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Let V and W be vector spaces over a field F .

3.2 Definition A map T : V → W is said to be linear if:

T (u+ v) = Tu+ Tv for all u, v ∈ V (T is additive);

T (λv) = λ(Tv) for all λ ∈ F and all v ∈ V (T is homogeneous).

Linear maps or linear transformations? Tv or T (v) ?

3.3 Notation L(V,W ) = {all the linear maps V → W}

Other notations: Hom F(V,W ) or Hom(V,W ) .
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Zero 0 ∈ L(V,W ) : x 7→ 0

Identity I ∈ L(V, V ) : x 7→ x Other notations: id , or idV , or 1 .

Inclusion in ∈ L(V,W ) : x 7→ x if V ⊂ W
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Differentiation D : P(R) → P(R) : Dp = p′

Integration T : P(R) → R : Tp =

1
∫

0

p(x) dx

Multiplication by x3 T : P(F) → P(F) : (Tp)(x) = x3p(x)

Backward shift T ∈ L(F∞,F∞) : T (x1, x2, x3, . . . ) = (x2, x3, x4, . . . )
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The composition S ◦ T is a map U → W defined by formula
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T

S◦T

S

Composition is also called a product. (Say, in Axler’s textbook.)

Often S ◦ T is denoted by ST , like a product.

Theorem If S and T are linear maps, then S ◦ T is a linear map.

Proof. Exercise!
�

3.9 Algebraic properties of composition
associativity (T1T2)T3 = T1(T2T3)
identity T idV = T = idW T

distributivity (S1 + S2)T = S1T + S2T and (T1 + T2)S = T1S + T2S .
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3.58 Definition An invertible morphism is called an isomorphism.
Objects V and W are called isomorphic if ∃ an isomorphism V → W .

Properties of isomorphisms
• An identity morphism is an isomorphism.
• The composition of isomorphisms is an isomorphism.
• The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.
It is reflexive, symmetric and transitive.

A category does not recognize any difference between its isomorphic objects,
although the objects may be not identically the same.
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Which sets are isomorphic in the category of sets and maps?

3.56 Theorem. Invertibility is equivalent to bijectivity.

You should know this. If not, see the textbook, page 81.
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Another name: kernel. Notation: KerT .

3.13 Examples

• For T : V → W : v 7→ 0 , nullT = V

• For differentiation D : P(R) → P(R) , nullD = {constants}

• For multiplication by x3 T : P(F) → P(F) : Tp = x3p(x) , nullT = 0

• For backward shift T ∈ L(F∞, F∞) : T (x1, x2, x3, . . . ) = (x2, x3, x4, . . . )

nullT = {(a, 0, 0, . . . ) | a ∈ F}
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3.16 T is injective ⇐⇒ nullT = {0} .

Proof

=⇒ Recall 0 ∈ nullT . If nullT 6= {0} , then ∃v ∈ nullT , v 6= 0 .
So, Tv = T0 = 0 and T is not injective. �

⇐= Let u, v ∈ V , Tu = Tv . Then 0 = Tu− Tv = T (u− v).
Hence u− v ∈ nullT = {0} =⇒ u = v . �
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