Linear Algebra Lecture 1

Linear Algebra

Oleg Viro

01/30/2020

uploaded video of his lectures on YouTube:

uploaded video of his lectures on YouTube:

https://www.youtube.com/watch?v=5DZV4nsEkNk

uploaded video of his lectures on YouTube:

https://www.youtube.com/watch?v=5DZV4nsEkNk

I strongly recommend to watch. The video clips are are short.

uploaded video of his lectures on YouTube:

https://www.youtube.com/watch?v=5DZV4nsEkNk

I strongly recommend to watch. The video clips are are short.

The reference to the whole list:

https://www.youtube.com/playlist?list=PLGAnmvB9m7zOBVCZBUUmSinFV0wEir2Vw

Reminding:

Definition: a field A *field* is a set equipped with

.

Reminding:

Definition: a field

A *field* is a set equipped with addition and multiplication

.

Reminding:

Definition: a field

A *field* is a set equipped with addition and multiplication which are:

.

Reminding:

Definition: a field

A *field* is a set equipped with addition and multiplication which are:

.

commutative

Reminding:

Definition: a field

A *field* is a set equipped with addition and multiplication which are: **commutative**,

.

associative

Reminding:

Definition: a field

A *field* is a set equipped with addition and multiplication which are: **commutative**, **associative**,

have identities

Reminding:

Definition: a field A field is a set equipped with addition and multiplication which are: commutative, associative, have identities, additive inverse

Reminding:

Definition: a field A field is a set equipped with addition and multiplication which are: commutative, associative, have identities, additive inverse, multiplicative inverse

Reminding:

Definition: a field A field is a set equipped with addition and multiplication which are: commutative, associative, have identities, additive inverse, multiplicative inverse, distributivity property.

Reminding:

Definition: a field A field is a set equipped with addition and multiplication which are: commutative, associative, have identities, additive inverse, multiplicative inverse, distributivity property.

Examples: \mathbb{R}

Reminding:

Definition: a field A field is a set equipped with addition and multiplication which are: commutative, associative, have identities, additive inverse, multiplicative inverse, distributivity property.

Examples: \mathbb{R} , \mathbb{C}

Reminding:

Definition: a field A field is a set equipped with addition and multiplication which are: commutative, associative, have identities, additive inverse, multiplicative inverse, distributivity property.

Examples: \mathbb{R} , \mathbb{C} , $\mathbb{Z}/2$.

Linear Algebra Lecture 1

```
Definition: addition in a set.
An addition in V is a function V \times V \rightarrow V : (u, v) \mapsto u + v.
```

Definition: addition in a set. An addition in V is a function $V \times V \rightarrow V : (u, v) \mapsto u + v$.

Let \mathbb{F} be a field.

```
Definition: addition in a set.
An addition in V is a function V \times V \rightarrow V : (u, v) \mapsto u + v.
```

Let \mathbb{F} be a field.

Definition: a scalar multiplication in a set. A scalar multipliation on V is a function $\mathbb{F} \times V \to V : (\lambda, u) \mapsto \lambda u$.

```
Definition: addition in a set.
An addition in V is a function V \times V \rightarrow V : (u, v) \mapsto u + v.
```

Let \mathbb{F} be a field.

Definition: a scalar multiplication in a set. A scalar multipliation on V is a function $\mathbb{F} \times V \to V : (\lambda, u) \mapsto \lambda u$.

Example. Let S be a set

```
Definition: addition in a set.
An addition in V is a function V \times V \rightarrow V : (u, v) \mapsto u + v.
```

Let \mathbb{F} be a field.

Definition: a scalar multiplication in a set. A scalar multipliation on V is a function $\mathbb{F} \times V \to V : (\lambda, u) \mapsto \lambda u$.

Example. Let S be a set, \mathbb{F}^S denote the set of all maps $S \to \mathbb{F}$.

```
Definition: addition in a set.
An addition in V is a function V \times V \rightarrow V : (u, v) \mapsto u + v.
```

Let \mathbb{F} be a field.

Definition: a scalar multiplication in a set. A scalar multipliation on V is a function $\mathbb{F} \times V \to V : (\lambda, u) \mapsto \lambda u$.

Example. Let S be a set, \mathbb{F}^S denote the set of all maps $S \to \mathbb{F}$.

Addition in V: for $f,g \in \mathbb{F}^S$ define f+g by

```
Definition: addition in a set.
An addition in V is a function V \times V \rightarrow V : (u, v) \mapsto u + v.
```

Let \mathbb{F} be a field.

