Advanced Linear Algebra MAT 315

Oleg Viro

02/18/2020, Lecture 1

Linear maps	2
Linear maps	3
Examples of linear maps	
Examples of linear maps	
A linear map takes 0 to 0	
Linear operations in $\mathcal{L}(V,W)$	
Composition	
Language of categories	9
Categories	10
Examples of categories	
Operators	
Inverses and invertibles	
Isomorphism	
surjectivity, injectivity and bijectivity	
liberté, égalité et fraternité	
Invertible = bijection	
Spaces associated to a linear map 1	8
Null space	_
Null space is a subspace	
Injectivity and the null space	

Linear maps 2 / 21

Linear maps

Let V and W be vector spaces over a field \mathbb{F} .

3.2 Definition A map $T: V \to W$ is said to be **linear** if:

T(u+v) = Tu + Tv for all $u, v \in V$ (T is additive);

 $T(\lambda v) = \lambda(Tv)$ for all $\lambda \in \mathbb{F}$ and all $v \in V$ (T is homogeneous).

Linear maps or linear transformations? Tv or T(v)?

3.3 **Notation** $\mathcal{L}(V, W) = \{ \text{all the linear maps } V \to W \}$

Other notations: $\operatorname{Hom}_{\mathbb{F}}(V,W)$ or $\operatorname{Hom}(V,W)$.

3 / 21

Examples of linear maps

Zero $0 \in \mathcal{L}(V, W) : x \mapsto 0$

Identity $I \in \mathcal{L}(V, V) : x \mapsto x$ Other notations: id, or id_V, or 1.

Inclusion in $\in \mathcal{L}(V, W) : x \mapsto x$ if $V \subset W$

Examples of linear maps

Differentiation
$$D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R}): Dp = p'$$

Integration
$$T: \mathcal{P}(\mathbb{R}) \to \mathbb{R}: Tp = \int\limits_0^1 p(x) \, dx$$

Multiplication by
$$x^3$$
 $T: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F}): (Tp)(x) = x^3p(x)$

5 / 21

A linear map takes 0 to 0

3.11 **Theorem** Let $T: V \to W$ be a linear map. Then T(0) = 0.

Proof T(0) = T(0+0) = T(0) + T(0).

So, T(0) = T(0) + T(0).

Add -T(0) to both sides.

$$0 = T(0)$$
.

Linear operations in $\mathcal{L}(V, W)$

3.6 **Definition** Let $S, T: V \to W$ be maps and $\lambda \in \mathbb{F}$.

The sum S+T and the **product** λT are maps $V\to W$ defined by

$$(S+T)(v)=Sv+Tv$$
 and $(\lambda T)(v)=\lambda (Tv)$ for all $v\in V$.

Theorem If S, T are linear maps, then S + T and λT are linear maps.

Proof. Exercise! It's easy!

3.7 **Theorem** With the operations of addition and scalar multiplication, $\mathcal{L}(V,W)$ is a vector space.

Proof. Exercise! It's easy!

7 / 21

Composition

Definition Let $T: U \to V$ and $S: V \to W$ be maps.

The **composition** $S \circ T$ is a map $U \to W$ defined by formula

$$(S \circ T)(u) = S(T(u)) \text{ for all } u \in U \,. \qquad U \xrightarrow{T} V \xrightarrow{S} W$$

Composition is also called a **product**. (Say, in Axler's textbook.)

Often $S \circ T$ is denoted by ST, like a product.

Theorem If S and T are linear maps, then $S \circ T$ is a linear map.

Proof. Exercise! It's easy!

3.9 Algebraic properties of composition

associativity $(T_1T_2)T_3 = T_1(T_2T_3)$ identity $T\operatorname{id}_V = T = \operatorname{id}_W T$

distributivity $(S_1 + S_2)T = S_1T + S_2T$ and $(T_1 + T_2)S = T_1S + T_2S$.

Categories

A category provides a framework with a convenient language to speak about

objects of unspecified nature, but related to each other in a very specific way.

