Linear Algebra MAT 315 Lecture 1

Advanced Linear Algebra MAT 315

Oleg Viro

02/18/2020

Linear Algebra MAT 315 Lecture 1

Linear maps

Let V and W be vector spaces over a field \mathbb{F} .

Let V and W be vector spaces over a field $\mathbb F$.

3.2 Definition A map $T: V \to W$ is said to be **linear** if:

Let V and W be vector spaces over a field \mathbb{F} .

3.2 Definition A map $T: V \to W$ is said to be **linear** if:

```
T(u+v) = Tu + Tv for all u, v \in V
```

Let V and W be vector spaces over a field $\mathbb F$.

3.2 **Definition** A map $T: V \to W$ is said to be **linear** if:

T(u+v) = Tu + Tv for all $u, v \in V$ (T is additive);

Let V and W be vector spaces over a field \mathbb{F} .

3.2 Definition A map $T: V \to W$ is said to be **linear** if:

T(u+v) = Tu + Tv for all $u, v \in V$ (T is additive);

 $T(\lambda v) = \lambda(Tv)$ for all $\lambda \in \mathbb{F}$ and all $v \in V$

Linear maps

Let V and W be vector spaces over a field \mathbb{F} .

3.2 **Definition** A map $T: V \to W$ is said to be **linear** if:

T(u+v) = Tu + Tv for all $u, v \in V$ (T is additive);

 $T(\lambda v) = \lambda(Tv)$ for all $\lambda \in \mathbb{F}$ and all $v \in V$ (T is homogeneous).

Linear maps

Let V and W be vector spaces over a field \mathbb{F} .

3.2 **Definition** A map $T: V \to W$ is said to be **linear** if:

T(u+v) = Tu + Tv for all $u, v \in V$ (T is additive);

 $T(\lambda v) = \lambda(Tv)$ for all $\lambda \in \mathbb{F}$ and all $v \in V$ (T is homogeneous).

Linear maps or linear transformations?

Linear maps

Let V and W be vector spaces over a field \mathbb{F} .

3.2 **Definition** A map $T: V \to W$ is said to be **linear** if:

T(u+v) = Tu + Tv for all $u, v \in V$ (T is additive);

 $T(\lambda v) = \lambda(Tv)$ for all $\lambda \in \mathbb{F}$ and all $v \in V$ (*T* is **homogeneous**).

Linear maps or linear transformations? Tv or T(v)?

Let V and W be vector spaces over a field \mathbb{F} .

3.2 **Definition** A map $T: V \to W$ is said to be **linear** if:

 $T(u+v) = Tu + Tv \text{ for all } u, v \in V \qquad (T \text{ is additive});$

 $T(\lambda v) = \lambda(Tv)$ for all $\lambda \in \mathbb{F}$ and all $v \in V$ (*T* is **homogeneous**).

Linear maps or linear transformations? Tv or T(v)?

3.3 Notation $\mathcal{L}(V, W) = \{ all the linear maps V \rightarrow W \}$

Let V and W be vector spaces over a field $\mathbb F$.

3.2 **Definition** A map $T: V \to W$ is said to be **linear** if:

T(u+v) = Tu + Tv for all $u, v \in V$ (T is additive);

 $T(\lambda v) = \lambda(Tv)$ for all $\lambda \in \mathbb{F}$ and all $v \in V$ (T is homogeneous).

Linear maps or linear transformations? Tv or T(v)?

3.3 Notation $\mathcal{L}(V, W) = \{ all the linear maps V \rightarrow W \}$

Other notations: $\operatorname{Hom}_{\mathbb{F}}(V,W)$ or $\operatorname{Hom}(V,W)$.

Zero

Identity

Identity

 $I \in \mathcal{L}(V, V) : x \mapsto x$

Identity

 $I \in \mathcal{L}(V, V) : x \mapsto x$

Other notations:

 $0 \in \mathcal{L}(V, W) : x \mapsto 0$ Zero

Identity

 $I \in \mathcal{L}(V,V): x \mapsto x$ Other notations: id,

Identity

 $I \in \mathcal{L}(V, V) : x \mapsto x$

Other notations: id , or id_V ,

Identity

 $I \in \mathcal{L}(V, V) : x \mapsto x$

Other notations: id , or id_V , or 1.

Identity

 $I \in \mathcal{L}(V, V) : x \mapsto x$

Other notations: id, or id_V , or 1.

Inclusion

Identity $I \in \mathcal{L}(V, V) : x \mapsto x$ Other notations: id, or id_V, or 1.

Inclusion

in $\in \mathcal{L}(V, W) : x \mapsto x$ if $V \subset W$

Differentiation

Differentiation D:

 $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R}): Dp = p'$

Integration

Integration $T: \mathcal{P}(\mathbb{R}) \to \mathbb{R}$

Integration

$$T: \mathcal{P}(\mathbb{R}) \to \mathbb{R}: Tp = \int_{0}^{1} p(x) \, dx$$

$$T: \mathcal{P}(\mathbb{R}) \to \mathbb{R}: Tp = \int_{0}^{1} p(x) dx$$

Multiplication by x^3

Integration

$$T: \mathcal{P}(\mathbb{R}) \to \mathbb{R}: Tp = \int_{0}^{1} p(x) \, dx$$

Multiplication by x^3 $T: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F})$

Integration

$$T: \mathcal{P}(\mathbb{R}) \to \mathbb{R}: Tp = \int_{0}^{1} p(x) dx$$

Multiplication by x^3 $T: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F}): (Tp)(x) = x^3p(x)$

Integration

$$T: \mathcal{P}(\mathbb{R}) \to \mathbb{R}: Tp = \int_{0}^{1} p(x) \, dx$$

Multiplication by x^3 $T: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F}): (Tp)(x) = x^3p(x)$

Backward shift

$$T: \mathcal{P}(\mathbb{R}) \to \mathbb{R}: Tp = \int_{0}^{1} p(x) \, dx$$

Multiplication by x^3 $T: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F}): (Tp)(x) = x^3p(x)$

Backward shift $T \in \mathcal{L}(\mathbb{F}^{\infty}, \mathbb{F}^{\infty})$

Integration

$$T: \mathcal{P}(\mathbb{R}) \to \mathbb{R}: Tp = \int_{0}^{1} p(x) \, dx$$

Multiplication by x^3 $T: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F}): (Tp)(x) = x^3p(x)$

Backward shift

$$T \in \mathcal{L}(\mathbb{F}^{\infty}, \mathbb{F}^{\infty}) : T(x_1, x_2, x_3, \dots) = (x_2, x_3, x_4, \dots)$$

3.11 **Theorem** Let $T: V \to W$ be a linear map. Then T(0) = 0.

Proof T(0) = T(0+0)

Proof T(0) = T(0+0) = T(0) + T(0).

Proof T(0) = T(0+0) = T(0) + T(0).

So, T(0) = T(0) + T(0).

Proof T(0) = T(0+0) = T(0) + T(0).

So, T(0) = T(0) + T(0).

Add -T(0) to both sides.

Proof
$$T(0) = T(0+0) = T(0) + T(0)$$
.

So,
$$T(0) = T(0) + T(0)$$
.

Add -T(0) to both sides.

 $0=T(0)\,.$

Proof
$$T(0) = T(0+0) = T(0) + T(0)$$
.

So,
$$T(0) = T(0) + T(0)$$
.

Add -T(0) to both sides.

 $0=T(0)\,.$

The sum S+T and the product λT are maps $V \to W$ defined by

The sum S+T and the product λT are maps $V \to W$ defined by

(S+T)(v) = Sv + Tv

The sum S+T and the product λT are maps $V \to W$ defined by

(S+T)(v) = Sv + Tv and $(\lambda T)(v) = \lambda(Tv)$

The sum S+T and the product λT are maps $V \to W$ defined by

(S+T)(v) = Sv + Tv and $(\lambda T)(v) = \lambda(Tv)$ for all $v \in V$.

The sum S+T and the product λT are maps $V \to W$ defined by

(S+T)(v) = Sv + Tv and $(\lambda T)(v) = \lambda(Tv)$ for all $v \in V$.

Theorem If S, T are linear maps,

The sum S+T and the product λT are maps $V \to W$ defined by

(S+T)(v) = Sv + Tv and $(\lambda T)(v) = \lambda(Tv)$ for all $v \in V$.

Theorem If S, T are linear maps, then S + T and λT are linear maps.

The sum S+T and the product λT are maps $V \to W$ defined by

(S+T)(v) = Sv + Tv and $(\lambda T)(v) = \lambda(Tv)$ for all $v \in V$.

Theorem If S, T are linear maps, then S + T and λT are linear maps. **Proof.**

The sum S+T and the product λT are maps $V \to W$ defined by

(S+T)(v) = Sv + Tv and $(\lambda T)(v) = \lambda(Tv)$ for all $v \in V$.

Theorem If S, T are linear maps, then S + T and λT are linear maps.

Proof. Exercise!