Definition: a scalar multiplication in a set. A scalar multipliation on V is a function $\mathbb{F} \times V \to V : (\lambda, u) \mapsto \lambda u$.

Example. Let S be a set, \mathbb{F}^S denote the set of all maps $S \to \mathbb{F}$.

Addition in V : for $f,g\in \mathbb{F}^S$ define f+g by (f+g)(x)=f(x)+g(x) for $\forall x\in S$.

```
Definition: addition in a set.
An addition in V is a function V \times V \rightarrow V : (u, v) \mapsto u + v.
```

Let \mathbb{F} be a field.

Definition: a scalar multiplication in a set. A scalar multipliation on V is a function $\mathbb{F} \times V \to V : (\lambda, u) \mapsto \lambda u$.

Example. Let S be a set, \mathbb{F}^S denote the set of all maps $S \to \mathbb{F}$.

Addition in V:

for $f,g \in \mathbb{F}^S$ define f+g by (f+g)(x) = f(x) + g(x) for $\forall x \in S$.

Scalar multiplication:

for $f \in \mathbb{F}^S$ and $\lambda \in \mathbb{F}$ define λf by

```
Definition: addition in a set.
An addition in V is a function V \times V \rightarrow V : (u, v) \mapsto u + v.
```

Let \mathbb{F} be a field.

Definition: a scalar multiplication in a set. A scalar multipliation on V is a function $\mathbb{F} \times V \to V : (\lambda, u) \mapsto \lambda u$.

Example. Let S be a set, \mathbb{F}^S denote the set of all maps $S \to \mathbb{F}$.

Addition in V:

for $f,g \in \mathbb{F}^S$ define f+g by (f+g)(x) = f(x) + g(x) for $\forall x \in S$.

Scalar multiplication:

for $f \in \mathbb{F}^S$ and $\lambda \in \mathbb{F}$ define λf by $(\lambda f)(x) = \lambda f(x)$ for $\forall x \in S$.

Linear Algebra Lecture 1

Let \mathbb{F} be a field.

Definition: a vector (or linear) space.

A vector space over \mathbb{F} is a set V equipped with addition and scalar multiplication such that

Definition: a vector (or linear) space.

A vector space over \mathbb{F} is a set V equipped with addition and scalar multiplication such that the addition is *commutative*

Definition: a vector (or linear) space.

A vector space over \mathbb{F} is a set V equipped with addition and scalar multiplication such that the addition is *commutative*, and *associative*

Definition: a vector (or linear) space.

A vector space over \mathbb{F} is a set V equipped with addition and scalar multiplication such that the addition is *commutative*, and *associative*, has zero $0 \in V$ such that 0 + u = u for $\forall u \in V$

Definition: a vector (or linear) space.

A vector space over \mathbb{F} is a set V equipped with addition and scalar multiplication such that the addition is commutative, and associative, has zero $0 \in V$ such that 0 + u = u for $\forall u \in V$, each element $u \in V$ has additive inverse -u

Definition: a vector (or linear) space.

A vector space over \mathbb{F} is a set V equipped with addition and scalar multiplication such that the addition is commutative, and associative, has zero $0 \in V$ such that 0 + u = u for $\forall u \in V$, each element $u \in V$ has additive inverse -u, 1u = u for $\forall u \in V$

Definition: a vector (or linear) space.

A vector space over \mathbb{F} is a set V equipped with addition and scalar multiplication such that the addition is commutative, and associative, has zero $0 \in V$ such that 0 + u = u for $\forall u \in V$, each element $u \in V$ has additive inverse -u, 1u = u for $\forall u \in V$, a(u + v) = au + av for $\forall a \in \mathbb{F}$ and $\forall u, v \in V$

Definition: a vector (or linear) space.

A vector space over \mathbb{F} is a set V equipped with addition and scalar multiplication such that the addition is commutative, and associative, has zero $0 \in V$ such that 0 + u = u for $\forall u \in V$, each element $u \in V$ has additive inverse -u, 1u = u for $\forall u \in V$, a(u + v) = au + av for $\forall a \in \mathbb{F}$ and $\forall u, v \in V$, (a + b)u = au + bu for $\forall a, b \in \mathbb{F}$ and $\forall u \in V$.

Definition: a vector (or linear) space.