A **category** consists of:

objects and

 $\operatorname{morphisms} \colon$ for any two objects X,Y morphisms $X\to Y$, and

compositions of morphisms: $X \xrightarrow{f} Y \xrightarrow{g} Z$

The composition is **associative**: $h \circ (g \circ f) = (h \circ g) \circ f$

$$B \xleftarrow{f} A$$

$$g \downarrow \xrightarrow{g \circ f} \downarrow h \circ (g \circ f)$$

$$C \xrightarrow{h} D$$

$$B \xleftarrow{f} A$$

$$g \downarrow \xrightarrow{h \circ g} \downarrow (h \circ g) \circ f$$

$$C \xrightarrow{h} D$$

With any object X, the **identity morphism** $id_X: X \to X$ is associated:

for $A \xrightarrow{f} X \xrightarrow{\operatorname{id}_X} X$ we have $\operatorname{id}_X \circ f = f$

and for $X \xrightarrow{\operatorname{id}_X} X \xrightarrow{g} B$ we have $g \circ \operatorname{id}_X = g$.

10 / 21

Examples of categories

Example 1. The category of sets

Objects are sets, morphisms are maps, compositions are compositions of maps.

Example 2. The category of vector spaces over a field \mathbb{F}

Objects are vector spaces over **F**, morphisms are linear maps,

compositions are compositions of linear maps.

Example 3. The category of linear maps Let \mathbb{F} be a field.

Objects are linear maps $V \to W$, where V and W are vector spaces over $\mathbb F$.

A morphism $(V \xrightarrow{T} W) \to (X \xrightarrow{S} Y)$ is a pair $(V \xrightarrow{L} X, W \xrightarrow{M} Y)$ of linear maps such that $M \circ T = S \circ L$.

It is presented by a diagram: $\begin{array}{c} V \xrightarrow{L} X \\ \downarrow_T & S \downarrow \\ W \xrightarrow{M} Y \end{array} \text{ which is } \mathbf{commutative} \colon \ M \circ T = S \circ L \,.$

Composition: $\begin{pmatrix} A \xleftarrow{N} X \\ \downarrow U & S \downarrow \\ B \xleftarrow{R} Y \end{pmatrix} \circ \begin{pmatrix} X \xleftarrow{L} V \\ \downarrow S & T \downarrow \\ Y \xleftarrow{M} W \end{pmatrix} = \begin{pmatrix} A \xleftarrow{N \circ L} V \\ \downarrow U & T \downarrow \\ B \xleftarrow{R \circ M} W \end{pmatrix}$

Operators

3.67 **Definition**

A linear map from a vector space to itself is called an **operator**.

Notation $\mathcal{L}(V) = \{\text{all linear maps } V \to V\} = \mathcal{L}(V, V).$

Category of operators in vectors spaces over a field $\,\mathbb{F}\,$

objects are operators
$$T:V \to V$$
 ,

a morphism
$$(V \xrightarrow{T} V) \rightarrow (W \xrightarrow{S} W)$$

is a linear map $V \xrightarrow{L} W$ such that $S \circ L = L \circ T$.

or, rather, a commutative diagram
$$\begin{array}{c} V \stackrel{L}{\longrightarrow} W \\ \downarrow_T & s \\ V \stackrel{L}{\longrightarrow} W \end{array}$$

a composition of morphisms is the composition of the linear maps.

Axler: "The deepest and most important parts of linear algebra ... deal with operators."

Which categories will be used in this course?

12 / 21

Inverses and invertibles

In any category:

Definition

Morphisms $T:V\to W$ and $S:W\to V$ are said to be **inverse** to each other if $S\circ T=\mathrm{id}_V$ and $T\circ S=\mathrm{id}_W$.

A morphism $T:V\to W$ is called **invertible** if there exists a morphism inverse to T.

3.54 **Uniqueness of Inverse** If a morphism is invertible then its inverse is unique.