The sum S+T and the product λT are maps $V \to W$ defined by

(S+T)(v) = Sv + Tv and $(\lambda T)(v) = \lambda(Tv)$ for all $v \in V$.

Theorem If S, T are linear maps, then S + T and λT are linear maps. **Proof. Exercise!** It's easy!

The sum S+T and the product λT are maps $V \to W$ defined by

(S+T)(v) = Sv + Tv and $(\lambda T)(v) = \lambda(Tv)$ for all $v \in V$.

Theorem If S, T are linear maps, then S + T and λT are linear maps. **Proof. Exercise!**

3.7 **Theorem** With the operations of addition and scalar multiplication, $\mathcal{L}(V, W)$ is a vector space.

The sum S+T and the product λT are maps $V \to W$ defined by

(S+T)(v) = Sv + Tv and $(\lambda T)(v) = \lambda(Tv)$ for all $v \in V$.

Theorem If S, T are linear maps, then S + T and λT are linear maps. **Proof. Exercise!**

3.7 **Theorem** With the operations of addition and scalar multiplication, $\mathcal{L}(V, W)$ is a vector space.

Proof.

The sum S+T and the product λT are maps $V \to W$ defined by

(S+T)(v) = Sv + Tv and $(\lambda T)(v) = \lambda(Tv)$ for all $v \in V$.

Theorem If S, T are linear maps, then S + T and λT are linear maps.

Proof. Exercise!

3.7 **Theorem** With the operations of addition and scalar multiplication, $\mathcal{L}(V, W)$ is a vector space.

Proof. Exercise!

The sum S+T and the product λT are maps $V \to W$ defined by

(S+T)(v) = Sv + Tv and $(\lambda T)(v) = \lambda(Tv)$ for all $v \in V$.

Theorem If S, T are linear maps, then S + T and λT are linear maps. **Proof. Exercise!**

3.7 **Theorem** With the operations of addition and scalar multiplication, $\mathcal{L}(V, W)$ is a vector space.

Proof. Exercise! It's easy!

The sum S+T and the product λT are maps $V \to W$ defined by

(S+T)(v) = Sv + Tv and $(\lambda T)(v) = \lambda(Tv)$ for all $v \in V$.

Theorem If S, T are linear maps, then S + T and λT are linear maps.

Proof. Exercise!

3.7 **Theorem** With the operations of addition and scalar multiplication, $\mathcal{L}(V, W)$ is a vector space.

Proof. Exercise!

The **composition** $S \circ T$ is a map $U \to W$ defined by formula

The composition $S \circ T$ is a map $U \to W$ defined by formula

 $(S \circ T)(u) = S(T(u))$ for all $u \in U$.

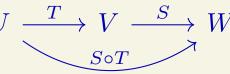
The **composition** $S \circ T$ is a map $U \to W$ defined by formula

 $(S \circ T)(u) = S(T(u)) \text{ for all } u \in U . \qquad U \xrightarrow{T} V \xrightarrow{S} W$

Let $T: U \to V$ and $S: V \to W$ be maps. Definition

The **composition** $S \circ T$ is a map $U \to W$ defined by formula

 $(S \circ T)(u) = S(T(u)) \text{ for all } u \in U . \qquad U \xrightarrow{T} V \xrightarrow{S} W \xrightarrow{S \circ T} V$



Composition is also called a **product**.

The **composition** $S \circ T$ is a map $U \to W$ defined by formula

 $(S \circ T)(u) = S(T(u)) \text{ for all } u \in U . \qquad U \xrightarrow{T} V \xrightarrow{S} W$

Composition is also called a **product**. (Say, in Axler's textbook.)

The **composition** $S \circ T$ is a map $U \to W$ defined by formula

 $(S \circ T)(u) = S(T(u)) \text{ for all } u \in U . \qquad U \xrightarrow{T} V \xrightarrow{S} W \xrightarrow{S \circ T} V$

Composition is also called a **product**. (Say, in Axler's textbook.) Often $S \circ T$ is denoted by ST, like a product.

The **composition** $S \circ T$ is a map $U \to W$ defined by formula

 $(S \circ T)(u) = S(T(u)) \text{ for all } u \in U . \qquad U \xrightarrow{T} V \xrightarrow{S} W \xrightarrow{S \circ T} V$

Composition is also called a **product**. (Say, in Axler's textbook.)

Often $S \circ T$ is denoted by ST, like a product.

Theorem If S and T are linear maps,

The **composition** $S \circ T$ is a map $U \to W$ defined by formula

 $(S \circ T)(u) = S(T(u)) \text{ for all } u \in U . \qquad U \xrightarrow{T} V \xrightarrow{S} W \xrightarrow{S \circ T} V$

Composition is also called a **product**. (Say, in Axler's textbook.)

Often $S \circ T$ is denoted by ST, like a product.

Theorem If S and T are linear maps, then $S \circ T$ is a linear map.

The **composition** $S \circ T$ is a map $U \to W$ defined by formula

 $(S \circ T)(u) = S(T(u)) \text{ for all } u \in U . \qquad U \xrightarrow{T} V \xrightarrow{S} W \xrightarrow{S \circ T} V$

Composition is also called a **product**. (Say, in Axler's textbook.)

Often $S \circ T$ is denoted by ST, like a product.

Theorem If S and T are linear maps, then $S \circ T$ is a linear map.

Proof.

The **composition** $S \circ T$ is a map $U \to W$ defined by formula

 $(S \circ T)(u) = S(T(u)) \text{ for all } u \in U. \qquad U \xrightarrow{T} V \xrightarrow{S} W$

Composition is also called a **product**. (Say, in Axler's textbook.)

Often $S \circ T$ is denoted by ST, like a product.

Theorem If S and T are linear maps, then $S \circ T$ is a linear map.

Proof. Exercise! It's easy!

The **composition** $S \circ T$ is a map $U \to W$ defined by formula

 $(S \circ T)(u) = S(T(u)) \text{ for all } u \in U . \qquad U \xrightarrow{T} V \xrightarrow{S} W \xrightarrow{S \circ T} V$

Composition is also called a **product**. (Say, in Axler's textbook.)

Often $S \circ T$ is denoted by ST, like a product.

Theorem If S and T are linear maps, then $S \circ T$ is a linear map.

Proof. Exercise!

The **composition** $S \circ T$ is a map $U \to W$ defined by formula

 $(S \circ T)(u) = S(T(u)) \text{ for all } u \in U . \qquad U \xrightarrow{T} V \xrightarrow{S} W \xrightarrow{S \circ T} V$

Composition is also called a **product**. (Say, in Axler's textbook.)

Often $S \circ T$ is denoted by ST, like a product.

Theorem If S and T are linear maps, then $S \circ T$ is a linear map.

Proof. Exercise!

3.9 Algebraic properties of composition

Definition Let $T: U \to V$ and $S: V \to W$ be maps.

The **composition** $S \circ T$ is a map $U \to W$ defined by formula

 $(S \circ T)(u) = S(T(u)) \text{ for all } u \in U . \qquad U \xrightarrow{T} V \xrightarrow{S} W \xrightarrow{S \circ T} V$

Composition is also called a **product**. (Say, in Axler's textbook.)

Often $S \circ T$ is denoted by ST, like a product.

Theorem If S and T are linear maps, then $S \circ T$ is a linear map.

Proof. Exercise!

3.9 Algebraic properties of composition associativity $(T_1T_2)T_3 = T_1(T_2T_3)$ **Definition** Let $T: U \to V$ and $S: V \to W$ be maps.

The **composition** $S \circ T$ is a map $U \to W$ defined by formula

 $(S \circ T)(u) = S(T(u)) \text{ for all } u \in U \text{ . } U \xrightarrow{T} V \xrightarrow{S} W$

Composition is also called a **product**. (Say, in Axler's textbook.)

Often $S \circ T$ is denoted by ST, like a product.

Theorem If S and T are linear maps, then $S \circ T$ is a linear map.

Proof. Exercise!

3.9 Algebraic properties of composition associativity $(T_1T_2)T_3 = T_1(T_2T_3)$ identity $T \operatorname{id}_V = T = \operatorname{id}_W T$ **Definition** Let $T: U \to V$ and $S: V \to W$ be maps.

The **composition** $S \circ T$ is a map $U \to W$ defined by formula

 $(S \circ T)(u) = S(T(u)) \text{ for all } u \in U . \qquad U \xrightarrow{T} V \xrightarrow{S} W$

Composition is also called a **product**. (Say, in Axler's textbook.)

Often $S \circ T$ is denoted by ST, like a product.

Theorem If S and T are linear maps, then $S \circ T$ is a linear map.

Proof. Exercise!

3.9 Algebraic properties of composition associativity $(T_1T_2)T_3 = T_1(T_2T_3)$ identity $T \operatorname{id}_V = T = \operatorname{id}_W T$ distributivity $(S_1 + S_2)T = S_1T + S_2T$ and $(T_1 + T_2)S = T_1S + T_2S$.

