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Abstract

In this paper, we consider the degree sequences of the tame automorphisms preserving
an a�ne quadric threefold. Using some valuatives estimates derived from the work of
Shestakov-Umirbaev and the action of this group on a CAT(0), Gromov-hyperbolic square
complex constructed by Bisi-Furter-Lamy, we prove that the dynamical degrees of tame
elements avoid any value strictly between 1 and 4/3. As an application, these methods
allow us to characterize when the growth exponent of the degree of a random product of
�nitely many tame automorphisms is positive.

Introduction

Fix a projective variety X of dimension n de�ned over an algebraically closed �eld k
of characteristic zero and a rational map f on X. We are interested in the complexity
associated to the dynamical system induced by f , more precisely on the growth of the
degrees of the p-fold composition fp = f◦. . .◦f . This general problem was addressed in the
work of Russakovski-Shi�man ([RS97]) when X = Pn in which they related the asymptotic
behavior of the images by f of the linear subvarieties of Pn with the degree sequences. The
asymptotic ratios of these sequences, denoted λi(f) for i 6 n, and refered as dynamical
degrees, control the topological entropy of those maps ([DS05]) and are crucial for the
construction of an invariant measure of maximal entropy ([BS92, Gue05, BD05]).

When f is a birational surface map, the situation is completely classi�ed ([Giz80],
[DF01], [Can11], [BC16]). For general rational maps on surfaces, the behavior of the
degree is known for morphisms of the a�ne plane ([FJ11]) and when λ1(f)2 > λ2(f)
([BFJ08]).

From the dimension three on, only the degree growth of monomial maps ([Lin12],
[FW12]), regular morphisms, pseudo-automorphisms ([OT14, Tru16, Bed15, OT15, Tru17]),
birational maps on hyperkähler varieties ([Bia16]) and sporadic examples ([AAdB+99,
AAdBM99, AdMV06, BT10, BK14]) were studied. The general problem of understanding
the degree of the iterates of birational transformations of P3 remains open. The main
reason is that we usually rely on the construction of a good birational model (e.g. an
algebraically stable model in the sense of Fornaess and Sibony [FS95]) to �nd the degree
sequences, but the structure of the set of birational models of threefolds is far more com-
plicated than its analog for surfaces. It is thus natural to ask whether we can �nd a large
class of birational transformations of P3 for which this sequence is fully understood.

A �rst natural choice would be the group of polynomial automorphisms of the three
dimensional a�ne space. Even though there has been some recent work on particular
subgroups of this group ([Wri15], [Lam15], [LP18]), their dynamical degrees were not
computed. We have thus turned our attention to a simpler situation, namely the subgroup
of tame automorphisms of the a�ne quadric threefold.
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We denote by (x, y, z, t) the a�ne coordinates in A4 and consider the a�ne quadric Q
given by:

Q = V (xt− yz − 1).

Observe that the Picard group of the closure Q of Q in P4 is generated by H = c1(O(1)|Q)
so that one can de�ne the algebraic degree of an automorphism by:

deg(f) := deg1(f) = (π∗1H
2 · π∗2H),

where π1 and π2 are the projections of the graph of the birational map induced by f
in Q × Q onto the �rst and the second factor respectively. Observe that by de�nition
deg2(f) = (π∗1H · π∗2H2) = deg(f−1) since f is an automorphism.

The subgroup of tame automorphisms, denoted Tame(Q), is de�ned as the subgroup
generated by a�ne automorphism and transformations induced by:

(x, y, z, t) 7→ (x, y, z + xP (x, y), t+ yP (x, y)),

with P ∈ k[x, y].

Theorem 1. Let f be a tame automorphism, then one of the following possibilities occur:

(i) The sequence (deg(fn), deg(f−n)) is bounded and f is conjugated to linear map; or
f2 is conjugated to an automorphism of the form

(x, y, z, t) 7→ (ax, by+xR(x), b−1z+xP (x, y), a−1(t+yP (x, y)+zR(x)+xR(x)P (x, y)))

with a, b ∈ k∗, P ∈ k[x, y] and R ∈ k[x].

(ii) There exists a constant C > 0 such that:

1

C
n 6 deg(f εn) 6 Cn,

for all ε ∈ {+1,−1} and f is conjugated to an automorphism of the form:

(x, y, z, t) 7→ (ax, b−1(z+xR(x)), b(y+xP (x)z), a−1(t+z2P (x)+yR(x)+xzP (x)R(x))),

with a, b ∈ k∗, R ∈ k[x] and P ∈ k[x] \ k.

(iii) The sequences deg(fn) and deg(f−n) grow at least exponentially and there exists a
constant C(f) > 0 such that:

min(deg(f−n), deg(fn)) > C(f)

(
4

3

)n
.

Theorem 1 is a �rst step towards an understanding of the dynamical degrees of these
particular automorphisms.

Corollary 2. The following inclusion is satis�ed:

{λ1(f) | f ∈ Tame(Q)} ⊂ {1} ∪ [4/3,+∞[.

This result is reminiscent of a theorem of Blanc and Cantat [BC16, Corollary 2.7]
stating that the set of �rst dynamical degrees of any birational surface maps is included in
{1} ∪ [λL,∞) where λL ' 1.176280 denotes the Lehmer number. We conjecture however
that the dynamical degrees of a tame automorphism is always an integer.

Another immediate consequence of Theorem 1 is the following corollary.

Corollary 3. Any tame automorphism f ∈ Tame(Q) satisfying λ1(f) = 1 preserves a
�bration or belongs to O4 and both sequences deg(fn), deg(f−n) are either bounded or
linear.
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The above result gives a positive answer to a question by Urech [Ure16, Question 4] in
this special situation.

The proof of Theorem 1 exploits extensively the structure of the group of tame au-
tomorphisms. We use the natural action of Tame(Q) on a square complex C which was
introduced and studied by Bisi-Furter-Lamy in [BFL14]. This action is faithful, transi-
tive on squares, and isometric. The complex C plays the same role for Tame(Q) as the
Bass-Serre tree for Aut[k2].

One of the main result of [BFL14] is that C is a geodesic space which is both CAT(0)
and Gromov-hyperbolic. As a result, a tame automorphism induces an action on the
complex which is rather constrained: either it is elliptic and �xes a vertex in the complex
C; or it is hyperbolic and acts by translation on an invariant geodesic line.

Using an explicit description of the stabilizer subgroups of each vertices, we compute
the degree sequences of all elliptic tame automorphisms.

The crucial point of the proof is the study in �5 of the degree growth of hyperbolic
automorphisms. In this case, we show that the sequence of degrees is bounded from below
by C (4/3)n for some positive constant C > 0 and where n depends on the distance of
translation on an invariant geodesic line. Let us state a weaker statement which summa-
rizes the overall idea of our proof and which relates the degree with the displacement by
f of a vertex v0 �xed by the linear group.

Theorem 4. For any tame automorphisms f ∈ Tame(Q) for which f is not a�ne, the
following inequality holds:

log(deg(f)) >
log(4/3)

2
√

2
dC(f · v0, v0)− 2 log(4/3),

where dC denotes the distance in the complex.

This phenomenon already appears in the case of plane automorphisms since one can
bound from below the logarithm of the degree of a plane automorphism by log(2) multi-
plied by the distance between two vertices in the Bass-Serre tree associated to the group
Aut(A2). Also in the case of Bir(P2), there is a relationship between the degree and the
distance on a suitable hyperbolic space. The above result does not imply Theorem 1 and
one needs to prove a more re�ned statement to obtain that the degree of fn is indeed
larger than (4/3)n. Let us explain how this is done.

