Linear Algebra

Oleg Viro

01/30/2020

YouTube lectures

The author of the textbook, Profesor Sheldon Axler

YouTube lectures

The author of the textbook, Profesor Sheldon Axler uploaded video of his lectures on YouTube:

YouTube lectures

The author of the textbook, Profesor Sheldon Axler uploaded video of his lectures on YouTube:
https://www.youtube.com/watch?v=5DZV4nsEkNk

The author of the textbook, Profesor Sheldon Axler uploaded video of his lectures on YouTube:
https://www.youtube.com/watch?v=5DZV4nsEkNk
I strongly recommend to watch. The video clips are are short.

The author of the textbook, Profesor Sheldon Axler uploaded video of his lectures on YouTube:
https://www.youtube.com/watch?v=5DZV4nsEkNk
I strongly recommend to watch. The video clips are are short.
The reference to the whole list:
https://www.youtube.com/playlist?list=PLGAnmvB9m7zOBVCZBUUmSinFV0wEir2Vw

Fields

Reminding:

Definition: a field

A field is a set equipped with

Fields

Reminding:

Definition: a field

A field is a set equipped with addition and multiplication

Fields

Reminding:

Definition: a field

A field is a set equipped with addition and multiplication which are:

Fields

Reminding:

Definition: a field

A field is a set equipped with addition and multiplication which are:

commutative

Fields

Reminding:

Definition: a field

A field is a set equipped with addition and multiplication which are:

commutative,

 associative
Reminding:

Definition: a field

A field is a set equipped with addition and multiplication which are:

commutative,

 associative, have identitiesReminding:

Definition: a field

A field is a set equipped with addition and multiplication
which are:
commutative, associative,
have identities, additive inverse

Reminding:

Definition: a field

A field is a set equipped with addition and multiplication
which are:
commutative, associative,
have identities, additive inverse, multiplicative inverse

Reminding:

Definition: a field

A field is a set equipped with addition and multiplication
which are:
commutative, associative,
have identities, additive inverse, multiplicative inverse, distributivity property.

Reminding:

Definition: a field

A field is a set equipped with addition and multiplication
which are:
commutative, associative,
have identities, additive inverse, multiplicative inverse, distributivity property.

Examples: \mathbb{R}

Reminding:

Definition: a field

A field is a set equipped with addition and multiplication
which are:
commutative, associative,
have identities, additive inverse, multiplicative inverse, distributivity property.

Examples: \mathbb{R}, \mathbb{C}

Reminding:

Definition: a field

A field is a set equipped with addition and multiplication
which are:
commutative, associative,
have identities, additive inverse, multiplicative inverse, distributivity property.

Examples: $\mathbb{R}, \mathbb{C}, \mathbb{Z} / 2$.

Addition and scalar multiplication in a set

Addition and scalar multiplication in a set

Let V be a set.

Addition and scalar multiplication in a set

Let V be a set.
Definition: addition in a set.
An addition in V is a function $V \times V \rightarrow V:(u, v) \mapsto u+v$.

Addition and scalar multiplication in a set

Let V be a set.
Definition: addition in a set.
An addition in V is a function $V \times V \rightarrow V:(u, v) \mapsto u+v$.

Let \mathbb{F} be a field.

Addition and scalar multiplication in a set

Let V be a set.
Definition: addition in a set.
An addition in V is a function $V \times V \rightarrow V:(u, v) \mapsto u+v$.

Let \mathbb{F} be a field.
Definition: a scalar multiplication in a set.
A scalar multipliation on V is a function $\mathbb{F} \times V \rightarrow V:(\lambda, u) \mapsto \lambda u$.

Addition and scalar multiplication in a set

Let V be a set.
Definition: addition in a set.
An addition in V is a function $V \times V \rightarrow V:(u, v) \mapsto u+v$.

Let \mathbb{F} be a field.
Definition: a scalar multiplication in a set.
A scalar multipliation on V is a function $\mathbb{F} \times V \rightarrow V:(\lambda, u) \mapsto \lambda u$.
Example. Let S be a set

Addition and scalar multiplication in a set

Let V be a set.
Definition: addition in a set.
An addition in V is a function $V \times V \rightarrow V:(u, v) \mapsto u+v$.