Proof Let
$$S_1$$
 and S_2 be inverse to $T:V\to W$. Then $S_1=S_1\operatorname{id}_W=S_1(TS_2)=(S_1T)S_2=\operatorname{id}_VS_2=S_2$

For a morphism $T:V\to W$, the inverse morphism T^{-1} is defined by two properties:

$$TT^{-1}=\mathrm{id}_W\quad\text{ and }\quad T^{-1}T=\mathrm{id}_V\,.$$

Isomorphism

In any category:

3.58 **Definition** An invertible morphism is called an **isomorphism**. Objects V and W are called **isomorphic** if \exists an isomorphism $V \to W$.

Properties of isomorphisms

- An identity morphism is an isomorphism.
- The composition of isomorphisms is an isomorphism.
- The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.

It is reflexive, symmetric and transitive.

A category does not recognize any difference between its isomorphic objects, although the objects may be not identically the same.

14 / 21

surjectivity, injectivity and bijectivity

Back to the category of sets and maps

3.20 **Definition** A map $T: V \to W$ is called **surjective** if T(V) = W.

3.15 **Definition** A map $T: V \to W$ is called **injective** if $Tu = Tv \implies u = v$.

Definition

A map $T: V \to W$ is called **bijective** if T is both injective and surjective.

liberté, égalité et fraternité André Weil René de Possel Charles Ehresmann Laurent Schr

rre Samuel Jean-Pierre Serre Adrien Douady

Nicolas Bourbaki

16 / 21

Invertible = bijection

Which sets are isomorphic in the category of sets and maps?

3.56 Theorem. Invertibility is equivalent to bijectivity.

You should know this. If not, see the textbook, page 81.

Null space

```
3.12 Definition (reminder) For T \in \mathcal{L}(V, W), the null space of T is \operatorname{null} T = T^{-1}\{0\} = \{v \in V \mid Tv = 0\}.
```

Another name: **kernel**. Notation: $\operatorname{Ker} T$.

3.13 Examples

- For $T:V\to W:v\mapsto 0$, $\operatorname{null} T=V$
- For differentiation $D:\mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$, $\operatorname{null} D = \{\operatorname{constants}\}$
- For multiplication by x^3 $T: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F}): Tp = x^3p(x)$, $\operatorname{null} T = 0$
- For backward shift $T \in \mathcal{L}(\mathbb{F}^{\infty}, F^{\infty}) : T(x_1, x_2, x_3, \dots) = (x_2, x_3, x_4, \dots)$ null $T = \{(a, 0, 0, \dots) \mid a \in \mathbb{F}\}$

19 / 21

Null space is a subspace

```
3.14 Theorem. For T \in \mathcal{L}(V, W), null T is a subspace of V.
```

Proof. As we know (by 3.11) T(0) = 0. Hence $0 \in \operatorname{null} T$.

```
u,v \in \operatorname{null} T \implies T(u+v) = T(u) + T(v) = 0 + 0 = 0 \implies u+v \in \operatorname{null} T.
```

 $u \in \operatorname{null} T, \lambda \in \mathbb{F} \implies T(\lambda u) = \lambda T u = \lambda 0 = 0 \implies \lambda u \in \operatorname{null} T.$

Injectivity and the null space

3.15 **Definition (reminder)**

A map $T: V \to W$ is called **injective** if $Tu = Tv \implies u = v$.

A map $T:V \to W$ is injective $\iff u \neq v \implies Tu \neq Tv$.

3.16 T is injective \iff null $T = \{0\}$.

Proof

- \implies Recall $0 \in \operatorname{null} T$. If $\operatorname{null} T \neq \{0\}$, then $\exists v \in \operatorname{null} T$, $v \neq 0$. So, Tv = T0 = 0 and T is not injective.
- $\longleftarrow \text{ Let } u,v\in V \text{ , } Tu=Tv \text{ . Then } 0=Tu-Tv=T(u-v). \\ \text{ Hence } u-v\in \operatorname{null} T=\{0\} \quad \Longrightarrow \ u=v \text{ . } \blacksquare$