Let f ∈ Tame(Q) be any hyperbolic automorphism. First we show that by conjugating
with an appropriate automorphism, we can suppose that v0 lies at distance ≤ 2 of an f -
invariant geodesic line. Suppose that v0 is contained in an invariant geodesic of f . Our
goal is to prove that

deg(fn) > (4/3)dC(v0,fn·v0) for all n ∈ N. (1)

The sequence of large squares (i.e isometric to [0, 2]2) cut by the geodesic segment [v0, f
n ·

v0] allows us to write
fn = gp ◦ gp−1 · · · ◦ g1 (2)

as a composition of elementary automorphisms and a�ne transformations preserving the
quadric. This decomposition is not unique in general and ideally, one would hope to prove
that the degree is multiplicative so that deg(fn) ≥

∏p
i=1 deg(gi). The obstruction to

this property is the presence of resonances, which are explained as follows. Two regular
functions P,R ∈ k[Q] are resonant if there exists λ ∈ k∗ and two integers p, q such that
deg(P p − λRq) < pdeg(P ) = q deg(R) and they are called critical if p = 1 or q = 1.

When these resonances are not critical, we show that one can apply the so-called
parachute inequalities (recalled in �4.5) to deduce (1). These inequalities are elementary
valuative estimates on the values of partial derivatives of suitable polynomials, and are
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derived from the proof of Nagata's conjecture by Shestakov-Umirbaev (see [SU03], [Kur16],
[LV13]).

To get around the appearance of critical resonances, we exploit the structure of the tame
group to prove that fn always admits an appropriate factorization for which the parachute
inequalities can be applied inductively. In other words, we write fn = g′p ◦ . . . ◦ g′1 where
g′i are tame automorphisms such that for each i 6 p, g′i+1 and (g′i ◦ . . . ◦ g′1) do not have
critical resonances.

Using the correspondence between the factorizations of f and the sequences of large
squares cut out by the invariant geodesic, we are reduced to proving that one can modify
inductively our initial sequence of large squares to avoid critical resonances. The essential
point is to choose a valuation ν of monomial type (i.e with di�erent weights on the coordi-
nate axis x, y, z, t) such that one of the vertex of our initial large square has ν-value strictly
less than the three others. The dissymmetry induced by ν will be propagated along any
sequence of squares following our geodesic. We then argue that this minimality property
on each large square allows us to choose another square with no critical resonances. As a
result, the core of our approach relies deeply on the structure of the tame group which is
re�ected by the geometric properties of the square complex. Our proof is presented using
purely combinatorial arguments.

In the last part of this paper, we shall give a random version of Theorem 1. Consider
a �nitely generated subgroup G of the tame group and an atomic probability measure µ
on G such that: ∫

G
log(deg(g))dµ(g) < +∞.

The random walk on G with transition law µ is the Markov chain starting at Id with
transition law µ. The state of the Markov chain gn at the time n is equal to the product of
n independent, identically distributed random variable on G with distribution law µ. Its
distribution law νn is the n-fold convolution of µ. Since the degree is submultiplicative,
Kingman's subadditivity asserts that the degree exponents given by

λ1(µ) := lim sup
n→+∞

1

n

∫
G

log(deg(g))dνn(g)

and

λ2(µ) := lim sup
n→+∞

1

n

∫
G

log(deg(g−1))dνn(g)

are �nite. These numbers measure the complexity of our random walk and one recovers the
�rst and second dynamical degrees of f when µ is equal to the Dirac measure at f . Since
the degree is equal to the norm of the pullback operator induced by f on the Neron-Severi
group of the quadric, these quantities play the same role as the Lyapounov exponents of
a random products of matrices ([FK60, Fur63]) for this group and the existence of these
exponents can thus be interpreted as a law of large number ([BQ16, Theorem 0.6]).

We now state the following result on the behavior of any symmetric random walks on
this particular group.

Theorem 5. Let G be a �nitely generated subgroup of the tame group and let µ be a
symmetric atomic measure on G satisfying the condition:∫

G
log(deg(g))dµ(g) < +∞.

Then the degree exponents λ1(µ) = λ2(µ) are positive if and only if G contains two au-
tomorphisms with dynamical degree strictly larger than 1 generating a free group of rank
2.

Moreover, we also obtain the following classi�cation.
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Corollary 6. When λ1(µ) = λ2(µ) = 0 then G satis�es one of the following properties.

(i) The group G is conjugated to a subgroup of the linear group O4.

(ii) There exists a G-equivariant morphism ϕ : Q → A2 \ {(0, 0)} where G acts on
A2 \ {(0, 0)} linearly.

(iii) The group G contains an automorphism h with λ1(h) > 1 and there exists an integer
M such that any automorphism f ∈ G can be decomposed into g ◦ hp where p is an
integer and g has a degree bounded by M .

(iv) There exists a G-equivariant morphism ϕ : Q→ A1 where G acts on A1 by multipli-
cation and any automorphism of G has dynamical degree 1.

In other words, the degree exponents detect whenever the random walk has a chaotic
behavior. These last two results essentially follow from a classi�cation of the �nitely gen-
erated subgroups of the tame group and a theorem due to Maher-Tiozzo [MT14, Theorem
1.2] which asserts that a random walk on a subgroup G of isometries of a CAT(0) space
will drift to the boundary whenever G contains two non-commuting hyperbolic elements.
When this happens, we obtain using Theorem 4 that the degree exponent is bounded be-
low by a multiplicative factor of the drift and is thus positive. Otherwise, we prove that
G preserves a vertex in the complex or a geodesic line. We then determine the degree
sequences explicitly and conclude.

If we pursue the analogy with the random walk on groups, it is natural to ask whether
one can obtain a central limit theorem analog to the one for random products of matrices
([BQ16, Theorem 0.7]) or for random products of mapping classes ([DH18]). We state it
as follows.

Conjecture 7. Take µ a symmetric atomic measure on the tame group. Then the limit

σ2 := lim
n→+∞

1

n

∫
G

(log deg(g)− λ(µ)n)2dνn(g)

exists where νn = µ∗n denotes the n-fold convolution of µ and the sequence of random
variables

log deg(gn)− λ(µ)n√
n

converges to the normal distribution law N (0, σ2).

Structure of the paper

In �1, we recall some general facts on the tame group and then review in �2 the construction
of the associated square complex. In �3, we focus on the global properties of the complex
and exploit them to describe the degree sequences of particular automorphisms whose
action �x a vertex on the complex. We then state in �4 the main valuative estimates
needed for our proofs of Theorem 1 and Theorem 4 which are presented in �5. Finally, we
apply the previous result to deduce Theorem 5 and Corollary 6 in the last section.
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1 General facts on the tame group of the quadric

We work over an algebraically closed �eld k of characteristic zero. Take some a�ne
coordinates (x, y, z, t) ∈ A4 and consider the smooth a�ne quadric threefold Q given
by:

Q := V (xt− yz − 1) ⊂ A4.

Let us also �x an open embedding A4 ⊂ P4 so that A4 = V (w) in the homogeneous
coordinates [x, y, z, t, w] ∈ P4.

In this section, we brie�y describe the geometry of the a�ne quadric and give some
preliminary properties of its elementary and orthogonal group of automorphism.

