maps V — V} = L(V, V).

Category of operators in vectors spaces over a field F
objects are operators T : V — V,

a morphism (V 5 V) = (W 5 w)
is a linear map V LW such that SoL=LoT.
vV Lt w
or, rather, a commutative diagram J{T SJ, ,
|
a composition of morphisms is the composition of the linear maps.

Axler: “The deepest and most important parts of linear algebra ... deal with operators.”

Which categories will be used in this course?
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Inverses and invertibles
In any category:
Definition
Morphisms T : V — W and S : W — V are said to be inverse to each other
if SOTIIdV and ToSzldW
A morphism T : V — W s called invertible if there exists a morphism inverse to 7'.
3.54 Uniqueness of Inverse If a morphism is invertible then its inverse is unique.
Proof Let S; and S, beinverseto T :V — W . Then
Sl - Sl ldW - Sl(TSQ) - (SlT)SQ - ldv SQ - SQ |
3.55 Notation If T is invertible, then its inverse is denoted by 7 !.
For a morphism T : V — W, the inverse morphism 7'~! is defined by two properties:
TT'=idy and T7'T =idy.
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Isomorphism

In any category:

3.58 Definition An invertible morphism is called an isomorphism.
Objects V' and W are called isomorphic if 3 an isomorphism V' — W .

Properties of isomorphisms

e An identity morphism is an isomorphism.

e The composition of isomorphisms is an isomorphism.

e The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.
It is reflexive, symmetric and transitive.

A category does not recognize any difference between its isomorphic objects,
although the objects may be not identically the same.
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surjectivity, injectivity and bijectivity
Back to the category of sets and maps
3.20 Definition A map T:V — W is called surjective if T'(V)=W.
3.15 Definition A map T :V — W is called injective if Tu=Tv — u=wv.
Definition
A map T :V — W s called bijective if 7T is both injective and surjective.
Pl el Tl Taesfl Doeeald
= \\::u 070 ®— o 070 o/\ __»©
injection, surjection,
but but biiecti
jection
not a map not not
4 map surjection injection
] . invertible
1-to-1 “onto”
15 /21



liberté, égalité et fraternité

¥

Henri Cartan André Weil

-V N

Charles Ehresmann Laurent Schwartz

Jean Dicudonné Claude Chevalley Pierre Samuel Jean-Pierre Serre Adrien Douady

Nicolas Bourbaki
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Invertible = bijection
Which sets are isomorphic in the category of sets and maps?
3.56 Theorem. Invertibility is equivalent to bijectivity.
You should know this. If not, see the textbook, page 81.
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Spaces associated to a linear map 18 / 21

Null space

3.12 Definition (reminder) For T € L(V,W), the null space of T is
nll7 =740} ={veV|Tv=0}.

Another name: kernel. Notation: KerT'.

3.13 Examples

o ForT:V —=W:v—0, nll7 =V
o For differentiation D : P(R) — P(R), null D = {constants}
o For multiplication by 2* T : P(F) — P(F) : Tp = *p(z), null 7 = 0

o For backward shift 7' € L(IF>°, F>) : T'(zy, %2, x3,...) = (x2, 23, Tyq,...)
null 7 = {(a,0,0,...) | a € F}
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Null space is a subspace
3.14 Theorem. For T'€ L(V,W), nullT is a subspace of V.
Proof. As we know (by 3.11) 7°(0) = 0. Hence 0 € nullT".
uwvenull? = T(u+v)=T(u)+Tw)=0+0=0 = u+venull.
vemlTANeF —= TAu)=XNTu=X=0 — AuecnullT. .
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Injectivity and the null space

3.15 Definition (reminder)
Amap T :V — W s called injective if Tu=Tv — u=v.

Amap T:V — W isinjective <— u#v — Tu#Tv.

3.16 T isinjective <= nullT = {0}.

Proof

= Recall 0 e null7. If nullT # {0}, then Jv €nullT, v#0.
So, Tv=T0=0 and T is not injective. m

— lLet u,veV, Tu=Tv. Then 0 =Tu—Tv=T(u—v).
Hence u —v e nullT ={0} = u=v.n
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