Let \mathbb{F} be a field.
Definition: a scalar multiplication in a set.
A scalar multipliation on V is a function $\mathbb{F} \times V \rightarrow V:(\lambda, u) \mapsto \lambda u$.
Example. Let S be a set, \mathbb{F}^{S} denote the set of all maps $S \rightarrow \mathbb{F}$.

Addition and scalar multiplication in a set

Let V be a set.
Definition: addition in a set.
An addition in V is a function $V \times V \rightarrow V:(u, v) \mapsto u+v$.

Let \mathbb{F} be a field.
Definition: a scalar multiplication in a set.
A scalar multipliation on V is a function $\mathbb{F} \times V \rightarrow V:(\lambda, u) \mapsto \lambda u$.
Example. Let S be a set, \mathbb{F}^{S} denote the set of all maps $S \rightarrow \mathbb{F}$.
Addition in V :
for $f, g \in \mathbb{F}^{S}$ define $f+g$ by

Addition and scalar multiplication in a set

Let V be a set.
Definition: addition in a set.
An addition in V is a function $V \times V \rightarrow V:(u, v) \mapsto u+v$.

Let \mathbb{F} be a field.
Definition: a scalar multiplication in a set.
A scalar multipliation on V is a function $\mathbb{F} \times V \rightarrow V:(\lambda, u) \mapsto \lambda u$.
Example. Let S be a set, \mathbb{F}^{S} denote the set of all maps $S \rightarrow \mathbb{F}$.
Addition in V :
for $f, g \in \mathbb{F}^{S}$ define $f+g$ by $(f+g)(x)=f(x)+g(x)$ for $\forall x \in S$.

Addition and scalar multiplication in a set

Let V be a set.
Definition: addition in a set.
An addition in V is a function $V \times V \rightarrow V:(u, v) \mapsto u+v$.

Let \mathbb{F} be a field.
Definition: a scalar multiplication in a set.
A scalar multipliation on V is a function $\mathbb{F} \times V \rightarrow V:(\lambda, u) \mapsto \lambda u$.
Example. Let S be a set, \mathbb{F}^{S} denote the set of all maps $S \rightarrow \mathbb{F}$.
Addition in V :

$$
\text { for } f, g \in \mathbb{F}^{S} \text { define } f+g \text { by }(f+g)(x)=f(x)+g(x) \text { for } \forall x \in S .
$$

Scalar multiplication:

$$
\text { for } f \in \mathbb{F}^{S} \text { and } \lambda \in \mathbb{F} \text { define } \lambda f \text { by }
$$

Addition and scalar multiplication in a set

Let V be a set.
Definition: addition in a set.
An addition in V is a function $V \times V \rightarrow V:(u, v) \mapsto u+v$.

Let \mathbb{F} be a field.
Definition: a scalar multiplication in a set.
A scalar multipliation on V is a function $\mathbb{F} \times V \rightarrow V:(\lambda, u) \mapsto \lambda u$.
Example. Let S be a set, \mathbb{F}^{S} denote the set of all maps $S \rightarrow \mathbb{F}$.
Addition in V :

$$
\text { for } f, g \in \mathbb{F}^{S} \text { define } f+g \text { by }(f+g)(x)=f(x)+g(x) \text { for } \forall x \in S .
$$

Scalar multiplication:

$$
\text { for } f \in \mathbb{F}^{S} \text { and } \lambda \in \mathbb{F} \text { define } \lambda f \text { by }(\lambda f)(x)=\lambda f(x) \text { for } \forall x \in S \text {. }
$$

Vector spaces

Vector spaces

Let \mathbb{F} be a field.

Let \mathbb{F} be a field.
Definition: a vector (or linear) space.
A vector space over \mathbb{F} is a set V equipped with addition and scalar multiplication such that

Let \mathbb{F} be a field.
Definition: a vector (or linear) space.
A vector space over \mathbb{F} is a set V equipped with addition and scalar multiplication such that the addition is commutative

Let \mathbb{F} be a field.
Definition: a vector (or linear) space.
A vector space over \mathbb{F} is a set V equipped with addition and scalar multiplication such that the addition is commutative, and associative

Let \mathbb{F} be a field.
Definition: a vector (or linear) space.
A vector space over \mathbb{F} is a set V equipped with addition and scalar multiplication such that the addition is commutative, and associative, has zero $0 \in V$ such that $0+u=u$ for $\forall u \in V$