Linear Algebra MAT 315 Lecture 1

Language of categories

objects and

> **objects** and **morphisms**: for any two objects X, Y morphisms $X \rightarrow Y$, and

A category provides a framework with a convenient language to speak about

objects of unspecified nature, but related to each other in a very specific way. A **category** consists of:

> **objects** and **morphisms**: for any two objects X, Y morphisms $X \to Y$, and **compositions** of morphisms: $X \xrightarrow{f} Y \xrightarrow{g} Z$

A category provides a framework with a convenient language to speak about

objects of unspecified nature, but related to each other in a very specific way. A **category** consists of:

objects and **morphisms**: for any two objects X, Y morphisms $X \to Y$, and **compositions** of morphisms: $X \xrightarrow{f} Y \xrightarrow{g} Z$ $g \circ f \xrightarrow{f} Y$

> **objects** and **morphisms**: for any two objects X, Y morphisms $X \to Y$, and **compositions** of morphisms: $X \xrightarrow{f} Y \xrightarrow{g} Z$ $g \circ f \xrightarrow{f} Y$

> **objects** and **morphisms**: for any two objects X, Y morphisms $X \to Y$, and **compositions** of morphisms: $X \xrightarrow{f} Y \xrightarrow{g} Z$ $g \circ f \xrightarrow{f} Y$

> **objects** and **morphisms**: for any two objects X, Y morphisms $X \to Y$, and **compositions** of morphisms: $X \xrightarrow{f} Y \xrightarrow{g} Z$ $g \circ f \xrightarrow{f} Y$

> **objects** and **morphisms**: for any two objects X, Y morphisms $X \to Y$, and **compositions** of morphisms: $X \xrightarrow{f} Y \xrightarrow{g} Z$ $g \circ f \xrightarrow{f} Y$

$$\begin{array}{ccc} B \xleftarrow{f} & A \\ g \downarrow \begin{array}{c} g \circ f \\ \swarrow \end{array} & \downarrow h \circ (g \circ f) \\ C & \xrightarrow{h} \end{array} D \end{array}$$

> **objects** and **morphisms**: for any two objects X, Y morphisms $X \to Y$, and **compositions** of morphisms: $X \xrightarrow{f} Y \xrightarrow{g} Z$ $g \circ f \xrightarrow{f} Y$

$$\begin{array}{cccc} B \xleftarrow{f} & A & & B \xleftarrow{f} & A \\ g \downarrow \begin{array}{c} g \circ f \\ \swarrow \end{array} & \downarrow h \circ (g \circ f) \end{array} & = \begin{array}{c} g \downarrow \\ g \downarrow \end{array} & \\ C \xrightarrow{h} & D \end{array} & \begin{array}{c} C \xrightarrow{h} & D \end{array} \end{array}$$

> **objects** and **morphisms**: for any two objects X, Y morphisms $X \to Y$, and **compositions** of morphisms: $X \xrightarrow{f} Y \xrightarrow{g} Z$ $g \circ f \xrightarrow{f} Y$

$$\begin{array}{cccc} B \xleftarrow{f} & A & & B \xleftarrow{f} & A \\ g \downarrow \begin{array}{c} g \circ f \\ \swarrow \end{array} & \downarrow h \circ (g \circ f) \end{array} & = \begin{array}{c} g \downarrow & \swarrow \\ h \circ g \\ C & \xrightarrow{h} \end{array} & D \end{array} & \begin{array}{c} C & \xleftarrow{h} & D \end{array}$$

> **objects** and **morphisms**: for any two objects X, Y morphisms $X \to Y$, and **compositions** of morphisms: $X \xrightarrow{f} Y \xrightarrow{g} Z$ $g \circ f \xrightarrow{f} Y$

$$\begin{array}{cccc} B \xleftarrow{f} & A & & B \xleftarrow{f} & A \\ g \downarrow \begin{array}{c} g \circ f \\ \swarrow \end{array} & \downarrow h \circ (g \circ f) \end{array} & = \begin{array}{c} g \downarrow & \swarrow \begin{array}{c} h \circ g \\ \searrow \end{array} & \downarrow (h \circ g) \circ f \end{array} \\ C \xrightarrow{h} & D \end{array}$$

> **objects** and **morphisms**: for any two objects X, Y morphisms $X \to Y$, and **compositions** of morphisms: $X \xrightarrow{f} Y \xrightarrow{g} Z$ $g \circ f \xrightarrow{f} Z$

The composition is **associative**: $h \circ (g \circ f) = (h \circ g) \circ f$

$$\begin{array}{cccc} B \xleftarrow{f} & A & & B \xleftarrow{f} & A \\ g & g \circ f & \downarrow h \circ (g \circ f) & = g \downarrow & \swarrow h \circ g \downarrow (h \circ g) \circ f \\ C & \xrightarrow{h} & D & & C & \xrightarrow{h} & D \end{array}$$

With any object X, the **identity morphism** $\operatorname{id}_X : X \to X$ is associated:

for
$$A \xrightarrow{f} X \xrightarrow{\operatorname{id}_X} X$$
 we have $\operatorname{id}_X \circ f = f$
 $f \xrightarrow{f} X$ and for $X \xrightarrow{\operatorname{id}_X} X \xrightarrow{g} B$ we have $g \circ \operatorname{id}_X = g$.

Objects are sets, morphisms are maps, compositions are compositions of maps.

Objects are sets, morphisms are maps, compositions are compositions of maps.

Example 2. The category of vector spaces over a field \mathbb{F}

Objects are sets, morphisms are maps, compositions are compositions of maps.

Example 2. The category of vector spaces over a field \mathbb{F}

Objects are vector spaces over \mathbb{F} , morphisms are linear maps,

compositions are compositions of linear maps.

Objects are sets, morphisms are maps, compositions are compositions of maps.

Example 2. The category of vector spaces over a field \mathbb{F}

Objects are vector spaces over \mathbb{F} , morphisms are linear maps,

compositions are compositions of linear maps.

Example 3. The category of linear maps

Objects are sets, morphisms are maps, compositions are compositions of maps.

Example 2. The category of vector spaces over a field \mathbb{F}

Objects are vector spaces over \mathbb{F} , morphisms are linear maps,

compositions are compositions of linear maps.

Example 3. The category of linear maps Let \mathbb{F} be a field.

Objects are sets, morphisms are maps, compositions are compositions of maps.

Example 2. The category of vector spaces over a field \mathbb{F}

Objects are vector spaces over \mathbb{F} , morphisms are linear maps,

compositions are compositions of linear maps.

Example 3. The category of linear maps Let \mathbb{F} be a field. Objects are linear maps $V \to W$, where V and W are vector spaces over \mathbb{F} .

Objects are sets, morphisms are maps, compositions are compositions of maps.

Example 2. The category of vector spaces over a field ${\ensuremath{\mathbb F}}$

Objects are vector spaces over \mathbb{F} , morphisms are linear maps,

compositions are compositions of linear maps.

Example 3. The category of linear maps Let \mathbb{F} be a field. Objects are linear maps $V \to W$, where V and W are vector spaces over \mathbb{F} . A morphism $(V \xrightarrow{T} W) \to (X \xrightarrow{S} Y)$ is a pair $(V \xrightarrow{L} X, W \xrightarrow{M} Y)$ of linear maps such that $M \circ T = S \circ L$.

Objects are sets, morphisms are maps, compositions are compositions of maps.

Example 2. The category of vector spaces over a field $\ensuremath{\mathbb{F}}$

Objects are vector spaces over \mathbb{F} , morphisms are linear maps,

TZ

compositions are compositions of linear maps.

Example 3. The category of linear maps Let \mathbb{F} be a field. Objects are linear maps $V \to W$, where V and W are vector spaces over \mathbb{F} . A morphism $(V \xrightarrow{T} W) \to (X \xrightarrow{S} Y)$ is a pair $(V \xrightarrow{L} X, W \xrightarrow{M} Y)$ of linear maps such that $M \circ T = S \circ L$.

 \mathbf{V}

It is presented by a diagram:

$$V \xrightarrow{L} X$$

$$\downarrow T \qquad S \downarrow$$

$$W \xrightarrow{M} Y$$

Objects are sets, morphisms are maps, compositions are compositions of maps.

 $W \xrightarrow{M} V$

Example 2. The category of vector spaces over a field \mathbb{F}

Objects are vector spaces over \mathbb{F} , morphisms are linear maps,

compositions are compositions of linear maps.

Example 3. The category of linear maps Let \mathbb{F} be a field. Objects are linear maps $V \to W$, where V and W are vector spaces over $\mathbb F$. A morphism $(V \xrightarrow{T} W) \to (X \xrightarrow{S} Y)$ is a pair $(V \xrightarrow{L} X, W \xrightarrow{M} Y)$ of linear maps such that $M \circ T = S \circ L$.

It is presented by a diagram: $V \xrightarrow{L} X$ $\downarrow_T \qquad S \downarrow$ which is **commutative**.

Objects are sets, morphisms are maps, compositions are compositions of maps.