1.1 The geometry of a quadric threefold and its compacti�-

cation in P4

The a�ne varietyQ ⊂ A4 is a smooth quadric threefold. The Zariski closureQ of the a�ne
quadric is also smooth in P4 and has Picard rank one by Lefschetz hyperplane theorem.
A birational map from Q to P3 is given by choosing a point p0 ∈ Q and sending a point
p ∈ Q to the intersection of the line (pp0) with a hyperplane in P4 which does not contain
p0.

We denote by H∞ := Q \ Q the hyperplane section at in�nity. It is a smooth quadric
surface given in homogeneous coordinates by:

H∞ := V (xt− yz) ⊂ P4.

We identify H∞ with P1×P1 by the isomorphism induced by the composition of the
Segre embedding P1×P1 ↪→ P3 with the inclusion P3 = V (w) ↪→ P4. In homogeneous
coordinates, it is given by:

([ξ0, ξ1], [η0, η1]) 7→ [ξ0η0, ξ0η1, ξ1η0, ξ1η1, 0]. (3)

Any line in H∞ of the form {λ}×P1 (resp. P1×{λ}) where λ ∈ P1 is said to be vertical
(resp. horizontal).

([0, 1], [0, 1]) = [0, 0, 0, 1, 0] ∈ Q

([0, 1], [1, 0]) = [0, 0, 1, 0, 0] ([1, 0], [1, 0]) = [1, 0, 0, 0, 0]

([1, 0], [0, 1]) = [0, 1, 0, 0, 0]

horizontal line P1×{λ}

vertical line {λ} × P1

The two projection maps πx : Q → A1 and πy : Q → A1 given by:

πx :(x, y, z, t) ∈ Q 7→ x,

πy :(x, y, z, t) ∈ Q 7→ y,

induce algebraic �brations which are trivial over A1 \ {0} such that π−1
x (A1 \ {0}) and

π−1
y (A1 \ {0}) are isomorphic to A1 \ {0} × A2. Observe that the �bers over 0 are both

isomorphic to A1×A1\{0} so that the �brations are not locally trivial over a neighborhood
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of the origin. Observe that the intersection with H∞ of the closure of the �ber over 0 in Q
is the union of a vertical line and a horizontal line. The projection on the two components:

πx,y : (x, y, z, t)→ (x, y)

induces a surjective morphism πx,y : Q → A2 \ (0, 0) which is also trivial over A2 \{x = 0}.

The a�ne quadric Q carries naturally a volume form Ω which is the Poincaré residue
of the rational 4-form dx ∧ dy ∧ dz ∧ dt/f along Q. More explicitly, Ω is de�ned by:

Ω =
dx ∧ dy ∧ dz

x
|Q =

dy ∧ dz ∧ dt
t

|Q =
dx ∧ dz ∧ dt

z
|Q.

One checks that Ω extends as a rational 3-form Ω on Q such that its divisors of poles and
zeros satis�es

div(Ω) = −3[H∞].

1.2 The orthogonal group

A regular automorphism f of Q is determined by a morphism f ] of the k-algebra k[Q] and
hence by its image on the four regular functions x, y, z, t. If we denote by fx, fy, fz, ft ∈
k[Q] the image of x, y, z, t by f ], it is convenient to adopt a matrix-like notation for f as
follows:

f =

(
fx fy
fz ft

)
.

Observe that fxft − fzfy = 1 since f ] is a morphism of the k-algebra k[Q] and that any
such automorphism preserves the volume form Ω (up to a constant).

Denote by q(x, y, z, t) = xt−yz the quadratic form de�ned on the vector space V = k4.
The group O4 is the subgroup of linear automorphisms of k4 which leave the quadratic
form q invariant:

O4 = {f ∈ GL4(k) | q ◦ f = q}.

An element of O4 naturally de�nes an automorphism of the quadric hypersurface Q. As
a consequence, we have that for any f ∈ O4,

f∗Ω = ε(f)Ω,

where ε : O4 → k∗ is a morphism of groups. Since Ω is the Poincare residue of the form
dx ∧ dy ∧ dz ∧ dt/(xt − yz − 1) to Q, this implies that for any f ∈ O4, ε(f) is equal to
the determinant of the endomorphism of k4 associated to f , hence ε(f) ∈ {+1,−1}. The
subgroup SO4 is the kernel of ε and has index 2 in O4.

Observe that every element of O4 extends as regular automorphism of Q which leaves
the hyperplane at in�nity invariant. In particular, the restriction map onto H∞ induces a
morphism of groups from O4 onto Aut(P1×P1).

The main properties of O4 and SO4 are summarized in the following proposition.

Proposition 1.1. The following properties are satis�ed:

(i) The group SO4 acts transitively on the set of horizontal and vertical lines at in�nity
respectively, and on the set of points at in�nity.

(ii) Any element of f ∈ O4 which does not belong to SO4 exchanges the horizontal lines
at in�nity with the vertical lines at in�nity.

(iii) The following sequence is exact.

1 // {+1,−1} // O4
// Aut(P1×P1) // 1.
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(iv) For any element f ∈ O4, we have:

f∗Ω = ε(f)Ω,

where ε(f) ∈ {+1,−1} and Ker(ε) = SO4.

Proof. Observe that (iii) follows directly from the following exact sequence:

1 // {+1,−1} // O4
// PSO4

// 1,

and the fact that PSO4 ' PGL2×PGL2 which is given in [FH91, Section 23.1].
In particular, (iii) directly implies (i).

1.3 Elementary transformations

The group EV (resp. EH) of vertical (resp. horizontal) elementary transformations is
de�ned by

EV :=

{(
ax by
b−1(z + xP (x, y)) a−1(t+ yP (x, y))

)
| P ∈ k[x, y], a, b ∈ k∗

}
,

EH :=

{(
ax b(y + xP (x, z))
b−1z a−1(t+ zP (x, z))

)
| P ∈ k[x, y], a, b ∈ k∗

}
.

The terminology comes from the fact that these transformations are restrictions to the
quadric of transformations of A4 of the form

(x, y, z, t)→ (x, y + P (x), z +R(x, y), t+ S(x, y, z))

where P ∈ k[x], R ∈ k[x, y], S ∈ k[x, y, z], which are elementary in the sense of [SU03].

Any automorphism in EV �x the two �brations πx : (x, y, z, t)→ x and πy : (x, y, z, t)→
y and this geometric property characterizes the group EV (see [Dan18, Proposition 3.2.3.1]).
An explicit computation proves that any elementary automorphism f preserves the volume
form Ω:

f∗Ω = Ω.

We will not focus on the action of these elementary transformations on the compact-
i�cation Q. For more details on the study of the birational transformations induced by
these transformations, we refer to [Dan18, Chapter 3, Section 3.2.3].

2 The square complex associated to the tame group

The tame group, denoted Tame(Q), is the subgroup of Aut(Q) generated by EV and O4.
It is naturally included in Bir(P3) since the variety Q is rational.

Observe that any tame automorphism f �xes the volume form Ω up to a sign, i.e there
exists a group morphism ε : Tame(Q)→ {+1,−1} such that:

f∗Ω = ε(f)Ω.

This allows us to identify the kernel STame(Q) of ε as the group generated by SO4 and
EV. It has index 2 in Tame(Q).

The tame group Tame(Q) is a strict subgroup of Aut(Q) ([LV13]) and satis�es the Tits
alternative (see [BFL14, Theorem C]). The proof of this last fact is due to Bisi-Furter-Lamy
and relies on the construction of a square complex on which the group acts by isometry.