Let \mathbb{F} be a field.
Definition: a vector (or linear) space.
A vector space over \mathbb{F} is a set V equipped with addition and scalar multiplication such that the addition is commutative, and associative, has zero $0 \in V$ such that $0+u=u$ for $\forall u \in V$, each element $u \in V$ has additive inverse $-u$

Let \mathbb{F} be a field.
Definition: a vector (or linear) space.
A vector space over \mathbb{F} is a set V equipped with addition and scalar multiplication such that the addition is commutative, and associative, has zero $0 \in V$ such that $0+u=u$ for $\forall u \in V$, each element $u \in V$ has additive inverse $-u$, $1 u=u$ for $\forall u \in V$

Let \mathbb{F} be a field.
Definition: a vector (or linear) space.
A vector space over \mathbb{F} is a set V equipped with addition and scalar multiplication such that the addition is commutative, and associative, has zero $0 \in V$ such that $0+u=u$ for $\forall u \in V$, each element $u \in V$ has additive inverse $-u$, $1 u=u$ for $\forall u \in V$, $a(u+v)=a u+a v$ for $\forall a \in \mathbb{F}$ and $\forall u, v \in V$

Let \mathbb{F} be a field.
Definition: a vector (or linear) space.
A vector space over \mathbb{F} is a set V equipped with addition and scalar multiplication such that the addition is commutative, and associative, has zero $0 \in V$ such that $0+u=u$ for $\forall u \in V$, each element $u \in V$ has additive inverse $-u$, $1 u=u$ for $\forall u \in V$, $a(u+v)=a u+a v$ for $\forall a \in \mathbb{F}$ and $\forall u, v \in V$, $(a+b) u=a u+b u$ for $\forall a, b \in \mathbb{F}$ and $\forall u \in V$.

Let \mathbb{F} be a field.

Definition: a vector (or linear) space.

A vector space over \mathbb{F} is a set V equipped with addition and scalar multiplication such that the addition is commutative, and associative, has zero $0 \in V$ such that $0+u=u$ for $\forall u \in V$, each element $u \in V$ has additive inverse $-u$, $1 u=u$ for $\forall u \in V$, $a(u+v)=a u+a v$ for $\forall a \in \mathbb{F}$ and $\forall u, v \in V$, $(a+b) u=a u+b u$ for $\forall a, b \in \mathbb{F}$ and $\forall u \in V$.

Examples. \mathbb{F}^{n}

Let \mathbb{F} be a field.

Definition: a vector (or linear) space.

A vector space over \mathbb{F} is a set V equipped with addition and scalar multiplication such that the addition is commutative, and associative, has zero $0 \in V$ such that $0+u=u$ for $\forall u \in V$, each element $u \in V$ has additive inverse $-u$, $1 u=u$ for $\forall u \in V$, $a(u+v)=a u+a v$ for $\forall a \in \mathbb{F}$ and $\forall u, v \in V$, $(a+b) u=a u+b u$ for $\forall a, b \in \mathbb{F}$ and $\forall u \in V$.

Examples. $\mathbb{F}^{n}, \mathbb{F}^{S}$

Let \mathbb{F} be a field.

Definition: a vector (or linear) space.

A vector space over \mathbb{F} is a set V equipped with addition and scalar multiplication such that the addition is commutative, and associative, has zero $0 \in V$ such that $0+u=u$ for $\forall u \in V$, each element $u \in V$ has additive inverse $-u$, $1 u=u$ for $\forall u \in V$, $a(u+v)=a u+a v$ for $\forall a \in \mathbb{F}$ and $\forall u, v \in V$, $(a+b) u=a u+b u$ for $\forall a, b \in \mathbb{F}$ and $\forall u \in V$.

Examples. $\mathbb{F}^{n}, \mathbb{F}^{S}, \mathbb{C}$ is a vector space over \mathbb{R}.

Let \mathbb{F} be a field.
Definition: a vector (or linear) space.
A vector space over \mathbb{F} is a set V equipped with addition and scalar multiplication such that the addition is commutative, and associative, has zero $0 \in V$ such that $0+u=u$ for $\forall u \in V$, each element $u \in V$ has additive inverse $-u$, $1 u=u$ for $\forall u \in V$, $a(u+v)=a u+a v$ for $\forall a \in \mathbb{F}$ and $\forall u, v \in V$, $(a+b) u=a u+b u$ for $\forall a, b \in \mathbb{F}$ and $\forall u \in V$.