 $W \xrightarrow{M} V$

Example 2. The category of vector spaces over a field $\ensuremath{\mathbb{F}}$

Objects are vector spaces over \mathbb{F} , morphisms are linear maps,

compositions are compositions of linear maps.

Example 3. The category of linear maps Let \mathbb{F} be a field. Objects are linear maps $V \to W$, where V and W are vector spaces over \mathbb{F} . A morphism $(V \xrightarrow{T} W) \to (X \xrightarrow{S} Y)$ is a pair $(V \xrightarrow{L} X, W \xrightarrow{M} Y)$ of linear maps such that $M \circ T = S \circ L$.

It is presented by a diagram: $V \xrightarrow{L} X$ $\downarrow_T \qquad S \downarrow$

which is **commutative**:
$$M \circ T = S \circ L$$
 .

Objects are sets, morphisms are maps, compositions are compositions of maps.

Example 2. The category of vector spaces over a field \mathbb{F}

Objects are vector spaces over \mathbb{F} , morphisms are linear maps,

compositions are compositions of linear maps.

Example 3. The category of linear maps Let \mathbb{F} be a field. Objects are linear maps $V \to W$, where V and W are vector spaces over $\mathbb F$. A morphism $(V \xrightarrow{T} W) \to (X \xrightarrow{S} Y)$ is a pair $(V \xrightarrow{L} X, W \xrightarrow{M} Y)$ of linear maps such that $M \circ T = S \circ L$.

It is presented by a diagram: $V \xrightarrow{L} X$ $\downarrow_T \qquad S \downarrow$ which is **commutative**: $M \circ T = S \circ L$.

Composit

tion:
$$\begin{pmatrix} A \leftarrow M \\ \downarrow U \\ B \leftarrow R \\ H \end{pmatrix} \circ \begin{pmatrix} X \leftarrow V \\ \downarrow S \\ \downarrow S \\ Y \leftarrow M \\ W \end{pmatrix}$$

Objects are sets, morphisms are maps, compositions are compositions of maps.

Example 2. The category of vector spaces over a field $\ensuremath{\mathbb{F}}$

Objects are vector spaces over \mathbb{F} , morphisms are linear maps,

compositions are compositions of linear maps.

Example 3. The category of linear maps Let \mathbb{F} be a field. Objects are linear maps $V \to W$, where V and W are vector spaces over \mathbb{F} . A morphism $(V \xrightarrow{T} W) \to (X \xrightarrow{S} Y)$ is a pair $(V \xrightarrow{L} X, W \xrightarrow{M} Y)$ of linear maps such that $M \circ T = S \circ L$.

It is presented by a diagram: $\begin{array}{c}
V \longrightarrow X \\
\downarrow_T & s \downarrow \\
W \longrightarrow Y
\end{array}$ which is **commutative**: $M \circ T = S \circ L$. $W \longrightarrow Y$ Composition: $\begin{pmatrix}
A \longleftrightarrow_N & X \\
\downarrow_U & s \downarrow \\
B \xleftarrow{R} & Y
\end{pmatrix} \circ \begin{pmatrix}
X \longleftrightarrow_L & V \\
\downarrow_S & T \downarrow \\
Y \xleftarrow{M} & W
\end{pmatrix} = \begin{pmatrix}
A \longleftrightarrow_N \circ L & V \\
\downarrow_U & T \downarrow \\
B \xleftarrow{R \circ M} & W
\end{pmatrix}$

3.67 **Definition**

A linear map from a vector space to itself is called an **operator**.

3.67 **Definition**

A linear map from a vector space to itself is called an **operator**.

Notation $\mathcal{L}(V) = \{ all \text{ linear maps } V \to V \}$

3.67 **Definition**

A linear map from a vector space to itself is called an **operator**.

Notation $\mathcal{L}(V) = \{ \text{all linear maps } V \to V \} = \mathcal{L}(V, V).$

3.67 **Definition** A linear map from a vector space to itself is called an **operator**. **Notation** $\mathcal{L}(V) = \{\text{all linear maps } V \to V\} = \mathcal{L}(V, V).$

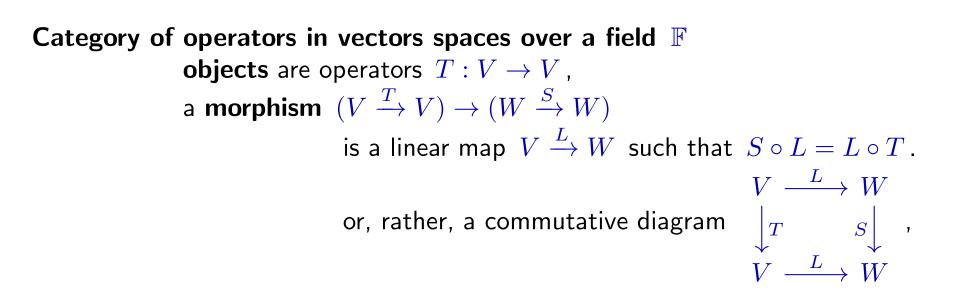
Category of operators in vectors spaces over a field $\ensuremath{\mathbb{F}}$

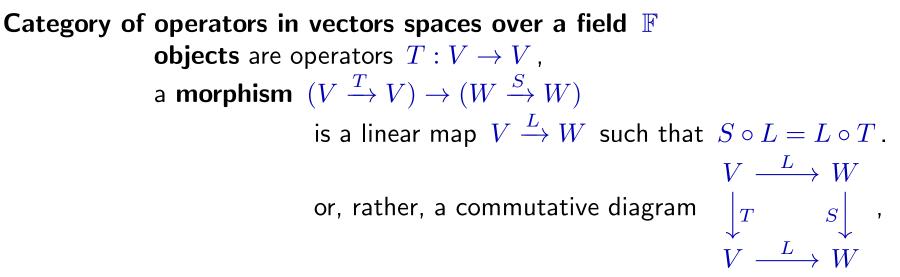
3.67 **Definition** A linear map from a vector space to itself is called an **operator**. **Notation** $\mathcal{L}(V) = \{\text{all linear maps } V \to V\} = \mathcal{L}(V, V).$

Category of operators in vectors spaces over a field \mathbb{F} objects are operators $T: V \to V$,

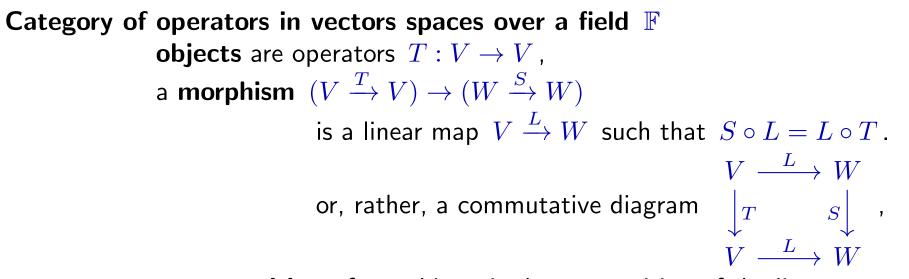
Category of operators in vectors spaces over a field \mathbb{F}

objects are operators
$$T: V \to V$$
,
a **morphism** $(V \xrightarrow{T} V) \to (W \xrightarrow{S} W)$
is a linear map $V \xrightarrow{L} W$ such that $S \circ L = L \circ T$.



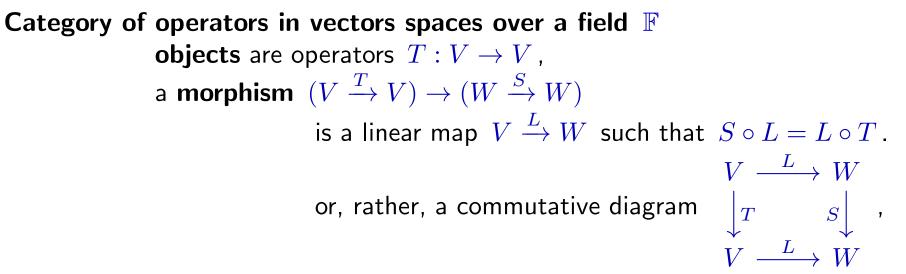


a composition of morphisms is the composition of the linear maps.



a **composition** of morphisms is the composition of the linear maps.

Axler: "The deepest and most important parts of linear algebra ... deal with operators."



a composition of morphisms is the composition of the linear maps.

Axler: "The deepest and most important parts of linear algebra ... deal with operators." Which categories will be used in this course?

Definition Morphisms $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = id_V$ and $T \circ S = id_W$.

Definition Morphisms $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \operatorname{id}_V$ and $T \circ S = \operatorname{id}_W$. A morphism $T: V \to W$ is called **invertible** if there exists a morphism inverse to T.

Definition Morphisms $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \operatorname{id}_V$ and $T \circ S = \operatorname{id}_W$. A morphism $T: V \to W$ is called **invertible** if there exists a morphism inverse to T.

