Linear Algebra MAT 310

Oleg Viro

01/30/2020, Lecture 1

uTube lectures	2
lds	3
dition and scalar multiplication in a set	4
ctor spaces	5
e zero vector	6
e space of polynomials	7
ear maps	8
ospaces	ç
ersection and sums	10
rect sums	11

YouTube lectures

The author of the textbook, Profesor Sheldon Axler

uploaded video of his lectures on YouTube:

https://www.youtube.com/watch?v=5DZV4nsEkNk

I strongly recommend to watch. The video clips are are short.

The reference to the whole list:

https://www.youtube.com/playlist?list=PLGAnmvB9m7zOBVCZBUUmSinFV0wEir2Vw

2 / 11

Fields

Reminding:

Definition: a field

A field is a set equipped with addition and multiplication

which are:
commutative,
associative,

have identities, additive inverse,

multiplicative inverse,

distributivity property.

Examples: \mathbb{R} , \mathbb{C} , $\mathbb{Z}/2$.

Addition and scalar multiplication in a set

Let V be a set.

Definition: addition in a set.

An addition in V is a function $V \times V \to V : (u,v) \mapsto u + v$.

Let **F** be a field.

Definition: a scalar multiplication in a set.

A scalar multipliation on V is a function $\mathbb{F} \times V \to V : (\lambda, u) \mapsto \lambda u$.

Example. Let S be a set, \mathbb{F}^S denote the set of all maps $S \to \mathbb{F}$.

Addition in V:

$$\text{for } f,g\in\mathbb{F}^S \text{ define } f+g \text{ by } (f+g)(x)=f(x)+g(x) \text{ for } \forall x\in S\,.$$

Scalar multiplication:

for $f \in \mathbb{F}^S$ and $\lambda \in \mathbb{F}$ define λf by $(\lambda f)(x) = \lambda f(x)$ for $\forall x \in S$.

4 / 11

Vector spaces

Let **F** be a field.

Definition: a vector (or linear) space.

A vector space over $\mathbb F$ is a set V equipped with addition and scalar multiplication such that the addition is commutative, and associative, has zero $0 \in V$ such that 0+u=u for $\forall u \in V$, each element $u \in V$ has additive inverse -u, 1u=u for $\forall u \in V$, a(u+v)=au+av for $\forall a \in \mathbb F$ and $\forall u,v \in V$, (a+b)u=au+bu for $\forall a,b \in \mathbb F$ and $\forall u \in V$.

Examples. \mathbb{F}^n , \mathbb{F}^S , \mathbb{C} is a vector space over \mathbb{R} .

We say \mathbb{C} is a real vector space. \mathbb{C} is also a complex vector space.

What is the smallest vector space over \mathbb{F} ?

The zero vector

Theorem. In any vector space V, 0u = 0 for every $u \in V$.

what are the zeros?

Proof. 0 = 0 + 0. Hence 0u = (0 + 0)u= 0u + 0u.

Therefore 0u - 0u = 0u + 0u - 0u, and 0 = 0u.

Theorem. In any vector space V, a0 = 0 for every $a \in \mathbb{F}$.

Proof. $a0 = a(0+0) = \dots$

6 / 11

The space of polynomials

A polynomial in a variable x over a field $\mathbb F$ is an expression

$$a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m$$
 , where $a_k \in \mathbb{F}$.

Polynomials in a variable X over a field $\mathbb F$ form a vector space over $\mathbb F$.

Notation $\mathbb{F}[x]$. In Axler's book $\mathcal{P}(\mathbb{F})$.

Linear maps

Let V and W be vector spaces over \mathbb{F} .

```
Definition: a linear map. A map T:V \to W is called linear, if T(u_1+u_2) = Tu_1 + Tu_2 \ \text{for} \ \forall u_1,u_2 \in V \ \text{(additivity)} T(\lambda u) = \lambda Tu \ \text{for} \ \forall \lambda \in \mathbb{F} \ \text{and} \ \forall u \in V \ \text{(homogeneity)}.
```

The set of all linear maps $V \to W$ is denoted by $\mathcal{L}(V,W)$.

```
Examples: 0 \in \mathcal{L}(V,W). Identity map \mathrm{id} \in \mathcal{L}(V,V) \mathrm{id}(u) = u. Differentiation \mathbb{R}[x] \to \mathbb{R}[x] : p(x) \mapsto \frac{dp}{dx}(x). Integration \mathbb{R}[x] \to \mathbb{R} : p(x) \mapsto \int_0^1 p(x) dx. \mathcal{L}(V,W) is a vector space.
```

8 / 11

Subspaces

Let V be a vector space over $\mathbb F$ and $U\subset V$.

```
Definition: subspace.
```

U is called a *(vector or linear) subspace* of V if U is a vector space with the same addition and multiplication as on V .

```
A subset U of a vector space V is a subspace iff 0\in U\,, u+v\in U\ \text{if}\ u,v\in U\,, \lambda u\in U\ \text{if}\ \lambda\in\mathbb{F}\ \text{and}\ u\in U\,.
```

Examples of subspaces. In \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 .

Linear conditions: continuity, differentiablity.

Intersection and sums

Theorem. Intersection of any collection of subspaces is a subspace.

Definition: sum of subsets Let U_1, \ldots, U_m be subsets of a vector space V.

$$U_1 + \dots + U_m = \{u_1 + \dots + u_m \mid u_1 \in U_1, \dots, u_m \in U_m\}$$

Theorem. If U_1,\ldots,U_m are subspaces of a vector space V, then $U_1+\cdots+U_m$ is the smallest subspace of V containing U_1,\ldots,U_m .

10 / 11

Direct sums

Definition: direct sum

 $U_1+\cdots+U_m$ is called a *direct sum* and is denoted by $U_1\oplus\cdots\oplus U_m$ if each $u\in U_1+\cdots+U_m$ has a unique presentation as $u_1+\cdots+u_m$ with $u_j\in U_j$.

Theorem. Let $U_1, \ldots U_m$ be subspaces of V. Then $U_1 + \cdots + U_m$ is a direct sum iff there is only one way to represent 0 as $u_1 + \cdots + u_m$ with $u_j \in U_j$.

Which way?

Special case: m=2.

If U,W are subspaces of a vector space V , then

$$U+W=U\oplus W \quad \text{iff} \quad U\cap W=\{0\}$$
.