Examples. $\mathbb{F}^{n}, \mathbb{F}^{S}, \mathbb{C}$ is a vector space over \mathbb{R}.
We say \mathbb{C} is a real vector space.

Let \mathbb{F} be a field.
Definition: a vector (or linear) space.
A vector space over \mathbb{F} is a set V equipped with addition and scalar multiplication such that the addition is commutative, and associative, has zero $0 \in V$ such that $0+u=u$ for $\forall u \in V$, each element $u \in V$ has additive inverse $-u$, $1 u=u$ for $\forall u \in V$, $a(u+v)=a u+a v$ for $\forall a \in \mathbb{F}$ and $\forall u, v \in V$, $(a+b) u=a u+b u$ for $\forall a, b \in \mathbb{F}$ and $\forall u \in V$.

Examples. $\mathbb{F}^{n}, \mathbb{F}^{S}, \mathbb{C}$ is a vector space over \mathbb{R}.
We say \mathbb{C} is a real vector space. \mathbb{C} is also a complex vector space.

Let \mathbb{F} be a field.
Definition: a vector (or linear) space.
A vector space over \mathbb{F} is a set V equipped with addition and scalar multiplication such that the addition is commutative, and associative, has zero $0 \in V$ such that $0+u=u$ for $\forall u \in V$, each element $u \in V$ has additive inverse $-u$, $1 u=u$ for $\forall u \in V$, $a(u+v)=a u+a v$ for $\forall a \in \mathbb{F}$ and $\forall u, v \in V$, $(a+b) u=a u+b u$ for $\forall a, b \in \mathbb{F}$ and $\forall u \in V$.

Examples. $\mathbb{F}^{n}, \mathbb{F}^{S}, \mathbb{C}$ is a vector space over \mathbb{R}.
We say \mathbb{C} is a real vector space. \mathbb{C} is also a complex vector space.
What is the smallest vector space over \mathbb{F} ?

Theorem. In any vector space $V, \quad 0 u=0$ for every $u \in V$.

Theorem. In any vector space $V, 0 u=0$ for every $u \in V$.
what are the zeros?

Theorem. In any vector space $V, 0 u=0$ for every $u \in V$.
what are the zeros?
Proof.

Theorem. In any vector space $V, 0 u=0$ for every $u \in V$.
what are the zeros?
Proof. $0=0+0$.

Theorem. In any vector space $V, 0 u=0$ for every $u \in V$.
what are the zeros?
Proof. $0=0+0$.
Hence $0 u=(0+0) u$

$$
=0 u+0 u \text {. }
$$

Theorem. In any vector space $V, 0 u=0$ for every $u \in V$.
what are the zeros?
Proof. $0=0+0$.
Hence $0 u=(0+0) u$

$$
=0 u+0 u \text {. }
$$

Therefore $0 u-0 u=0 u+0 u-0 u$

Theorem. In any vector space $V, 0 u=0$ for every $u \in V$.
what are the zeros?
Proof. $0=0+0$.
Hence $0 u=(0+0) u$

$$
=0 u+0 u .
$$

Therefore $0 u-0 u=0 u+0 u-0 u$, and $0=0 u$.

Theorem. In any vector space $V, 0 u=0$ for every $u \in V$.
what are the zeros?
Proof. $\quad 0=0+0$.
Hence $0 u=(0+0) u$

$$
=0 u+0 u
$$

Therefore $0 u-0 u=0 u+0 u-0 u$, and $0=0 u$.
Theorem. In any vector space $V, a 0=0$ for every $a \in \mathbb{F}$.

Theorem. In any vector space $V, \quad 0 u=0$ for every $u \in V$.
what are the zeros?
Proof. $0=0+0$.
Hence $0 u=(0+0) u$

$$
=0 u+0 u \text {. }
$$

Therefore $0 u-0 u=0 u+0 u-0 u$, and $0=0 u$.
Theorem. In any vector space $V, a 0=0$ for every $a \in \mathbb{F}$.
Proof. $a 0=a(0+0)=\ldots$

The space of polynomials

A polynomial in a variable x over a field \mathbb{F} is an expression

$$
a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{m} x^{m}, \text { where } a_{k} \in \mathbb{F} .
$$

A polynomial in a variable x over a field \mathbb{F} is an expression

$$
a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{m} x^{m}, \text { where } a_{k} \in \mathbb{F} .
$$

Polynomials in a variable X over a field \mathbb{F} form a vector space over \mathbb{F}.