3.54 Uniqueness of Inverse

Definition Morphisms $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \operatorname{id}_V$ and $T \circ S = \operatorname{id}_W$. A morphism $T: V \to W$ is called **invertible** if there exists a morphism inverse to T.

3.54 Uniqueness of Inverse If a morphism is invertible then its inverse is unique.

Definition Morphisms $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \operatorname{id}_V$ and $T \circ S = \operatorname{id}_W$. A morphism $T: V \to W$ is called **invertible** if there exists a morphism inverse to T.

3.54 Uniqueness of Inverse If a morphism is invertible then its inverse is unique.

Proof Let S_1 and S_2 be inverse to $T: V \to W$.

Definition Morphisms $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \operatorname{id}_V$ and $T \circ S = \operatorname{id}_W$. A morphism $T: V \to W$ is called **invertible** if there exists a morphism inverse to T.

3.54 Uniqueness of Inverse If a morphism is invertible then its inverse is unique.

Proof Let S_1 and S_2 be inverse to $T: V \to W$. Then $(S_1T)S_2$

Definition Morphisms $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \operatorname{id}_V$ and $T \circ S = \operatorname{id}_W$. A morphism $T: V \to W$ is called **invertible** if there exists a morphism inverse to T.

3.54 Uniqueness of Inverse If a morphism is invertible then its inverse is unique.

Proof Let S_1 and S_2 be inverse to $T: V \to W$. Then $(S_1T)S_2 = \operatorname{id}_V S_2$

Definition Morphisms $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \operatorname{id}_V$ and $T \circ S = \operatorname{id}_W$. A morphism $T: V \to W$ is called **invertible** if there exists a morphism inverse to T.

3.54 Uniqueness of Inverse If a morphism is invertible then its inverse is unique.

Proof Let S_1 and S_2 be inverse to $T:V \to W$. Then $(S_1T)S_2 = \operatorname{id}_V S_2 = S_2$

Definition Morphisms $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \operatorname{id}_V$ and $T \circ S = \operatorname{id}_W$. A morphism $T: V \to W$ is called **invertible** if there exists a morphism inverse to T.

3.54 Uniqueness of Inverse If a morphism is invertible then its inverse is unique.

Proof Let S_1 and S_2 be inverse to $T: V \to W$. Then $S_1(TS_2) = (S_1T)S_2 = \operatorname{id}_V S_2 = S_2$

Definition Morphisms $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \mathrm{id}_V$ and $T \circ S = \mathrm{id}_W$. A morphism $T: V \to W$ is called **invertible** if there exists a morphism inverse to T.

3.54 Uniqueness of Inverse If a morphism is invertible then its inverse is unique.

Proof Let S_1 and S_2 be inverse to $T: V \to W$. Then $S_1 \operatorname{id}_W = S_1(TS_2) = (S_1T)S_2 = \operatorname{id}_V S_2 = S_2$

Definition Morphisms $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \operatorname{id}_V$ and $T \circ S = \operatorname{id}_W$. A morphism $T: V \to W$ is called **invertible** if there exists a morphism inverse to T.

3.54 Uniqueness of Inverse If a morphism is invertible then its inverse is unique.

Proof Let S_1 and S_2 be inverse to $T: V \to W$. Then $S_1 = S_1 \operatorname{id}_W = S_1(TS_2) = (S_1T)S_2 = \operatorname{id}_V S_2 = S_2$

Definition Morphisms $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \operatorname{id}_V$ and $T \circ S = \operatorname{id}_W$. A morphism $T: V \to W$ is called **invertible** if there exists a morphism inverse to T.

3.54 Uniqueness of Inverse If a morphism is invertible then its inverse is unique.

Proof Let S_1 and S_2 be inverse to $T: V \to W$. Then $S_1 = S_1 \operatorname{id}_W = S_1(TS_2) = (S_1T)S_2 = \operatorname{id}_V S_2 = S_2$

Definition Morphisms $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \operatorname{id}_V$ and $T \circ S = \operatorname{id}_W$. A morphism $T: V \to W$ is called **invertible** if there exists a morphism inverse to T.

3.54 Uniqueness of Inverse If a morphism is invertible then its inverse is unique.

Proof Let S_1 and S_2 be inverse to $T: V \to W$. Then $S_1 = S_1 \operatorname{id}_W = S_1(TS_2) = (S_1T)S_2 = \operatorname{id}_V S_2 = S_2$

3.55 **Notation** If T is invertible, then its inverse is denoted by T^{-1} .

Definition Morphisms $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \operatorname{id}_V$ and $T \circ S = \operatorname{id}_W$. A morphism $T: V \to W$ is called **invertible** if there exists a morphism inverse to T.

3.54 Uniqueness of Inverse If a morphism is invertible then its inverse is unique.

Proof Let S_1 and S_2 be inverse to $T: V \to W$. Then $S_1 = S_1 \operatorname{id}_W = S_1(TS_2) = (S_1T)S_2 = \operatorname{id}_V S_2 = S_2$

3.55 **Notation** If T is invertible, then its inverse is denoted by T^{-1} .

For a morphism $T: V \to W$, the inverse morphism T^{-1} is defined by two properties:

Definition Morphisms $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \mathrm{id}_V$ and $T \circ S = \mathrm{id}_W$. A morphism $T: V \to W$ is called **invertible** if there exists a morphism inverse to T.

3.54 Uniqueness of Inverse If a morphism is invertible then its inverse is unique.

Proof Let S_1 and S_2 be inverse to $T: V \to W$. Then $S_1 = S_1 \operatorname{id}_W = S_1(TS_2) = (S_1T)S_2 = \operatorname{id}_V S_2 = S_2$

3.55 Notation If T is invertible, then its inverse is denoted by T^{-1} .

For a morphism $T:V\to W$, the inverse morphism $T^{-1}\,$ is defined by two properties: $TT^{-1}=$

Definition Morphisms $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \operatorname{id}_V$ and $T \circ S = \operatorname{id}_W$. A morphism $T: V \to W$ is called **invertible** if there exists a morphism inverse to T.

3.54 Uniqueness of Inverse If a morphism is invertible then its inverse is unique.

Proof Let S_1 and S_2 be inverse to $T: V \to W$. Then $S_1 = S_1 \operatorname{id}_W = S_1(TS_2) = (S_1T)S_2 = \operatorname{id}_V S_2 = S_2$

3.55 **Notation** If T is invertible, then its inverse is denoted by T^{-1} .

For a morphism $T:V \to W$, the inverse morphism T^{-1} is defined by two properties: $TT^{-1} = \mathrm{id}_W$

Definition Morphisms $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \mathrm{id}_V$ and $T \circ S = \mathrm{id}_W$. A morphism $T: V \to W$ is called **invertible** if there exists a morphism inverse to T.

3.54 Uniqueness of Inverse If a morphism is invertible then its inverse is unique.

Proof Let S_1 and S_2 be inverse to $T: V \to W$. Then $S_1 = S_1 \operatorname{id}_W = S_1(TS_2) = (S_1T)S_2 = \operatorname{id}_V S_2 = S_2$

3.55 **Notation** If T is invertible, then its inverse is denoted by T^{-1} .

For a morphism $T: V \to W$, the inverse morphism T^{-1} is defined by two properties: $TT^{-1} = \mathrm{id}_W$ and $T^{-1}T =$

Definition Morphisms $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \operatorname{id}_V$ and $T \circ S = \operatorname{id}_W$. A morphism $T: V \to W$ is called **invertible** if there exists a morphism inverse to T.

3.54 Uniqueness of Inverse If a morphism is invertible then its inverse is unique.

Proof Let S_1 and S_2 be inverse to $T: V \to W$. Then $S_1 = S_1 \operatorname{id}_W = S_1(TS_2) = (S_1T)S_2 = \operatorname{id}_V S_2 = S_2$

3.55 **Notation** If T is invertible, then its inverse is denoted by T^{-1} .

For a morphism $T: V \to W$, the inverse morphism T^{-1} is defined by two properties: $TT^{-1} = \mathrm{id}_W$ and $T^{-1}T = \mathrm{id}_V$.

3.58 **Definition** An invertible morphism is called an **isomorphism**.

3.58 **Definition** An invertible morphism is called an **isomorphism**. Objects V and W are called **isomorphic** if \exists an isomorphism $V \to W$.

3.58 **Definition** An invertible morphism is called an **isomorphism**. Objects V and W are called **isomorphic** if \exists an isomorphism $V \to W$.

Properties of isomorphisms

3.58 **Definition** An invertible morphism is called an **isomorphism**. Objects V and W are called **isomorphic** if \exists an isomorphism $V \to W$.

Properties of isomorphisms

• An identity morphism is an isomorphism.

3.58 **Definition** An invertible morphism is called an **isomorphism**. Objects V and W are called **isomorphic** if \exists an isomorphism $V \to W$.

Properties of isomorphisms

- An identity morphism is an isomorphism.
- The composition of isomorphisms is an isomorphism.