A vector space over \mathbb{F} is a set V equipped with addition and scalar multiplication such that the addition is commutative, and associative, has zero $0 \in V$ such that 0 + u = u for $\forall u \in V$, each element $u \in V$ has additive inverse -u, 1u = u for $\forall u \in V$, a(u + v) = au + av for $\forall a \in \mathbb{F}$ and $\forall u, v \in V$, (a + b)u = au + bu for $\forall a, b \in \mathbb{F}$ and $\forall u \in V$.

Examples. \mathbb{F}^n

Definition: a vector (or linear) space.

A vector space over \mathbb{F} is a set V equipped with addition and scalar multiplication such that the addition is commutative, and associative, has zero $0 \in V$ such that 0 + u = u for $\forall u \in V$, each element $u \in V$ has additive inverse -u, 1u = u for $\forall u \in V$, a(u + v) = au + av for $\forall a \in \mathbb{F}$ and $\forall u, v \in V$, (a + b)u = au + bu for $\forall a, b \in \mathbb{F}$ and $\forall u \in V$.

Examples. \mathbb{F}^n , \mathbb{F}^S

Definition: a vector (or linear) space.

A vector space over \mathbb{F} is a set V equipped with addition and scalar multiplication such that the addition is commutative, and associative, has zero $0 \in V$ such that 0 + u = u for $\forall u \in V$, each element $u \in V$ has additive inverse -u, 1u = u for $\forall u \in V$, a(u + v) = au + av for $\forall a \in \mathbb{F}$ and $\forall u, v \in V$, (a + b)u = au + bu for $\forall a, b \in \mathbb{F}$ and $\forall u \in V$.

Examples. \mathbb{F}^n , \mathbb{F}^S , \mathbb{C} is a vector space over \mathbb{R} .

Definition: a vector (or linear) space.

A vector space over \mathbb{F} is a set V equipped with addition and scalar multiplication such that the addition is commutative, and associative, has zero $0 \in V$ such that 0 + u = u for $\forall u \in V$, each element $u \in V$ has additive inverse -u, 1u = u for $\forall u \in V$, a(u + v) = au + av for $\forall a \in \mathbb{F}$ and $\forall u, v \in V$, (a + b)u = au + bu for $\forall a, b \in \mathbb{F}$ and $\forall u \in V$.

Examples. \mathbb{F}^n , \mathbb{F}^S , \mathbb{C} is a vector space over \mathbb{R} . We say \mathbb{C} is a *real vector space*.

Definition: a vector (or linear) space.

A vector space over \mathbb{F} is a set V equipped with addition and scalar multiplication such that the addition is commutative, and associative, has zero $0 \in V$ such that 0 + u = u for $\forall u \in V$, each element $u \in V$ has additive inverse -u, 1u = u for $\forall u \in V$, a(u + v) = au + av for $\forall a \in \mathbb{F}$ and $\forall u, v \in V$, (a + b)u = au + bu for $\forall a, b \in \mathbb{F}$ and $\forall u \in V$.

Examples. \mathbb{F}^n , \mathbb{F}^S , \mathbb{C} is a vector space over \mathbb{R} . We say \mathbb{C} is a *real vector space*. \mathbb{C} is also a *complex vector space*.

Definition: a vector (or linear) space.

A vector space over \mathbb{F} is a set V equipped with addition and scalar multiplication such that the addition is commutative, and associative, has zero $0 \in V$ such that 0 + u = u for $\forall u \in V$, each element $u \in V$ has additive inverse -u, 1u = u for $\forall u \in V$, a(u + v) = au + av for $\forall a \in \mathbb{F}$ and $\forall u, v \in V$, (a + b)u = au + bu for $\forall a, b \in \mathbb{F}$ and $\forall u \in V$.

Examples. \mathbb{F}^n , \mathbb{F}^S , \mathbb{C} is a vector space over \mathbb{R} . We say \mathbb{C} is a *real vector space*. \mathbb{C} is also a *complex vector space*.

What is the smallest vector space over \mathbb{F} ?

what are the zeros?

what are the zeros?

Proof.

what are the zeros?

Proof. 0 = 0 + 0.

what are the zeros?

Proof. 0 = 0 + 0. Hence 0u = (0 + 0)u= 0u + 0u.

what are the zeros?

Proof. 0 = 0 + 0. Hence 0u = (0 + 0)u= 0u + 0u.

Therefore 0u - 0u = 0u + 0u - 0u

what are the zeros?

Proof. 0 = 0 + 0. Hence 0u = (0 + 0)u= 0u + 0u.