A polynomial in a variable x over a field \mathbb{F} is an expression

$$
a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{m} x^{m}, \text { where } a_{k} \in \mathbb{F} .
$$

Polynomials in a variable X over a field \mathbb{F} form a vector space over \mathbb{F}.
Notation $\mathbb{F}[x]$.

A polynomial in a variable x over a field \mathbb{F} is an expression

$$
a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{m} x^{m}, \text { where } a_{k} \in \mathbb{F} .
$$

Polynomials in a variable X over a field \mathbb{F} form a vector space over \mathbb{F}.
Notation $\mathbb{F}[x]$. In Axler's book $\mathcal{P}(\mathbb{F})$.

Linear maps

Linear maps

Let V and W be vector spaces over \mathbb{F}.

Linear maps

Let V and W be vector spaces over \mathbb{F}.
Definition: a linear map.
A map $T: V \rightarrow W$ is called linear, if

Linear maps

Let V and W be vector spaces over \mathbb{F}.

Definition: a linear map.

A map $T: V \rightarrow W$ is called linear, if

$$
T\left(u_{1}+u_{2}\right)=T u_{1}+T u_{2} \text { for } \forall u_{1}, u_{2} \in V
$$

Linear maps

Let V and W be vector spaces over \mathbb{F}.

Definition: a linear map.

A map $T: V \rightarrow W$ is called linear, if

$$
T\left(u_{1}+u_{2}\right)=T u_{1}+T u_{2} \text { for } \forall u_{1}, u_{2} \in V \text { (additivity) }
$$

Linear maps

Let V and W be vector spaces over \mathbb{F}.

Definition: a linear map.

A map $T: V \rightarrow W$ is called linear, if

$$
\begin{aligned}
& T\left(u_{1}+u_{2}\right)=T u_{1}+T u_{2} \text { for } \forall u_{1}, u_{2} \in V \text { (additivity) } \\
& T(\lambda u)=\lambda T u \text { for } \forall \lambda \in \mathbb{F} \text { and } \forall u \in V
\end{aligned}
$$

Linear maps

Let V and W be vector spaces over \mathbb{F}.

Definition: a linear map.

A map $T: V \rightarrow W$ is called linear, if

$$
\begin{aligned}
& T\left(u_{1}+u_{2}\right)=T u_{1}+T u_{2} \text { for } \forall u_{1}, u_{2} \in V \text { (additivity) } \\
& T(\lambda u)=\lambda T u \text { for } \forall \lambda \in \mathbb{F} \text { and } \forall u \in V \quad \text { (homogeneity). }
\end{aligned}
$$

Let V and W be vector spaces over \mathbb{F}.

Definition: a linear map.

A map $T: V \rightarrow W$ is called linear, if

$$
\begin{aligned}
& T\left(u_{1}+u_{2}\right)=T u_{1}+T u_{2} \text { for } \forall u_{1}, u_{2} \in V \text { (additivity) } \\
& T(\lambda u)=\lambda T u \text { for } \forall \lambda \in \mathbb{F} \text { and } \forall u \in V \text { (homogeneity). }
\end{aligned}
$$

The set of all linear maps $V \rightarrow W$ is denoted by $\mathcal{L}(V, W)$.

Let V and W be vector spaces over \mathbb{F}.

Definition: a linear map.

A map $T: V \rightarrow W$ is called linear, if

$$
\begin{aligned}
& T\left(u_{1}+u_{2}\right)=T u_{1}+T u_{2} \text { for } \forall u_{1}, u_{2} \in V \text { (additivity) } \\
& T(\lambda u)=\lambda T u \text { for } \forall \lambda \in \mathbb{F} \text { and } \forall u \in V \text { (homogeneity). }
\end{aligned}
$$

The set of all linear maps $V \rightarrow W$ is denoted by $\mathcal{L}(V, W)$.

Examples:

Let V and W be vector spaces over \mathbb{F}.

Definition: a linear map.