3.58 **Definition** An invertible morphism is called an **isomorphism**. Objects V and W are called **isomorphic** if \exists an isomorphism $V \to W$.

Properties of isomorphisms

- An identity morphism is an isomorphism.
- The composition of isomorphisms is an isomorphism.
- The map inverse to an isomorphism is an isomorphism.

3.58 **Definition** An invertible morphism is called an **isomorphism**. Objects V and W are called **isomorphic** if \exists an isomorphism $V \to W$.

Properties of isomorphisms

- An identity morphism is an isomorphism.
- The composition of isomorphisms is an isomorphism.
- The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.

3.58 **Definition** An invertible morphism is called an **isomorphism**. Objects V and W are called **isomorphic** if \exists an isomorphism $V \to W$.

Properties of isomorphisms

- An identity morphism is an isomorphism.
- The composition of isomorphisms is an isomorphism.
- The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.

It is reflexive,

3.58 **Definition** An invertible morphism is called an **isomorphism**. Objects V and W are called **isomorphic** if \exists an isomorphism $V \to W$.

Properties of isomorphisms

- An identity morphism is an isomorphism.
- The composition of isomorphisms is an isomorphism.
- The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.

It is reflexive, symmetric

3.58 **Definition** An invertible morphism is called an **isomorphism**. Objects V and W are called **isomorphic** if \exists an isomorphism $V \to W$.

Properties of isomorphisms

- An identity morphism is an isomorphism.
- The composition of isomorphisms is an isomorphism.
- The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.

It is reflexive, symmetric and transitive.

3.58 **Definition** An invertible morphism is called an **isomorphism**. Objects V and W are called **isomorphic** if \exists an isomorphism $V \to W$.

Properties of isomorphisms

- An identity morphism is an isomorphism.
- The composition of isomorphisms is an isomorphism.
- The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.

It is reflexive, symmetric and transitive.

A category does not recognize any difference between its isomorphic objects, although the objects may be not identically the same.

3.20 **Definition** A map $T: V \to W$ is called **surjective** if

3.20 **Definition** A map $T: V \to W$ is called **surjective** if T(V) = W.

3.20 Definition A map $T: V \to W$ is called **surjective** if T(V) = W.

3.15 **Definition** A map $T: V \to W$ is called **injective** if

3.20 Definition A map $T: V \to W$ is called **surjective** if T(V) = W.

3.15 Definition A map $T: V \to W$ is called **injective** if $Tu = Tv \implies u = v$.

3.20 **Definition** A map $T: V \to W$ is called **surjective** if T(V) = W.

3.15 **Definition** A map $T: V \to W$ is called **injective** if $Tu = Tv \implies u = v$.

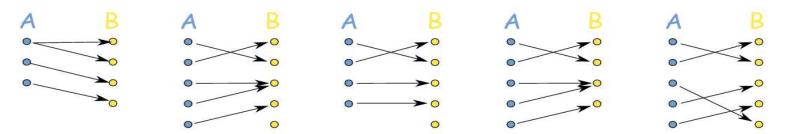
 $\begin{array}{l} \mbox{Definition}\\ \mbox{A map } T:V \rightarrow W \mbox{ is called bijective } if \end{array}$

3.20 Definition A map $T: V \to W$ is called **surjective** if T(V) = W.

3.15 **Definition** A map $T: V \to W$ is called **injective** if $Tu = Tv \implies u = v$.

3.20 Definition A map $T: V \to W$ is called **surjective** if T(V) = W.

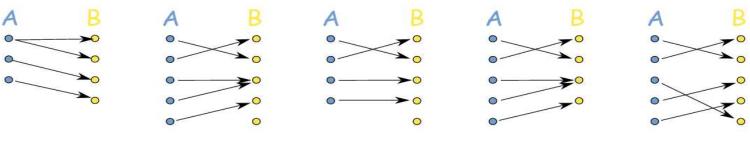
3.15 **Definition** A map $T: V \to W$ is called **injective** if $Tu = Tv \implies u = v$.



3.20 Definition A map $T: V \to W$ is called **surjective** if T(V) = W.

3.15 **Definition** A map $T: V \to W$ is called **injective** if $Tu = Tv \implies u = v$.

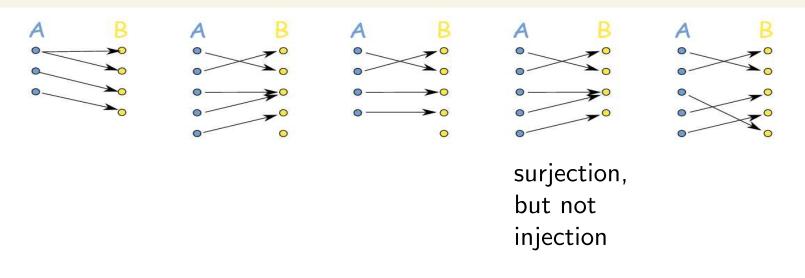
Definition A map $T: V \rightarrow W$ is called **bijective** if T is both injective and surjective.



surjection,

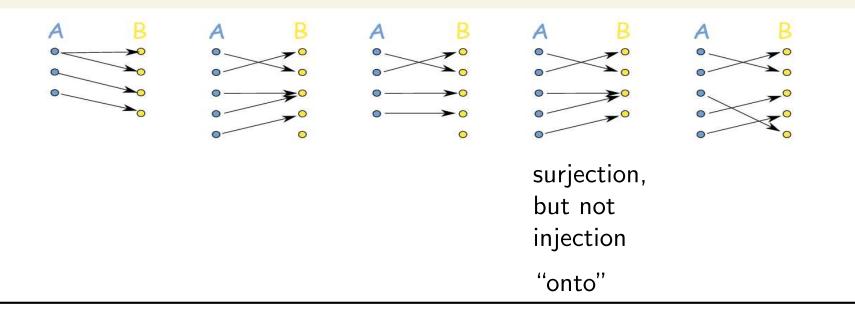
3.20 Definition A map $T: V \to W$ is called **surjective** if T(V) = W.

3.15 **Definition** A map $T: V \to W$ is called **injective** if $Tu = Tv \implies u = v$.



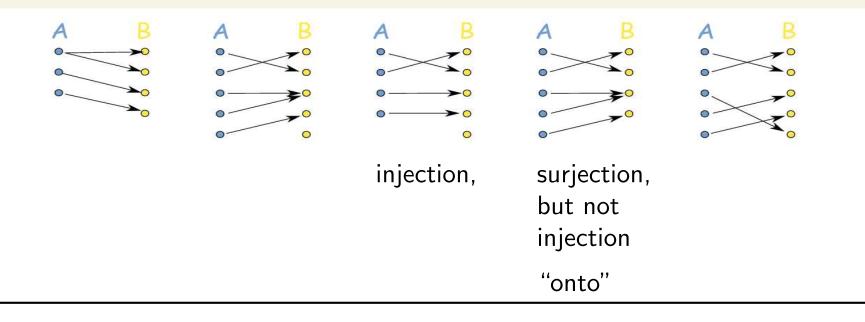
3.20 Definition A map $T: V \to W$ is called **surjective** if T(V) = W.

3.15 Definition A map $T: V \to W$ is called **injective** if $Tu = Tv \implies u = v$.



3.20 Definition A map $T: V \to W$ is called **surjective** if T(V) = W.

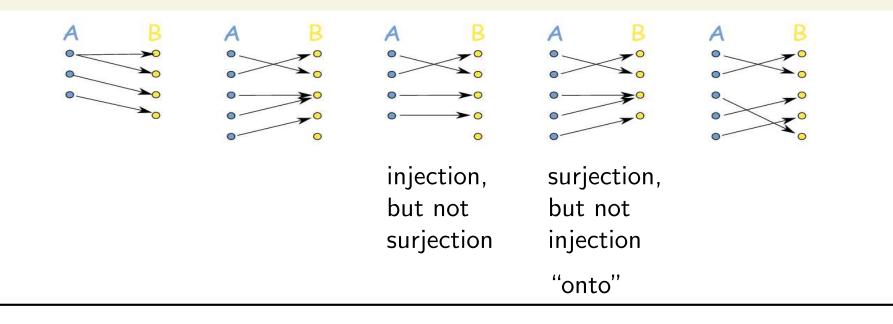
3.15 **Definition** A map $T: V \to W$ is called **injective** if $Tu = Tv \implies u = v$.



3.20 Definition A map $T: V \to W$ is called **surjective** if T(V) = W.

3.15 **Definition** A map $T: V \to W$ is called **injective** if $Tu = Tv \implies u = v$.