Therefore 0u - 0u = 0u + 0u - 0u, and 0 = 0u.

what are the zeros?

Proof. 0 = 0 + 0. Hence 0u = (0 + 0)u= 0u + 0u.

Therefore 0u - 0u = 0u + 0u - 0u, and 0 = 0u.

Theorem. In any vector space V, a0 = 0 for every $a \in \mathbb{F}$.

what are the zeros?

Proof. 0 = 0 + 0. Hence 0u = (0 + 0)u= 0u + 0u.

Therefore 0u - 0u = 0u + 0u - 0u, and 0 = 0u.

Theorem. In any vector space V, a0 = 0 for every $a \in \mathbb{F}$.

Proof. $a0 = a(0+0) = \dots$

A polynomial in a variable x over a field \mathbb{F} is an expression $a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m$, where $a_k \in \mathbb{F}$. A polynomial in a variable x over a field \mathbb{F} is an expression $a_0 + a_1 x + a_2 x^2 + \cdots + a_m x^m$, where $a_k \in \mathbb{F}$.

Polynomials in a variable X over a field \mathbb{F} form a vector space over \mathbb{F} .

A polynomial in a variable x over a field \mathbb{F} is an expression $a_0 + a_1 x + a_2 x^2 + \cdots + a_m x^m$, where $a_k \in \mathbb{F}$.

Polynomials in a variable X over a field \mathbb{F} form a vector space over \mathbb{F} .

Notation $\mathbb{F}[x]$.

A polynomial in a variable x over a field \mathbb{F} is an expression $a_0 + a_1 x + a_2 x^2 + \cdots + a_m x^m$, where $a_k \in \mathbb{F}$.

Polynomials in a variable X over a field \mathbb{F} form a vector space over \mathbb{F} .

Notation $\mathbb{F}[x]$. In Axler's book $\mathcal{P}(\mathbb{F})$.

Definition: a linear map. A map $T: V \rightarrow W$ is called *linear*, if

```
Definition: a linear map.
A map T: V \to W is called linear, if
T(u_1 + u_2) = Tu_1 + Tu_2 for \forall u_1, u_2 \in V
```

```
Definition: a linear map.
A map T: V \to W is called linear, if
T(u_1 + u_2) = Tu_1 + Tu_2 for \forall u_1, u_2 \in V (additivity)
```

Definition: a linear map. A map $T: V \to W$ is called *linear*, if $T(u_1 + u_2) = Tu_1 + Tu_2$ for $\forall u_1, u_2 \in V$ (additivity) $T(\lambda u) = \lambda Tu$ for $\forall \lambda \in \mathbb{F}$ and $\forall u \in V$

Definition: a linear map. A map $T: V \to W$ is called *linear*, if $T(u_1 + u_2) = Tu_1 + Tu_2$ for $\forall u_1, u_2 \in V$ (additivity) $T(\lambda u) = \lambda Tu$ for $\forall \lambda \in \mathbb{F}$ and $\forall u \in V$ (homogeneity).

Definition: a linear map. A map $T: V \to W$ is called *linear*, if $T(u_1 + u_2) = Tu_1 + Tu_2$ for $\forall u_1, u_2 \in V$ (additivity) $T(\lambda u) = \lambda T u$ for $\forall \lambda \in \mathbb{F}$ and $\forall u \in V$ (homogeneity).

The set of all linear maps $V \to W$ is denoted by $\mathcal{L}(V, W)$.

Definition: a linear map. A map $T: V \to W$ is called *linear*, if $T(u_1 + u_2) = Tu_1 + Tu_2$ for $\forall u_1, u_2 \in V$ (additivity) $T(\lambda u) = \lambda Tu$ for $\forall \lambda \in \mathbb{F}$ and $\forall u \in V$ (homogeneity).

The set of all linear maps $V \to W$ is denoted by $\mathcal{L}(V, W)$.

Examples:

Definition: a linear map. A map $T: V \to W$ is called *linear*, if $T(u_1 + u_2) = Tu_1 + Tu_2$ for $\forall u_1, u_2 \in V$ (additivity) $T(\lambda u) = \lambda Tu$ for $\forall \lambda \in \mathbb{F}$ and $\forall u \in V$ (homogeneity).

The set of all linear maps V o W is denoted by $\mathcal{L}(V, W)$.