A map $T: V \rightarrow W$ is called linear, if

$$
\begin{aligned}
& T\left(u_{1}+u_{2}\right)=T u_{1}+T u_{2} \text { for } \forall u_{1}, u_{2} \in V \text { (additivity) } \\
& T(\lambda u)=\lambda T u \text { for } \forall \lambda \in \mathbb{F} \text { and } \forall u \in V \text { (homogeneity). }
\end{aligned}
$$

The set of all linear maps $V \rightarrow W$ is denoted by $\mathcal{L}(V, W)$.
Examples: $0 \in \mathcal{L}(V, W)$.

Let V and W be vector spaces over \mathbb{F}.

Definition: a linear map.

A map $T: V \rightarrow W$ is called linear, if

$$
\begin{aligned}
& T\left(u_{1}+u_{2}\right)=T u_{1}+T u_{2} \text { for } \forall u_{1}, u_{2} \in V \text { (additivity) } \\
& T(\lambda u)=\lambda T u \text { for } \forall \lambda \in \mathbb{F} \text { and } \forall u \in V \text { (homogeneity). }
\end{aligned}
$$

The set of all linear maps $V \rightarrow W$ is denoted by $\mathcal{L}(V, W)$.
Examples: $0 \in \mathcal{L}(V, W)$. Identity map $\operatorname{id} \in \mathcal{L}(V, V)$

Linear maps

Let V and W be vector spaces over \mathbb{F}.

Definition: a linear map.

A map $T: V \rightarrow W$ is called linear, if

$$
\begin{aligned}
& T\left(u_{1}+u_{2}\right)=T u_{1}+T u_{2} \text { for } \forall u_{1}, u_{2} \in V \text { (additivity) } \\
& T(\lambda u)=\lambda T u \text { for } \forall \lambda \in \mathbb{F} \text { and } \forall u \in V \quad \text { (homogeneity). }
\end{aligned}
$$

The set of all linear maps $V \rightarrow W$ is denoted by $\mathcal{L}(V, W)$.
Examples: $0 \in \mathcal{L}(V, W)$. Identity map $\operatorname{id} \in \mathcal{L}(V, V) \operatorname{id}(u)=u$.

Linear maps

Let V and W be vector spaces over \mathbb{F}.

Definition: a linear map.

A map $T: V \rightarrow W$ is called linear, if

$$
\begin{aligned}
& T\left(u_{1}+u_{2}\right)=T u_{1}+T u_{2} \text { for } \forall u_{1}, u_{2} \in V \text { (additivity) } \\
& T(\lambda u)=\lambda T u \text { for } \forall \lambda \in \mathbb{F} \text { and } \forall u \in V \text { (homogeneity). }
\end{aligned}
$$

The set of all linear maps $V \rightarrow W$ is denoted by $\mathcal{L}(V, W)$.
Examples: $0 \in \mathcal{L}(V, W)$.
Identity map $\operatorname{id} \in \mathcal{L}(V, V) \operatorname{id}(u)=u$.
Differentiation $\mathbb{R}[x] \rightarrow \mathbb{R}[x]: p(x) \mapsto \frac{d p}{d x}(x)$.

Linear maps

Let V and W be vector spaces over \mathbb{F}.

Definition: a linear map.

A map $T: V \rightarrow W$ is called linear, if

$$
\begin{aligned}
& T\left(u_{1}+u_{2}\right)=T u_{1}+T u_{2} \text { for } \forall u_{1}, u_{2} \in V \text { (additivity) } \\
& T(\lambda u)=\lambda T u \text { for } \forall \lambda \in \mathbb{F} \text { and } \forall u \in V \quad \text { (homogeneity). }
\end{aligned}
$$

The set of all linear maps $V \rightarrow W$ is denoted by $\mathcal{L}(V, W)$.
Examples: $0 \in \mathcal{L}(V, W)$.
Identity map $\operatorname{id} \in \mathcal{L}(V, V) \operatorname{id}(u)=u$.
Differentiation $\mathbb{R}[x] \rightarrow \mathbb{R}[x]: p(x) \mapsto \frac{d p}{d x}(x)$.
Integration $\mathbb{R}[x] \rightarrow \mathbb{R}: p(x) \mapsto \int_{0}^{1} p(x) d x$.

Linear maps

Let V and W be vector spaces over \mathbb{F}.

Definition: a linear map.