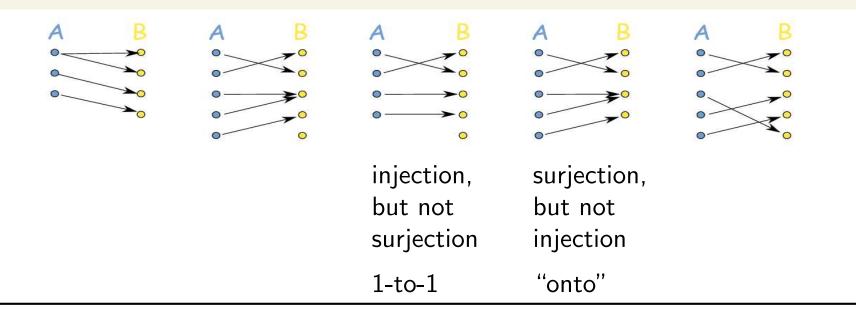
Definition



3.20 Definition A map $T: V \to W$ is called **surjective** if T(V) = W.

3.15 **Definition** A map $T: V \to W$ is called **injective** if $Tu = Tv \implies u = v$.

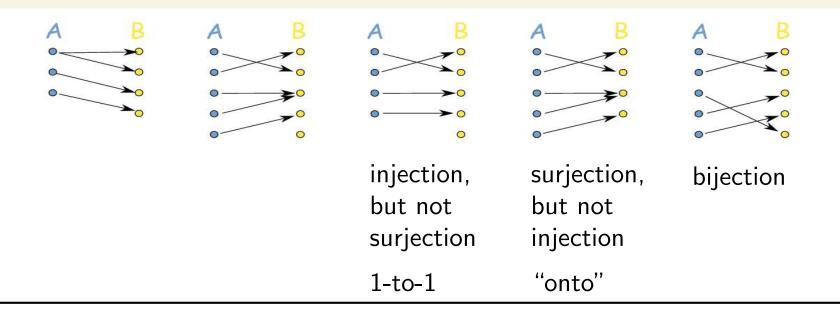
Definition



3.20 Definition A map $T: V \to W$ is called **surjective** if T(V) = W.

3.15 **Definition** A map $T: V \to W$ is called **injective** if $Tu = Tv \implies u = v$.

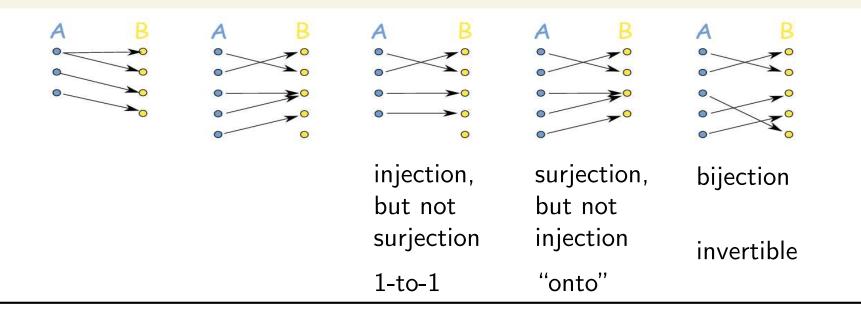
Definition



3.20 Definition A map $T: V \to W$ is called **surjective** if T(V) = W.

3.15 **Definition** A map $T: V \to W$ is called **injective** if $Tu = Tv \implies u = v$.

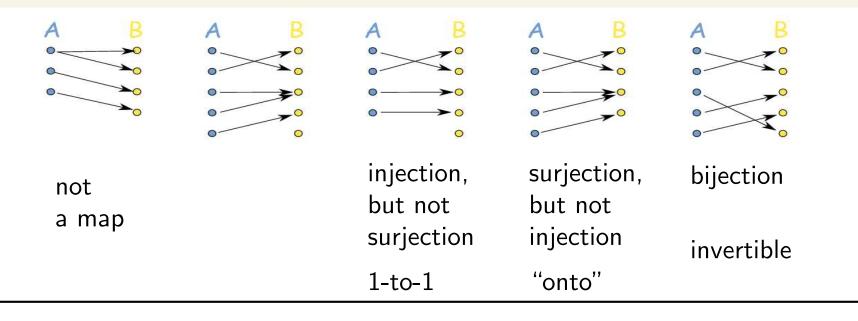
Definition



3.20 Definition A map $T: V \to W$ is called **surjective** if T(V) = W.

3.15 **Definition** A map $T: V \to W$ is called **injective** if $Tu = Tv \implies u = v$.

Definition



3.20 **Definition** A map $T: V \to W$ is called **surjective** if T(V) = W.

3.15 **Definition** A map $T: V \to W$ is called **injective** if $Tu = Tv \implies u = v$.

Definition

A B				
not a map	a map	injection, but not surjection	surjection, but not injection	bijection
		1-to-1	"onto"	

liberté, égalité et fraternité

André Weil

René de Possel

Charles Ehresmann

Laurent Schwartz

Jean Dieudonné

Claude Chevalley

Pierre Samuel

Jean-Pierre Serre

Adrien Douady

liberté, égalité et fraternité

André Weil

René de Possel

Charles Ehresmann

Laurent Schwartz

Jean Dieudonné

Claude Chevalley

Pierre Samuel

Jean-Pierre Serre

Adrien Douady

Nicolas Bourbaki

3.56 **Theorem. Invertibility is equivalent to bijectivity.**

3.56 **Theorem. Invertibility is equivalent to bijectivity.**

You should know this.

3.56 **Theorem. Invertibility is equivalent to bijectivity.**

You should know this. If not, see the textbook, page 81.

Spaces associated to a linear map

3.12 **Definition (reminder)** For $T \in \mathcal{L}(V, W)$, the null space of T is null $T = T^{-1}\{0\}$

3.12 **Definition (reminder)** For $T \in \mathcal{L}(V, W)$, the null space of T is null $T = T^{-1}\{0\} = \{v \in V \mid Tv = 0\}$.

3.12 **Definition (reminder)** For $T \in \mathcal{L}(V, W)$, the null space of T is $\operatorname{null} T = T^{-1}\{0\} = \{v \in V \mid Tv = 0\}.$

Another name: kernel.

3.12 **Definition (reminder)** For $T \in \mathcal{L}(V, W)$, the null space of T is null $T = T^{-1}\{0\} = \{v \in V \mid Tv = 0\}$.

Another name: kernel. Notation: Ker T.

3.12 **Definition (reminder)** For $T \in \mathcal{L}(V, W)$, the null space of T is $\operatorname{null} T = T^{-1}\{0\} = \{v \in V \mid Tv = 0\}$.

Another name: kernel. Notation: Ker T.

3.13 Examples

3.12 **Definition (reminder)** For $T \in \mathcal{L}(V, W)$, the null space of T is null $T = T^{-1}\{0\} = \{v \in V \mid Tv = 0\}$.

Another name: kernel. Notation: $\operatorname{Ker} T$.

3.13 Examples

• For $T:V o W:v\mapsto 0$,

 $\operatorname{null} T =$

3.12 **Definition (reminder)** For $T \in \mathcal{L}(V, W)$, the null space of T is null $T = T^{-1}\{0\} = \{v \in V \mid Tv = 0\}$.

Another name: kernel. Notation: Ker T.

3.13 Examples

• For $T:V o W:v \mapsto 0$,

 $\operatorname{null} T = V$

3.12 **Definition (reminder)** For $T \in \mathcal{L}(V, W)$, the null space of T is $\operatorname{null} T = T^{-1}\{0\} = \{v \in V \mid Tv = 0\}$.

Another name: kernel. Notation: Ker T.

3.13 Examples

• For $T:V \to W: v \mapsto 0$,

 $\operatorname{null} T = V$

• For differentiation $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$,

 $\operatorname{null} D =$

3.12 **Definition (reminder)** For $T \in \mathcal{L}(V, W)$, the null space of T is $\operatorname{null} T = T^{-1}\{0\} = \{v \in V \mid Tv = 0\}$.

Another name: kernel. Notation: Ker T.

3.13 Examples

- For $T:V \to W: v \mapsto 0$,
- For differentiation $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$,

 $\operatorname{null} T = V$

 $\operatorname{null} D = \{\operatorname{constants}\}$

Another name: kernel. Notation: $\operatorname{Ker} T$.

3.13 Examples

For $T: V \to W: v \mapsto 0$,

 $\operatorname{null} T = V$

For differentiation $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$, $\operatorname{null} D = \{ \text{constants} \}$ •

For multiplication by x^3 $T: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F}): Tp = x^3p(x)$, $\operatorname{null} T =$

Another name: kernel. Notation: $\operatorname{Ker} T$.

3.13 Examples

For $T: V \to W: v \mapsto 0$,

 $\operatorname{null} T = V$

For differentiation $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$, $\operatorname{null} D = \{ \text{constants} \}$ •

For multiplication by x^3 $T: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F}): Tp = x^3p(x)$, $\operatorname{null} T = 0$

Another name: kernel. Notation: Ker T.

3.13 Examples

• For $T:V o W:v \mapsto 0$,

 $\operatorname{null} T = V$

- For differentiation $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$, $\operatorname{null} D = \{ \text{constants} \}$
- For multiplication by x^3 $T: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F}): Tp = x^3p(x)$, $\operatorname{null} T = 0$
- For backward shift $T \in \mathcal{L}(\mathbb{F}^{\infty}, F^{\infty}) : T(x_1, x_2, x_3, \dots) = (x_2, x_3, x_4, \dots)$ null T =

Another name: kernel. Notation: Ker T.