Examples: $0 \in \mathcal{L}(V, W)$.

```
Definition: a linear map.
A map T: V \to W is called linear, if
T(u_1 + u_2) = Tu_1 + Tu_2 for \forall u_1, u_2 \in V (additivity)
T(\lambda u) = \lambda Tu for \forall \lambda \in \mathbb{F} and \forall u \in V (homogeneity).
```

The set of all linear maps $V \to W$ is denoted by $\mathcal{L}(V, W)$.

```
Examples: 0 \in \mathcal{L}(V, W).
Identity map id \in \mathcal{L}(V, V)
```

Definition: a linear map. A map $T: V \to W$ is called *linear*, if $T(u_1 + u_2) = Tu_1 + Tu_2$ for $\forall u_1, u_2 \in V$ (additivity) $T(\lambda u) = \lambda Tu$ for $\forall \lambda \in \mathbb{F}$ and $\forall u \in V$ (homogeneity).

The set of all linear maps $V \to W$ is denoted by $\mathcal{L}(V, W)$.

```
Examples: 0 \in \mathcal{L}(V, W).
Identity map id \in \mathcal{L}(V, V) id(u) = u.
```

Definition: a linear map. A map $T: V \to W$ is called *linear*, if $T(u_1 + u_2) = Tu_1 + Tu_2$ for $\forall u_1, u_2 \in V$ (additivity) $T(\lambda u) = \lambda Tu$ for $\forall \lambda \in \mathbb{F}$ and $\forall u \in V$ (homogeneity).

The set of all linear maps V o W is denoted by $\mathcal{L}(V,W)$.

Examples: $0 \in \mathcal{L}(V, W)$ Identity map $\mathrm{id} \in \mathcal{L}(V, V)$ $\mathrm{id}(u) = u$ Differentiation $\mathbb{R}[x] \to \mathbb{R}[x] : p(x) \mapsto \frac{dp}{dx}(x)$. Let V and W be vector spaces over \mathbb{F} .

Definition: a linear map. A map $T: V \to W$ is called *linear*, if $T(u_1 + u_2) = Tu_1 + Tu_2$ for $\forall u_1, u_2 \in V$ (additivity) $T(\lambda u) = \lambda Tu$ for $\forall \lambda \in \mathbb{F}$ and $\forall u \in V$ (homogeneity).

The set of all linear maps $V \to W$ is denoted by $\mathcal{L}(V, W)$.

Examples: $0 \in \mathcal{L}(V, W)$ Identity map $\mathrm{id} \in \mathcal{L}(V, V)$ $\mathrm{id}(u) = u$. Differentiation $\mathbb{R}[x] \to \mathbb{R}[x] : p(x) \mapsto \frac{dp}{dx}(x)$. Integration $\mathbb{R}[x] \to \mathbb{R} : p(x) \mapsto \int_0^1 p(x) dx$. Let V and W be vector spaces over \mathbb{F} .

Definition: a linear map. A map $T: V \to W$ is called *linear*, if $T(u_1 + u_2) = Tu_1 + Tu_2$ for $\forall u_1, u_2 \in V$ (additivity) $T(\lambda u) = \lambda Tu$ for $\forall \lambda \in \mathbb{F}$ and $\forall u \in V$ (homogeneity).

The set of all linear maps V o W is denoted by $\mathcal{L}(V,W)$.

Examples: $0 \in \mathcal{L}(V, W)$ Identity map $\mathrm{id} \in \mathcal{L}(V, V)$ $\mathrm{id}(u) = u$. Differentiation $\mathbb{R}[x] \to \mathbb{R}[x] : p(x) \mapsto \frac{dp}{dx}(x)$. Integration $\mathbb{R}[x] \to \mathbb{R} : p(x) \mapsto \int_0^1 p(x) dx$.

 $\mathcal{L}(V, W)$ is a vector space.

Linear Algebra Lecture 1

Let V be a vector space over \mathbb{F} and $U \subset V$.

Definition: subspace.

U is called a *(vector or linear) subspace* of V if U is a vector space

with the same addition and multiplication as on V.

Definition: subspace. U is called a *(vector or linear) subspace* of V if U is a vector space with the same addition and multiplication as on V.

A subset U of a vector space V is a subspace iff

Definition: subspace. U is called a *(vector or linear)* subspace of V if U is a vector space with the same addition and multiplication as on V.

A subset U of a vector space V is a subspace iff $0 \in U$, $u + v \in U$ if $u, v \in U$, $\lambda u \in U$ if $\lambda \in \mathbb{F}$ and $u \in U$.