The plan of this section is as follows. In �2.1 we detail the construction of the square
complex due to Bisi-Furter-Lamy. Then, following the presentation in [BFL14] we shall

8



review in �2.2, �2.3 and �2.4 the properties of the stabilizer of each vertex of this complex.
We will focus particularly on the stabilizer of the vertices which we call of type I in �2.3
and �2.4, for which the analysis is more involving. Finally, we state in �2.5 �ve technical
lemmas on how four squares glue together near each vertices. As before, the situation is
also more delicate near the vertices of type I and we need to introduce more terminology
to describe the local geometry at those vertices. For a more detailed explanation of the
results in this section, we refer to [BFL14, �2, �3.1] and to [Dan18, Chapter 3, Section
3.3].

2.1 Construction of the square complex

The square complex, denoted C, is a 2-dimensional polyhedral complex where the cells
of dimension 2 are squares and where the cells of dimension 0 and 1 have some special
markings.

We say that a regular function f1 ∈ k[Q] is a component of an automorphism if
there exists f2, f3, f4 ∈ k[Q] such that f = (f1, f2, f3, f4) de�nes an automorphism of the
quadric. One similarly de�nes the notion of components for a pair (f1, f2) or for a triple
(f1, f2, f3) of regular functions on Q when they can be completed to a 4-tuple de�ning an
automorphism of the a�ne quadric.

We distinguish three types of vertices for the complex C:
• Type I vertices are equivalence classes of components f1 ∈ k[Q] of an automorphism,
where two components f1 and f2 are identi�ed if there exists an element a ∈ k∗ such
that f1 = af2. A vertex induced by a component f1 ∈ k[Q] is denoted by [f1].

• Type II vertices are equivalence class of components (f1, f2) of an automorphism
where f1 = x ◦ f, f2 = y ◦ f ∈ k[Q] for f ∈ Tame(Q) and where one identi�es two
components (f1, f2) with (g1, g2) if (g1, g2) = (af1 + bf2, cf1 + df2) for some matrix:(

a b
c d

)
∈ GL2 .

A vertex induced by a component (f1, f2) is denoted by [f1, f2]. Denote by f3 = z ◦f
and f4 = t ◦ f , the vertices [f1, f2], [f1, f3], [f2, f4], [f3, f4] are well-de�ned since the
automorphisms (f1, f3, f2, f4), (−f2,−f4, f1, f3) and (−f3, f4,−f1, f2) are also tame.

Moreover, given a component (f1, f2) and an invertible matrix

(
a b
c d

)
∈ GL2,

there exists an automorphism g such that x◦g = af1 + bf2 and y ◦g = cf1 +df2. Let
us insist on the fact that on the contrary, there are no vertices of the form [f1, f4] or
[f2, f3].

• Type III vertices are equivalence classes of automorphisms f ∈ Tame(Q) where two
tame automorphisms f and g are equivalent if there exists h ∈ O4 such that f = h◦g.
An equivalence class of f ∈ Tame(Q) is denoted by [f ].

The edges of the complex C are of two types:

• Type I edges join a vertex of type I of the form [f1] with a vertex of type II of the
form [f1, f2] where (f1, f2) are the components of a tame automorphism.

• Type III edges join a vertex of type II of the form [f1, f2] with a vertex of type III
[f ] where (f1, f2) are the components of the automorphism given by f .

The cells of dimension 2 are squares containing two type II vertices of the form [f1, f2],
[f1, f3], one vertex of type I given by [f1] and one vertex of type III given by [f ] where
(f1, f2, f3) are the components of the automorphism f ∈ Tame(Q). We have the following
�gure of a square. As in [BFL14], we adopt the following convention for the pictures: the
vertices of type I, II and III are represented by the symbol ◦, • and � respectively.
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[f1]◦

[(
f1 f2

f3 f4

)]�
[f1, f3]
•

[f1, f2]•

The square complex C is obtained by the quotient of the disjoint union of all cells by
the equivalence relation ∼ where any two cells C1, C2 are identi�ed along C1 ∩ C2.

Each square of the complex is endowed with the euclidean metric d so that each square
is isometric to [0, 1]× [0, 1]. For any points p and q in C, de�ne by:

dC(p, q) = inf

{
N∑
i=0

d(pi, pi+1)

}
,

where the in�mum is taken over all sequence of points p0 = p, . . . , pN = q where pi and
pi+1 lie on the same square in C. As any cell of the complex C has only �nitely many
isometries, we may apply a general result from [BH99, Section I.7] and conclude that the
function dC induces a metric on the complex and turns (C, dC) into a complete metric
space. We will explain in �3 the global properties on the complex induced by this metric.

Let us de�ne the action of the tame group Tame(Q) on the complex C. Pick any two
automorphisms f, g ∈ Tame(Q). We de�ne the action of g on the each vertices of the
complex by setting:

g · [f1] := [f1 ◦ g−1],

g · [f1, f2] := [f1 ◦ g−1, f2 ◦ g−1],

g · [f ] := [f ◦ g−1].

The action on vertices induces a morphism of the square complex which preserves the type
of vertices and edges and preserves the distance.

Recall that the subgroup STame(Q) generated by SO4 and elementary transformations
has index 2 in Tame(Q).

De�nition 2.1. An edge E of the complex is called horizontal (resp. vertical) if there
exists an element f ∈ STame(Q) such that f ·E is equal to the edge joining [x, y] with [x]
(resp. [x, z] with [x]) or to the edge between [Id] and [x, z] (resp. [Id] and [x, y]).

We will see that the set of vertical and horizontal edges form a partition of the set of
edges (see (iii) and (iv) of Proposition 2.6).

2.2 Stabilizer of vertices of type III, II and the properties of

the action

In this section, we shall �rst review the properties of the stabilizer of type II and III vertices
then deduce from these the global properties of the action of the group on this complex.
To do so, we shall exploit the relationship between the local geometry near each vertices
and their respective stabilizer subgroups. The geometry near a given vertex v is encoded
in its link L(v) which is constructed as follows. The vertices of L(v) are in bijection with
the vertices v′ such that [v, v′] is an edge of the complex C. And we draw an edge joining
v′ and v′′ in L(v) if the vertices v, v′, v′′ belong to the same square.

Observe that the action of the tame group on the vertices of type III is transitive. As a
result, we shall focus on the stabilizer subgroup of the vertex [Id], which is by construction
O4. Its action on the complex induces an action on the link L([Id]).
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Proposition 2.2. The link L([Id]) is a complete bipartite graph and there exists an O4-
equivariant bijection between the set of vertices of the link L([Id]) to the set of lines at
in�nity such that the vertices which belong to a vertical (resp. horizontal) edge of type III

are mapped to vertical (resp. horizontal) lines at in�nity in H∞. Moreover, this bijection
induces an O4-equivariant bijection from the edges of L([Id]) to the set of points at in�nity
H∞.

Remark 2.3. Observe that Proposition 1.1 and Proposition 2.2 imply that the group O4

acts faithfully and transitively on the link L([Id]).

Proof. We identify two types of vertices in the link of [Id], the vertices which belong to a
horizontal edge containing [Id] or those which are contained in a vertical edge containing
[Id].