A map $T: V \rightarrow W$ is called linear, if

$$
\begin{aligned}
& T\left(u_{1}+u_{2}\right)=T u_{1}+T u_{2} \text { for } \forall u_{1}, u_{2} \in V \text { (additivity) } \\
& T(\lambda u)=\lambda T u \text { for } \forall \lambda \in \mathbb{F} \text { and } \forall u \in V \quad \text { (homogeneity). }
\end{aligned}
$$

The set of all linear maps $V \rightarrow W$ is denoted by $\mathcal{L}(V, W)$.
Examples: $0 \in \mathcal{L}(V, W)$.
Identity map $\operatorname{id} \in \mathcal{L}(V, V) \operatorname{id}(u)=u$.
Differentiation $\mathbb{R}[x] \rightarrow \mathbb{R}[x]: p(x) \mapsto \frac{d p}{d x}(x)$.
Integration $\mathbb{R}[x] \rightarrow \mathbb{R}: p(x) \mapsto \int_{0}^{1} p(x) d x$.

$$
\mathcal{L}(V, W) \text { is a vector space. }
$$

Subspaces

Subspaces

Let V be a vector space over \mathbb{F} and $U \subset V$.

Let V be a vector space over \mathbb{F} and $U \subset V$.
Definition: subspace.
U is called a (vector or linear) subspace of V if U is a vector space with the same addition and multiplication as on V.

Let V be a vector space over \mathbb{F} and $U \subset V$.
Definition: subspace.
U is called a (vector or linear) subspace of V if U is a vector space with the same addition and multiplication as on V.

A subset U of a vector space V is a subspace iff

Let V be a vector space over \mathbb{F} and $U \subset V$.
Definition: subspace.
U is called a (vector or linear) subspace of V if U is a vector space with the same addition and multiplication as on V.

A subset U of a vector space V is a subspace iff

$$
\begin{aligned}
& 0 \in U \\
& u+v \in U \text { if } u, v \in U \\
& \lambda u \in U \text { if } \lambda \in \mathbb{F} \text { and } u \in U .
\end{aligned}
$$

Let V be a vector space over \mathbb{F} and $U \subset V$.
Definition: subspace.
U is called a (vector or linear) subspace of V if U is a vector space with the same addition and multiplication as on V.

A subset U of a vector space V is a subspace iff

$$
\begin{aligned}
& 0 \in U \\
& u+v \in U \text { if } u, v \in U \\
& \lambda u \in U \text { if } \lambda \in \mathbb{F} \text { and } u \in U .
\end{aligned}
$$

Examples of subspaces.

Let V be a vector space over \mathbb{F} and $U \subset V$.
Definition: subspace.
U is called a (vector or linear) subspace of V if U is a vector space with the same addition and multiplication as on V.

A subset U of a vector space V is a subspace iff

$$
\begin{aligned}
& 0 \in U \\
& u+v \in U \text { if } u, v \in U \\
& \lambda u \in U \text { if } \lambda \in \mathbb{F} \text { and } u \in U .
\end{aligned}
$$

Examples of subspaces. In \mathbb{R}^{1}

Let V be a vector space over \mathbb{F} and $U \subset V$.
Definition: subspace.
U is called a (vector or linear) subspace of V if U is a vector space with the same addition and multiplication as on V.

A subset U of a vector space V is a subspace iff

$$
\begin{aligned}
& 0 \in U \\
& u+v \in U \text { if } u, v \in U \\
& \lambda u \in U \text { if } \lambda \in \mathbb{F} \text { and } u \in U .
\end{aligned}
$$

Examples of subspaces. $\ln \mathbb{R}^{1}, \mathbb{R}^{2}$

Let V be a vector space over \mathbb{F} and $U \subset V$.
Definition: subspace.
U is called a (vector or linear) subspace of V if U is a vector space with the same addition and multiplication as on V.

A subset U of a vector space V is a subspace iff

$$
\begin{aligned}
& 0 \in U \\
& u+v \in U \text { if } u, v \in U \\
& \lambda u \in U \text { if } \lambda \in \mathbb{F} \text { and } u \in U .
\end{aligned}
$$

Examples of subspaces. In $\mathbb{R}^{1}, \mathbb{R}^{2}, \mathbb{R}^{3}$.

Let V be a vector space over \mathbb{F} and $U \subset V$.
Definition: subspace.
U is called a (vector or linear) subspace of V if U is a vector space with the same addition and multiplication as on V.