Definition: subspace. U is called a *(vector or linear)* subspace of V if U is a vector space with the same addition and multiplication as on V.

Examples of subspaces.

Definition: subspace. U is called a *(vector or linear)* subspace of V if U is a vector space with the same addition and multiplication as on V.

Examples of subspaces. In \mathbb{R}^1

Definition: subspace. U is called a *(vector or linear)* subspace of V if U is a vector space with the same addition and multiplication as on V.

Examples of subspaces. In \mathbb{R}^1 , \mathbb{R}^2

Definition: subspace. U is called a *(vector or linear)* subspace of V if U is a vector space with the same addition and multiplication as on V.

```
A subset U of a vector space V is a subspace iff

0 \in U,

u + v \in U if u, v \in U,

\lambda u \in U if \lambda \in \mathbb{F} and u \in U.
```

Examples of subspaces. In \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 .

Definition: subspace. U is called a *(vector or linear)* subspace of V if U is a vector space with the same addition and multiplication as on V.

```
A subset U of a vector space V is a subspace iff

0 \in U,

u + v \in U if u, v \in U,

\lambda u \in U if \lambda \in \mathbb{F} and u \in U.
```

Examples of subspaces. In \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 .

Linear conditions: continuity

Definition: subspace. U is called a *(vector or linear)* subspace of V if U is a vector space with the same addition and multiplication as on V.

```
A subset U of a vector space V is a subspace iff

0 \in U,

u + v \in U if u, v \in U,

\lambda u \in U if \lambda \in \mathbb{F} and u \in U.
```

Examples of subspaces. In \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 .

Linear conditions: continuity, differentiablity.

Theorem. Intersection of any collection of subspaces is a subspace.

Theorem. Intersection of any collection of subspaces is a subspace.

Definition: sum of subsets Let U_1, \ldots, U_m be subsets of a vector space V.

 $U_1 + \dots + U_m = \{u_1 + \dots + u_m \mid u_1 \in U_1, \dots, u_m \in U_m\}$

Theorem. Intersection of any collection of subspaces is a subspace.

Definition: sum of subsets Let U_1, \ldots, U_m be subsets of a vector space V.

$$U_1 + \dots + U_m = \{u_1 + \dots + u_m \mid u_1 \in U_1, \dots, u_m \in U_m\}$$

Theorem. If U_1, \ldots, U_m are subspaces of a vector space V, then $U_1 + \cdots + U_m$ is the smallest subspace of V containing U_1, \ldots, U_m .

 $U_1 + \cdots + U_m$ is called a *direct sum* and is denoted by $U_1 \oplus \cdots \oplus U_m$ if each $u \in U_1 + \cdots + U_m$ has a unique presentation as $u_1 + \cdots + u_m$ with $u_j \in U_j$.

 $U_1 + \cdots + U_m$ is called a *direct sum* and is denoted by $U_1 \oplus \cdots \oplus U_m$ if each $u \in U_1 + \cdots + U_m$ has a unique presentation as $u_1 + \cdots + u_m$ with $u_j \in U_j$.

Theorem. Let U_1, \ldots, U_m be subspaces of V. Then $U_1 + \cdots + U_m$ is a direct sum iff there is only one way to represent 0 as $u_1 + \cdots + u_m$ with $u_j \in U_j$.

 $U_1 + \cdots + U_m$ is called a *direct sum* and is denoted by $U_1 \oplus \cdots \oplus U_m$ if each $u \in U_1 + \cdots + U_m$ has a unique presentation as $u_1 + \cdots + u_m$ with $u_j \in U_j$.

Theorem. Let U_1, \ldots, U_m be subspaces of V. Then $U_1 + \cdots + U_m$ is a direct sum iff there is only one way to represent 0 as $u_1 + \cdots + u_m$ with $u_j \in U_j$.

Which way?

 $U_1 + \cdots + U_m$ is called a *direct sum* and is denoted by $U_1 \oplus \cdots \oplus U_m$ if each $u \in U_1 + \cdots + U_m$ has a unique presentation as $u_1 + \cdots + u_m$ with $u_j \in U_j$.

Theorem. Let U_1, \ldots, U_m be subspaces of V. Then $U_1 + \cdots + U_m$ is a direct sum iff there is only one way to represent 0 as $u_1 + \cdots + u_m$ with $u_j \in U_j$.

Which way?

Special case: m = 2. If U, W are subspaces of a vector space V, then $U + W = U \oplus W$ iff $U \cap W = \{0\}$.