We de�ne a map ϕ from the vertices of the link L([Id]) to the set of lines in H∞. Take
a vertex v in the link L([Id]) and a component (f1, f2) such that [f1, f2] = v. By de�nition,
there exists an element f ∈ O4 such that f1 = x ◦ f and f2 = y ◦ f since the stabilizer of
[Id] is O4. The zero locus V (f1) ∩ V (f2) ∩H∞ in Q is the line at in�nity corresponding
to the preimage of {x = y = 0} ∩Q by f . Observe that the line V (f1)∩ V (f2)∩H∞ does
not depend on the choice of representative of the equivalence class v since any two other
component in the same class de�nes the same homogeneous ideal 〈f1, f2, xt−yz−w2〉. We
thus de�ne ϕ(v) to be the line V (f1)∩V (f2)∩H∞. Observe that if v is a vertex of type II
such that the edge containing v and [Id] is vertical, then f ∈ SO4. Hence the line at in�nity
V (x ◦ f)∩V (y ◦ f)∩H∞ is vertical. Observe also that ϕ is naturally O4-equivariant. The
same argument holds for the vertices of type II which belong to horizontal edges containing
[Id].

Let us prove that the map ϕ is surjective. Consider a vertical line L ⊂ H∞ at in�nity,
then there exists by Proposition 1.1.(i) an automorphism f in SO4 such that the image
of the vertical line at in�nity given by [0, 1] × P1 is L. Since ϕ([x, y]) corresponds to the
line [0, 1]×P1, the vertex of type II [x ◦ f, y ◦ f ] de�nes a component of an automorphism
which belongs to the link L([Id]) such that ϕ([x ◦ f, y ◦ f ]) = L. Hence, ϕ is surjective.

Let us prove that ϕ is injective. Consider two vertices v1, v2 such that their image by
ϕ is equal, we prove that v1 = v2. Consider two components (f1, f2), (g1, g2) such that
[f1, f2] = v1 and [g1, g2] = v2. We must prove that (f1, f2) and (g1, g2) belong to the same
equivalence class. By symmetry, we can suppose that the line ϕ(v1) is vertical. Hence,
there exists f, g ∈ SO4 such that f1 = x ◦ f, g1 = x ◦ g, f2 = y ◦ f and g2 = y ◦ g. In
particular, this implies that f ◦ g−1 �xes the vertical line at in�nity given by {[0, 1]}×P1.
Using Proposition 1.1.(iii), we conclude that f ◦ g−1 is of the form

f ◦ g−1 =

(
ax+ by cx+ dy
a′z + b′t c′z + d′t

)
,

where the matrices

(
a b
c d

)
,

(
d′ −b′
−c′ a′

)
∈ M2(k) satisfy

(
a b
c d

)
·
(
d′ −b′
−c′ a′

)
=

(
1 0
0 1

)
.

In particular, this implies that the components (f1, f2) and (g1, g2) are equivalent since
f1 = ag1 + bg2, f2 = cg1 + dg2.

One similarly de�nes a bijection from the edges of the link L([Id]) to H∞. The link
is complete since a horizontal and a vertical line in H∞ always intersect at a point in
H∞, hence for any vertices v1, v2 in L([Id]) which are mapped by ϕ to a vertical and a
horizontal line respectively, there exists an edge joining v1 and v2.

Proposition 2.4. The following properties are satis�ed.
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(i) The stabilizer of a vertex of type III in STame(Q) is conjugated in STame(Q) to SO4.

(ii) The stabilizer of an edge of type III is conjugated in Tame(Q) to the subgroup:(
ax+ by cx+ dy
a′z + b′t c′z + d′t

)

where the matrices

(
a′ b′

c′ d′

)
∈ GL2 and

(
a b
c d

)
=

1

a′d′ − b′c′

(
a′ b′

c′ d′

)
.

(iii) The stabilizer of a 1× 1 square is conjugated in Tame(Q) to:{(
ax b(y + cx)
b−1(z + dx) a−1(t+ cz + dy + dcx)

)
| (a, b, c, d) ∈ k∗× k∗× k× k

}
o
{(

x z
y t

)
, Id

}
(iv) The pointwise stabilizer of the union of the four squares containing [Id] and [x], [y], [z]

and [t] respectively is equal to:{(
ax by
b−1z a−1t

)
| a, b ∈ k∗

}

Proof. Observe that (i) follows directly from the de�nition of the de�nition. Moreover,
the next assertions (ii), (iii) and (iv) are exactly the content of [BFL14, Lemma 2.5 (2),
Lemma 2.7 and Lemma 2.11].

We focus on the stabilizer subgroups of vertices of type II.

Proposition 2.5. The following properties are satis�ed.

(i) The stabilizer of a vertex of type II in Tame(Q) is conjugated in Tame(Q) to the
semi-direct product EV oGL2 where the group GL2 is identi�ed with the stabilizer of
the edge of type III joining [Id] and [x, y].

(ii) The stabilizer of a vertical edge of type I is conjugated in STame(Q) to the subgroup:

EH o
{(

ax d−1y
dz + cx at+ ca−1d−1y

)
| (a, c, d) ∈ k∗× k× k∗

}
.

(iii) The pointwise stabilizer of the geodesic segment of length 2 joining the vertices [f1],
[f3] and [f1, f3] where f = (f1, f2, f3, f4) ∈ STame(Q) is conjugated in STame(Q) to:

EH o
{(

ax by
b−1z a−1t

)
, a, b ∈ k∗

}
.

Proof. Assertion (i), (ii) and (iii) are given in [BFL14, Lemma 2.3, Lemma 2.5 (1) and
Lemma 2.6 (1)] respectively.

From the description of the previous stabilizer subgroups, we state the following con-
sequences on the action of the group on this complex.

Proposition 2.6. The tame group Tame(Q) acts by isometry on the complex C and this
action satis�es the following properties.

(i) The action preserves the types of vertices and the types of edges.

12



(ii) The action is faithful and transitive on the set of vertices of type I , II and III

respectively.

(iii) The subgroup STame(Q) acts transitively on the set of vertical (resp. horizontal)
edges of type I and III.

(iv) Any automorphism f ∈ Tame(Q) which does not belong to the subgroup STame(Q)
sends a vertical edge to a horizontal edge of the same type.

(v) The subgroup STame(Q) acts transitively on the set of 1× 1 squares.

(vi) The group Tame(Q) acts transitively on the union of 4 squares which is isometric to
[0, 2]× [0, 2] and which contains a common vertex of type III.

Proof. The transitive of the action on the set of vertices of type I, II and III and assertions
(i) and (iv) follow from [BFL14, Lemma 2.1 and Lemma 2.4].

To prove (ii), we need to explain why the action is also faithful. Observe that if a
tame automorphism �xes every vertices of type III, or type II or type I, then it �xes the
whole complex since every vertex of type III (resp. type II or I) is the middle point of a
geodesic segment joining type I or type II points. Then the faithfulness follows from the
faithfulness of the action on the link L([Id]).

The assertions (iii), (v) and (vi) are exactly the content of [BFL14, Lemma 2.4, Lemma
2.7, Corollary 2.10] respectively.

2.3 Bass-Serre tree associated to plane automorphisms

We consider the �eld K = k(x). We de�ne the graph Tk(x) which is a bipartite metric
graph.

1. Vertices of type I are equivalence classes of components f1 ∈ k(x)[y, z] of plane
automorphisms where one identi�es two components f1 and g1 if there exists a ∈
k(x)∗ and b ∈ k(x) such that f1 = ag1 + b. An equivalence class induced by a
component f1 is denoted [f1].

2. Vertices of type II are equivalence classes of automorphisms f where one identi�es two
automorphisms f and g if there exists an a�ne automorphism h such that f = h ◦ g
i.e there exists a matrix M ∈ GL3(k(x)) of the form:

M =

 a b c
a′ b′ c′

0 0 1


such that (f1, f2) = (ag1 +bg2 +c, a′g1 +b′g2 +c) where f = (f1, f2) and g = (g1, g2).
An equivalence class induced by a plane automorphism f = (f1, f2) is denoted [f1, f2]

3. Edges link a vertex v1 of type I with a vertex v2 of type II if there exists a polynomial
automorphism f = (f1, f2) such that [f1] = v1 and [f1, f2] = v2.