A subset U of a vector space V is a subspace iff

$$
\begin{aligned}
& 0 \in U \\
& u+v \in U \text { if } u, v \in U \\
& \lambda u \in U \text { if } \lambda \in \mathbb{F} \text { and } u \in U .
\end{aligned}
$$

Examples of subspaces. In $\mathbb{R}^{1}, \mathbb{R}^{2}, \mathbb{R}^{3}$.
Linear conditions: continuity

Let V be a vector space over \mathbb{F} and $U \subset V$.
Definition: subspace.
U is called a (vector or linear) subspace of V if U is a vector space with the same addition and multiplication as on V.

A subset U of a vector space V is a subspace iff

$$
\begin{aligned}
& 0 \in U \\
& u+v \in U \text { if } u, v \in U \\
& \lambda u \in U \text { if } \lambda \in \mathbb{F} \text { and } u \in U .
\end{aligned}
$$

Examples of subspaces. In $\mathbb{R}^{1}, \mathbb{R}^{2}, \mathbb{R}^{3}$.
Linear conditions: continuity, differentiablity.

Theorem. Intersection of any collection of subspaces is a subspace.

Intersection and sums

Theorem. Intersection of any collection of subspaces is a subspace.

Definition: sum of subsets Let U_{1}, \ldots, U_{m} be subsets of a vector space V.

$$
U_{1}+\cdots+U_{m}=\left\{u_{1}+\cdots+u_{m} \mid u_{1} \in U_{1}, \ldots, u_{m} \in U_{m}\right\}
$$

Theorem. Intersection of any collection of subspaces is a subspace.

Definition: sum of subsets Let U_{1}, \ldots, U_{m} be subsets of a vector space V.

$$
U_{1}+\cdots+U_{m}=\left\{u_{1}+\cdots+u_{m} \mid u_{1} \in U_{1}, \ldots, u_{m} \in U_{m}\right\}
$$

Theorem. If U_{1}, \ldots, U_{m} are subspaces of a vector space V, then $U_{1}+\cdots+U_{m}$ is the smallest subspace of V containing U_{1}, \ldots, U_{m}.

Direct sums

Definition: direct sum
 $U_{1}+\cdots+U_{m}$ is called a direct sum and is denoted by $U_{1} \oplus \cdots \oplus U_{m}$ if each $u \in U_{1}+\cdots+U_{m}$ has a unique presentation as $u_{1}+\cdots+u_{m}$ with $u_{j} \in U_{j}$.

Direct sums

Definition: direct sum

$U_{1}+\cdots+U_{m}$ is called a direct sum and is denoted by $U_{1} \oplus \cdots \oplus U_{m}$ if each $u \in U_{1}+\cdots+U_{m}$ has a unique presentation as $u_{1}+\cdots+u_{m}$ with $u_{j} \in U_{j}$.

Theorem. Let $U_{1}, \ldots U_{m}$ be subspaces of V. Then $U_{1}+\cdots+U_{m}$ is a direct sum iff there is only one way to represent 0 as $u_{1}+\cdots+u_{m}$ with $u_{j} \in U_{j}$.

Direct sums

Definition: direct sum

$U_{1}+\cdots+U_{m}$ is called a direct sum and is denoted by $U_{1} \oplus \cdots \oplus U_{m}$ if each $u \in U_{1}+\cdots+U_{m}$ has a unique presentation as $u_{1}+\cdots+u_{m}$ with $u_{j} \in U_{j}$.

Theorem. Let $U_{1}, \ldots U_{m}$ be subspaces of V. Then $U_{1}+\cdots+U_{m}$ is a direct sum iff there is only one way to represent 0 as $u_{1}+\cdots+u_{m}$ with $u_{j} \in U_{j}$.

Which way?

Direct sums

Definition: direct sum

$U_{1}+\cdots+U_{m}$ is called a direct sum and is denoted by $U_{1} \oplus \cdots \oplus U_{m}$ if each $u \in U_{1}+\cdots+U_{m}$ has a unique presentation as $u_{1}+\cdots+u_{m}$ with $u_{j} \in U_{j}$.

Theorem. Let $U_{1}, \ldots U_{m}$ be subspaces of V. Then $U_{1}+\cdots+U_{m}$ is a direct sum iff there is only one way to represent 0 as $u_{1}+\cdots+u_{m}$ with $u_{j} \in U_{j}$.

Which way?
Special case: $m=2$.
If U, W are subspaces of a vector space V, then

$$
U+W=U \oplus W \quad \text { iff } U \cap W=\{0\}
$$