3.13 Examples

• For $T:V o W:v \mapsto 0$,

 $\operatorname{null} T = V$

- For differentiation $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$, $\operatorname{null} D = \{ \text{constants} \}$
- For multiplication by x^3 $T: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F}): Tp = x^3p(x)$, $\operatorname{null} T = 0$
- For backward shift $T \in \mathcal{L}(\mathbb{F}^{\infty}, F^{\infty}) : T(x_1, x_2, x_3, \dots) = (x_2, x_3, x_4, \dots)$ $\operatorname{null} T = \{(a, 0, 0, \dots) \mid a \in \mathbb{F}\}$

3.14 **Theorem.**

Proof. As we know (by 3.11) T(0) = 0.

Proof. As we know (by 3.11) T(0) = 0. Hence $0 \in \operatorname{null} T$.

Proof. As we know (by 3.11) T(0) = 0. Hence $0 \in \operatorname{null} T$.

 $u, v \in \operatorname{null} T \implies$

Proof. As we know (by 3.11) T(0) = 0. Hence $0 \in \operatorname{null} T$.

 $u, v \in \operatorname{null} T \implies T(u+v) = T(u) + T(v) = 0 + 0 = 0$

Proof. As we know (by 3.11) T(0) = 0. Hence $0 \in \operatorname{null} T$.

 $\begin{array}{l} u,v\in \operatorname{null} T\implies T(u+v)=T(u)+T(v)=0+0=0 \implies u+v\in \operatorname{null} T\,.\\ T(\lambda u)=\lambda Tu=\lambda 0=0 \end{array}$

Proof. As we know (by 3.11) T(0) = 0. Hence $0 \in \operatorname{null} T$.

 $u, v \in \operatorname{null} T \implies T(u+v) = T(u) + T(v) = 0 + 0 = 0 \implies u+v \in \operatorname{null} T.$

 $u \in \operatorname{null} T, \lambda \in \mathbb{F} \implies T(\lambda u) = \lambda T u = \lambda 0 = 0$

Proof. As we know (by 3.11) T(0) = 0. Hence $0 \in \operatorname{null} T$.

 $u, v \in \operatorname{null} T \implies T(u+v) = T(u) + T(v) = 0 + 0 = 0 \implies u+v \in \operatorname{null} T.$

 $u \in \operatorname{null} T, \lambda \in \mathbb{F} \implies T(\lambda u) = \lambda T u = \lambda 0 = 0 \implies \lambda u \in \operatorname{null} T.$

Proof. As we know (by 3.11) T(0) = 0. Hence $0 \in \operatorname{null} T$.

 $u, v \in \operatorname{null} T \implies T(u+v) = T(u) + T(v) = 0 + 0 = 0 \implies u+v \in \operatorname{null} T.$

 $u \in \operatorname{null} T, \lambda \in \mathbb{F} \implies T(\lambda u) = \lambda T u = \lambda 0 = 0 \implies \lambda u \in \operatorname{null} T.$

3.15 **Definition (reminder)** A map $T: V \rightarrow W$ is called **injective** if

A map $T: V \to W$ is injective $\iff u \neq v \implies Tu \neq Tv$.

A map $T: V \to W$ is injective $\iff u \neq v \implies Tu \neq Tv$.

3.16 T is injective \iff null $T = \{0\}$.

A map $T: V \to W$ is injective $\iff u \neq v \implies Tu \neq Tv$.

3.16 T is injective \iff null $T = \{0\}$.

A map $T: V \to W$ is injective $\iff u \neq v \implies Tu \neq Tv$.

3.16 T is injective \iff null $T = \{0\}$.

Proof

 \implies Recall $0 \in \operatorname{null} T$.

A map $T: V \to W$ is injective $\iff u \neq v \implies Tu \neq Tv$.

3.16 T is injective \iff null $T = \{0\}$.

Proof

 \implies Recall $0 \in \operatorname{null} T$. If $\operatorname{null} T \neq \{0\}$, then $\exists v \in \operatorname{null} T$, $v \neq 0$.

A map $T: V \to W$ is injective $\iff u \neq v \implies Tu \neq Tv$.

3.16 T is injective \iff null $T = \{0\}$.

```
\implies \text{Recall } 0 \in \text{null } T \text{. If } \text{null } T \neq \{0\} \text{, then } \exists v \in \text{null } T \text{, } v \neq 0 \text{.}
So, Tv = T0 = 0 and T is not injective.
```

A map $T: V \to W$ is injective $\iff u \neq v \implies Tu \neq Tv$.

3.16 T is injective \iff null $T = \{0\}$.

```
\implies \text{Recall } 0 \in \text{null } T \text{. If } \text{null } T \neq \{0\} \text{, then } \exists v \in \text{null } T \text{, } v \neq 0 \text{.}
So, Tv = T0 = 0 and T is not injective.
```

A map $T: V \to W$ is injective $\iff u \neq v \implies Tu \neq Tv$.

3.16 T is injective \iff null $T = \{0\}$.

```
\implies \mbox{Recall } 0 \in \mbox{null } T \ . \ \ \mbox{If } \ \mbox{null } T \neq \{0\} \ , \ \mbox{then } \ \ \exists v \in \mbox{null } T \ , \ \ v \neq 0 \ . \\ \mbox{So, } \ \ Tv = T0 = 0 \ \ \mbox{and } \ T \ \ \mbox{is not injective.} \ \blacksquare
```

A map $T: V \to W$ is injective $\iff u \neq v \implies Tu \neq Tv$.

3.16 T is injective \iff null $T = \{0\}$.

Proof

 $\quad \longleftarrow \quad {\sf Let} \ \ u,v \in V \ \text{,} \ \ Tu = Tv \ \text{.}$

A map $T: V \to W$ is injective $\iff u \neq v \implies Tu \neq Tv$.

3.16 T is injective \iff null $T = \{0\}$.

Proof

```
\implies \text{Recall } 0 \in \text{null } T \text{. If } \text{null } T \neq \{0\} \text{, then } \exists v \in \text{null } T \text{, } v \neq 0 \text{.}
So, Tv = T0 = 0 and T is not injective.
```

 $\longleftarrow \quad {\rm Let} \ u,v \in V \, , \ Tu = Tv \, . \quad {\rm Then} \qquad Tu - Tv$

A map $T: V \to W$ is injective $\iff u \neq v \implies Tu \neq Tv$.

3.16 T is injective \iff null $T = \{0\}$.

Proof

```
\implies \text{Recall } 0 \in \text{null } T \text{. If } \text{null } T \neq \{0\} \text{, then } \exists v \in \text{null } T \text{, } v \neq 0 \text{.}
So, Tv = T0 = 0 and T is not injective.
```

A map $T: V \to W$ is injective $\iff u \neq v \implies Tu \neq Tv$.

3.16 T is injective \iff null $T = \{0\}$.

Proof

```
\implies \text{Recall } 0 \in \text{null } T \text{. If } \text{null } T \neq \{0\} \text{, then } \exists v \in \text{null } T \text{, } v \neq 0 \text{.}
So, Tv = T0 = 0 and T is not injective.
```

A map $T: V \to W$ is injective $\iff u \neq v \implies Tu \neq Tv$.

3.16 T is injective \iff null $T = \{0\}$.

Proof

```
\implies \text{Recall } 0 \in \text{null } T \text{. If } \text{null } T \neq \{0\} \text{, then } \exists v \in \text{null } T \text{, } v \neq 0 \text{.}
So, Tv = T0 = 0 and T is not injective.
```

 $\longleftarrow \quad \text{Let } u, v \in V \text{, } Tu = Tv \text{. Then } 0 = Tu - Tv = T(u - v) \text{.} \\ \text{Hence } u - v \in \text{null } T$

A map $T: V \to W$ is injective $\iff u \neq v \implies Tu \neq Tv$.

3.16 T is injective \iff null $T = \{0\}$.

$$\longleftarrow \quad \text{Let } u, v \in V \text{, } Tu = Tv \text{. Then } 0 = Tu - Tv = T(u - v). \\ \text{Hence } u - v \in \text{null } T = \{0\}$$

A map $T: V \to W$ is injective $\iff u \neq v \implies Tu \neq Tv$.

3.16 T is injective \iff null $T = \{0\}$.

$$\implies \text{Recall } 0 \in \text{null } T \text{. If } \text{null } T \neq \{0\} \text{, then } \exists v \in \text{null } T \text{, } v \neq 0 \text{.}$$

So, $Tv = T0 = 0$ and T is not injective.

$$\longleftarrow \quad \text{Let } u, v \in V \text{, } Tu = Tv \text{. Then } 0 = Tu - Tv = T(u - v) \text{.} \\ \text{Hence } u - v \in \text{null } T = \{0\} \quad \Longrightarrow \quad u = v \text{.} \blacksquare$$