We endow this graph Tk(x) with the distance such that each edge is of length 1. This
graph Tk(x) is thus a complete geodesic metric space.

The action of an automorphism g ∈ A2
k(x) on Tk(x) is de�ned as follows:

g · [f1] = [f1 ◦ g−1],

and
g · [f1, f2] = [f1 ◦ g−1, f2 ◦ g−1]

for any automorphism f = (f1, f2) ∈ Aut(A2
k(x)).

A classical theorem from Jung ([Jun42]) proves that the graph Tk(x) is a tree and that
the group of plane automorphism acts faithfully, by isometry and transitively on the set
of type I and II vertices respectively.
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2.4 Link over a vertex of type I

In this subsection, we study the link over the vertex of type I given by [x]. Observe that
the stabilizer subgroup of the vertex [x] acts naturally in the link of the vertex [x].

Lemma 2.7. The group Stab([x]) acts transitively, faithfully on the set of vertices of type
I in the link of [x].

Proof. By Proposition 2.6.(v), the group STame(Q) acts transitively on the set of 1 × 1
squares and since a 1 × 1 square containing [x] de�nes an edge in the link L([x]), the
induced action of Stab([x]) is transitive on the edges of the link L([x]). Observe also that
the involution σ : (x, y, z, t) 7→ (x, z, y, t) induces an action on the link which exchanges
the vertices [x, y], [x, z] in the link and �xes the edge between these two vertices. This
proves that the action of the stabilizer Stab([x]) is transitive on the link of [x].

Let us prove that the action is faithful. Suppose f ∈ Stab([x]) acts by the identity
map in the link over [x], then in particular, f must �x pointwise the square containing [Id]
and [x]. By Proposition 2.4.(iii), f is of the form:

f =

(
ax d−1(y + bx)
d(z + cx) a−1(t+ cy + bz + bcx)

)
,

where a, d ∈ k∗ and b, c ∈ k. Since f must also �x the vertices of type II [x, y + xP (x)]
and [x, z + xP (x)] where P ∈ k[x], we have that a = d = 1 and c = b = 0 as required.

In the following arguments, we will use the fact that the link L([x]) is connected
([BFL14, Lemma 3.2]), which is a highly non-trivial argument which relies deeply on the
reduction theory inspired by the work of Shestakov-Umirbaev (see [BFL14, Corollary 1.5]).

Recall that the general �ber of the projection πx : Q → A1 de�ned in �1.3 is isomorphic
to A2. We �x an identi�cation of π−1

x (A1 \ {0}) with A1 \ {0} × A2 given by:

(x, y, z) 7→ (x, y, z, (yz + 1)/x). (4)

The relationship between the stabilizer of the vertex [x] and Aut(A2
k(x)) is realized explicitly

as follows.

Denote by L([x])′ the �rst barycentric division of L([x]). We shall de�ne a simplicial
map π : L([x])′ → Tk(x) as follows.

Let v be a vertex of type II in C which de�nes a vertex in the link of [x], then since the
action of Stab([x]) on the link L([x]) is transitive by Lemma 2.7, there exists an element
f ∈ Stab([x]) such that f · [x, y] = v. Since f naturally �xes the �bration πx, under the
identi�cation π−1

x (A1 \ {0}) ' A1 \ {0} × A2 given by (4), the regular map f is given by:

(x, y, z) 7→ (x ◦ f, y ◦ f, z ◦ f).

Under this identi�cation, (y ◦ f, z ◦ f) induces an element of A2
k(x). We thus de�ne

π(v) = [y ◦ f ] ∈ Tk(x).

Observe that π(v) does not depend on the choice of f . Indeed, if g ∈ Stab([x]) is another
automorphism such that g◦ [x, y] = v, then by Proposition 2.4.(ii), the composition g◦f−1

satis�es:

g ◦ f−1 ∈ EH o
{(

ax d−1y
dz + cx at+ ca−1d−1y

)
| (a, c, d) ∈ k∗× k× k∗

}
,

hence [y ◦ g] = [y ◦ f ] ∈ Tk(x).

Let m ∈ L([x])′ be the middle point of an edge E of L([x]) and let m0 be the middle
point of the geodesic joining [x, y] and [x, z] in L([x])′. Since the action of Stab([x]) in
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the link L([x]) is transitive by Lemma 2.7, there exists an element f ∈ Stab([x]) such
that f ◦m0 = m. Since f naturally �xes the �bration πx, it induces an automorphism of
π−1
x (A1 \ {0}) and under the identi�cation given by (4), it is of the form

(x, y, z) 7→ (x ◦ f, y ◦ f, z ◦ f).

We thus de�ne:
π(m) = [y ◦ f, z ◦ f ].

Observe also that π(m) does not depend on the choice of f . If g ∈ Stab([x]) such that
g ·m0 = m, then g and f di�er by an element which belongs to the subgroup:{(

ax b(y + cx)
b−1(z + dx) a−1(t+ dy + cz + cdx)

)
| a, b ∈ k∗, c, d ∈ k

}
o
{

Id,

(
x z
y t

)}
,

hence [y ◦ g, z ◦ g] = [y ◦ f, z ◦ f ] ∈ Tk(x) and π(m) is well-de�ned.
If E is an edge of L([x])′ of length 1, then we de�ne the image of E by π as the geodesic

joining the image of the endpoints of E by π. As a result,the map π is a simplicial map
between L([x])′ and Tk(x) such that the action of Stab([x]) descends into an action on Tk(x)

(one can prove that π : L([x])′ → Tk(x) is the unique Stab([x])-equivariant map for which
π([x, y]) = [y] and π([x, z]) = [z]).

De�nition 2.8. The subgroup A[x] is the intersection of STame(Q) with the kernel of the
morphism induced by the Stab([x])-equivariant simplicial map π : L([x])′ → Tk(x).

Proposition 2.9. Denote by m ∈ L([x])′ the middle point between the point [x, y] and
[x, z]. The simplicial map π : L([x])′ → Tk(x) satis�es the following properties.

(i) The image of the edge between the point [x, y] and m by π is a fundamental domain
of Tk(x).

(ii) The image π(L([x])′) is a subtree of Tk(x).

(iii) The preimage by π of the segment of length 2 joining [z] and [y] is a bipartite graph.

(iv) The subgroup A[x] ⊂ Stab([x]) ∩ STame(Q) is generated by elements of the form:(
ax b(y + xP (x))
b−1(z + xS(x)) a−1(t+ zP (x) + yS(x) + xP (x)S(x))

)
,

where P, S ∈ k[x] and a, b ∈ k∗.

Proof. Assertion (i), (ii) and (iii) are the content of [BFL14, Lemma 3.4 (1), Lemma 3.5
(1) and (2)] respectively.

