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Objects V' and W are called isomorphic if 3 an isomorphism V — W .

Properties of isomorphisms

e An identity morphism is an isomorphism.

e The composition of isomorphisms is an isomorphism.

e The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.
It is reflexive, symmetric and transitive.

A category does not recognize any difference between its isomorphic objects,
although the objects may be not identically the same.
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