Let us prove statement (iv). Let us denote by φ : Stab([x])→ Aut(A2
k(x)) the morphism

of groups induced by the simplicial map π : L([x])′ → Tk(x). It is clear that any element
of the form: (

ax b(y + xP (x))
b−1(z + xS(x)) a−1(t+ zP (x) + yS(x) + xP (x)S(x))

)
,

where P, S ∈ k[x] and a, b ∈ k∗ induces the identity on Tk(x). Conversely, we prove that
any element of A[x] has this form. Pick g ∈ A[x], since φ(g) �xes every vertices of Tk(x),
φ(g) is an a�ne automorphism of A2(k(x)). As φ(g) �xes every vertex of type I and since
it belongs to the image of φ, the plane automorphism φ(g) must be of the form:

φ(g) = (y, z)→ (b(y + xP (x)), c(z + xS(x))),

where P, S ∈ k[x] and where b, c ∈ k∗. In particular, as g ∈ Tame(Q), b = c−1 and g is of
the form: (

ax b(y + xP (x))
b−1(z + xS(x)) a−1(t+ zP (x) + yS(x) + xP (x)S(x))

)
,

proving (iv).
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2.5 Five technical consequences on the local geometry at

each vertex

We say that a subset S ⊂ C is a 2 × 2 square of C if S is the union of four distinct 1 × 1
squares such that S isometric to [0, 2] × [0, 2]. Moreover, we say that a 2 × 2 square is
centered on a vertex v if the vertex v corresponds to the image of the point (1, 1) by an
isometry from [0, 2]× [0, 2] to S.

Two 1 × 1 (resp. 2 × 2) squares S, S′ are said to be adjacent if their union S ∪ S′ is
isometric to [0, 2] × [0, 1] (resp. [0, 4] × [0, 2]). Two 1 × 1 squares S and S′ are adjacent
along a vertical (resp. horizontal) edge if they are adjacent and their intersection S ∩ S′
is a vertical edge (resp. horizontal).

Two 1 × 1 (resp. 2 × 2) squares S1 and S2 are said to be adherent if they are not
adjacent but their intersection is reduced to a vertex. If a vertex v ∈ C belongs to the
intersection of two adherent squares S1∩S2, then S1 and S2 are said to be adherent along
the vertex v.

We say that two 1 × 1 (resp. 2 × 2) squares S, S′ are �at if there exists two 1 × 1
(resp. 2×2) squares S1, S2 such that the union S1∪S2∪S∪S′ is isometric to [0, 2]× [0, 2]
(resp. [0, 4] × [0, 4]). Similarly, three 1 × 1 (resp. 2 × 2) squares are �at if we can �nd
another 1× 1 (resp. 2× 2) square such that their union is isometric to [0, 2]× [0, 2] (resp.
[0, 4]× [0, 4]).

We will prove that three 1 × 1 squares S1, S2, S3 such that S1 and S2, S2 and S3 are
adjacent and contain a common vertex of type II or III are necessarily �at (see Lemma
2.12 and Lemma 2.11 below). However, this property does not necessarily hold when the
squares contain a common vertex of type I (see Lemma 2.13 below), we prove that they
are either �at or contained in a spiral staircase. We explain this terminology below.

A collection (S, S′) of 1×1 or 2×2 squares is contained in a vertical spiral staircase
(see 2.10 for an example) if they contain a common vertex v of type I and such that
any minimal the sequence S1 = S, . . . , Sk = S′ of squares connecting S to S′ sati�es the
following conditions:

1. for all integer i 6 k − 1, the squares Si and Si+1 are alternatively adjacent along a
vertical or horizontal edge containing v;

2. any three consecutive squares (Si, Si+1, Si+2) for i 6 k − 2 is not �at.

3. the �rst two squares S1 and S2 are adjacent along a horizontal edge containing v;

Similarly, one de�nes a horizontal spiral staircase requiring that the �rst two squares
in a minimal sequence are adjacent along a vertical edge. When two squares S, S′ are �at,
then the collection (S, S′) is not contained in a spiral staircase.

Example 2.10. Consider P1, P2, P3 ∈ k[x, y] \ k[x], denote by S the square containing [x]
and [Id] and S′ the square containing [x] and [f ] where f ∈ Tame(Q) is given by:

f =

(
x y + xP1(x, y) + xP3(x, z + xP2(x, y + xP1(x, y)))
z + xP2(x, y + xP1(x, y)) f4

)
,

where f4 = t + y(P1(x, y) + P3(x, z + xP2(x, y + xP1(x, y)))) + yP2(x, y + xP1(x, y)) +
x(P1(x, y) + P3(x, z + xP2(x, y + xP1(x, y))))P2(x, y + xP1(x, y))). Then the pair (S, S′)
is contained in a horizontal spiral staircase and one has the following �gure:

The next lemmas describe when three squares containing a common vertex are �at.

Lemma 2.11. Let v be a vertex of type III and let S1, S2, S3 be three distinct 1×1 squares
such that S1 is adjacent to S2 along an edge containing v, and S2 is adjacent to S3 along
an edge containing v. Then the three squares can be completed into a 2×2 square centered
along v.
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[y, x]•

[z, x]
•

[y + xP1(x, y), x]•

[z + xP2(x, y + xP1(x, y)), x]•[y + xP1(x, y) + xP3(x, y + xP1(x, y)), x]•

[x]
◦

[Id]
�

[f ]
�

�S ′

S

Figure 1: Example of horizontal spiral staircase.
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S2 S3

S4

Proof. Since the group acts transitively on the vertices of type III by Proposition 2.6, we
can reduce by conjugating by a tame element to the case where the vertex [Id] is a common
point of the three squares. By Proposition 2.2.(i) and (ii), the three squares determine 3
distinct points p1, p2, p3 at in�nity such that p1 and p2 are on a same line at in�nity L12,
and p2 , p3 lie on another line L23 which is transverse to L12. Denote by p4 the intersection
of the line passing through p1 transverse to L12 with the line passing through p3 transverse
to L23. This point determines a unique square S4 containing [Id] by Proposition 2.2.(ii)
and the union S1 ∪ S2 ∪ S3 ∪ S4 is isometric to [0, 2]× [0, 2] since p1, p2, p3 and p4 lie on a
cycle of four lines at in�nity.

Lemma 2.12. Let v be a vertex of type II and let S1, S2, S3 be three distinct 1×1 squares
such that S1 is adjacent to S2 along an edge containing v, and S2 is adjacent to S3 along
an edge containing v. Then the three squares can be completed into a 2×2 square centered
along v.

•

• •

◦ ◦

�

�

•

•

S1

S4 S3

S2

Proof. Since the tame group and PGL2 act transitively on the vertices of type III and on
the pairs of points on P1 respectively, we are reduced by conjugating with an appropriate
tame automorphism to the situation where the squares S1 and S2 contain [Id] and the
points [x] and [y] respectively. Take f a tame automorphism such that the vertex f ·S2 =
S3. By Proposition 2.5.(ii), f belongs to:

EV o
{(

ax d−1y
dz + cx at+ ca−1d−1y

)
| (a, c, d) ∈ k∗× k× k∗

}
.

Since the subgroup

{(
ax d−1y
dz + cx at+ ca−1d−1y

)
| (a, c, d) ∈ k∗× k× k∗

}
is a normal

subgroup in the product, we conclude that there exists a square S4 such that the union
S1 ∪ S2 ∪ S3 ∪ S4 is isometric to [0, 2]× [0, 2], as required.
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Lemma 2.13. Let v be a vertex of type I and let S, S1, S2 be three distinct 1× 1 squares
such that S is adjacent to S1 along an edge containing v, and S is adjacent to S2 along an
edge containing v. Let g1 and g2 ∈ STame(Q) such that g1S = S1 and g2S = S2. Then
the three squares can be completed into a 2× 2 square centered along v if and only if g1 or
g2 belongs to Av.

�

� �

�

• •

•

•

◦
S1

S2

S

Proof. Since the group STame(Q) is transitive on the set of 1× 1 squares, we can suppose
that the common vertex v is [x] and that S2 contains the vertex [Id]. We are thus in the
following situation:

[x]

[x, z]

[x, y]

[x, z + xP (x, y)]

[x, y + xR(x, z)]

� �

�

• •

•

•

◦
S1

S2

S

where P,R ∈ k[x, y]. The reverse implication then follows directly from the fact that the

subgroup A[x] is a normal subgroup of Stab([x]).
Let us prove the �rst implication (⇒). Suppose that the squares S1, S2, S3 are �at.

Then there exists a component f4 ∈ k[Q] such that the element f given by:

f =

(
x y + xR(x, z)
z + xP (x, y) f4

)
belongs to Tame(Q). In particular, it must �x the volume form Ω, this implies that:

∂yP (x, y)∂zR(x, z) = 0 ∈ k[Q] .

This implies that ∂yP (x, y) = 0 or ∂zR(x, z) = 0 hence g1 or g2 belongs to A[x] as
required.

Lemma 2.14. Take S and S′ two 2× 2 squares centered at a vertex of type III which are
adherent along a vertex of type I. Then S and S′ satisfy one of the following properties.

(i) Either the pair (S, S′) is �at.

(ii) Either the pair of squares (S, S′) is contained in a horizontal or vertical spiral stair-
case.

Proof. Consider two squares S, S′ such that the pair of square (S, S′) is not �at. Up to a
conjugation by an element of STame(Q), we can suppose that S and S′ are adherent along
the vertex [x]. Since the group Tame(Q) acts transitively the set of 2× 2 squares centered
on type III vertices by Proposition 2.6.(vi), there exists an element g ∈ STame(Q) such
that g · S = S′. Choose a minimal sequence Si of adjacent 2 × 2 squares centered along
a vertex of type III containing [x] such that S1 = S, . . . , Sk = S′. Since the sequence of
square is minimal, the square Si and Si+2 are adherent along the vertex [x] but not �at.
Moreover, the squares Si and Si+1 are alternatively adjacent along vertical and horizontal
edges. Hence the pair (S, S′) is contained in a horizontal or vertical spiral staircase, as
required.

18



In practice, we will use the following explicit characterization to determine whether
two squares adherent along a vertex of type I are �at.

Lemma 2.15. Consider two 2×2 adjacent squares S1, S2 along a horizontal edge contain-
ing [x1], [y1] and a polynomial P ∈ k[x, y] \ k. Denote by [z1], [t1] the other vertices of S1

such that [x1], [z1] belong to a vertical edge of S1 and by [z1 +x1P (x1, y1)], [t1 +y1P (x1, y1)]
the two other vertices of S2. Let g be the tame automorphism de�ned by

g =

(
x y

z + xP (x, y) t+ yP (x, y)

)
so that g · S1 = S2.

The following assertions hold.

(i) We have g ∈ A[x1] if and only if P ∈ k[x] \ k.

(ii) For any square S′ adjacent to S1 along the vertical edge containing [x1], [z1], the
squares S1, S

′, S2 are �at if and only if P ∈ k[x] \ k.

The following �gure summarizes the initial situation in the previous lemma:

S1

S2

◦
[t1]

◦
[z1]

◦
[x1]

◦[y1]

◦
[t1 + y1P (x1, y1)]

◦
[z1 + x1P (x1, y1)]

• •

•

• ◦

◦

S′•

• •

•

•

•

Proof. By conjugation, we can suppose that x1 = x, y1 = y, z1 = z and t1 = t. Assertion
(i) follows directly from the de�nition of A[x].

Let us prove assertion (ii). Choose a square S′ such that g′S1 = S′ where g′ /∈ A[x].
Lemma 2.13 implies that the squares S1, S2, S

′ are �at if and only if g ∈ A[x]. And g ∈ A[x]

is equivalent to the fact that P ∈ k[x] \ k by assertion (i).

3 Global geometry of the complex

In this section, we �rst review the results due to Bisi-Furter-Lamy regarding the global
geometric properties of the metric square complex (C, dC) introduced in �2. We then
describe the degree of iterates of a tame automorphism �xing a vertex of the complex.

3.1 Gromov curvature and Gromov-hyperbolicity

Recall that a map γ : [0, l] → (C, dC) de�nes a geodesic segment of length l if γ induces
an isometry from [0, l] to γ([0, l]). A map γ : R → C which is an isometry onto its image
is called a geodesic line and a map γ : R+ → C which is an isometry onto its image is
called a geodesic half-line. Recall also that γ : [0, l]→ C is a quasi-geodesic if there exists
λ > 0,M > 0 such that for any s, s′ ∈ [0, l], the following inequality is satis�ed:

1

λ
|s− s′| −M 6 dC(γ(s), γ(s′)) 6 λ|s− s′|+M.

As a result, a geodesic line is also a quasi-geodesic. When any two points on a metric space
can be joined by a geodesic segment, we say that the space is a geodesic metric space.
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A geodesic space (X, d) is CAT(0) (see [BH99, Section II.1]) if its triangles are thinner
than euclidian triangles. In other words, (X, d) satis�es the following condition. For any
three points p, q, r in X, take a triangle in the euclidean plane (R2, || · ||) with vertices
p̄, q̄, r̄ ∈ R2 such that d(p, q) = ||p̄− q̄||, d(q, r) = ||q̄ − r̄|| and d(r, p) = ||r̄ − p̄||. Then for
any point m1 ∈ X and m2 ∈ X in the geodesic segment [p, q] and [q, r] respectively, one
has:

d(m1,m2) 6 ||m̄1 − m̄2||,

where m̄1 and m̄2 are the unique points on the segments [p̄, q̄] and [q̄, r̄] respectively such
that d(m1, p) = ||p̄− m̄1|| and d(r,m2) = ||r̄ − m̄2||.

Let us recall the notion of Gromov-hyperbolic metric space. Let δ > 0 be a positive
real number. A metric space (X, d) is δ-hyperbolic if for any geodesic triangle T = [p, q]∪
[q, r] ∪ [r, p] in X and for any point m ∈ [p, q], we have:

d(m, [q, r] ∪ [r, p]) 6 δ

Theorem 3.1. ([BFL14, Theorem A]) The square complex C, endowed with the distance
dC, is a geodesic metric space which is simply connected, CAT(0) and Gromov-hyperbolic.

The previous result has important consequences on the behavior of the isometries of
the complex, i.e distance preserving maps. Recall that the translation length, denoted
l(f), of an isometry f : C → C is de�ned by:

l(f) = inf
v∈C

dC(v, f(v)).

Observe that for any isometry f , the points in the complex where the in�mum is reached
is invariant by f . We denote by Min(f) the subset of C on which the in�mum is reached.

Theorem 3.2. Let f : C → C be an isometry of C which is also a morphism of complex.
Then either l(f) = 0 and f �xes a vertex in the complex, either l(f) > 0 and one can �nd
f -invariant geodesic line on which f acts by translation by l(f).

In other words, a tame automorphism f is either elliptic (when l(f) = 0) or hyper-
bolic.

Proof. Take f an isometry of the complex C. Then Min(f) is non-empty by [BH99,
II.6.6.(2)]. Suppose that l(f) > 0, then f satis�es the hypothesis of [BH99, II.Theorem
6.8]. More precisely, [BH99, II.Theorem 6.8.(1)] asserts that an isometry f of a CAT(0)
space satis�es l(f) > 0 if and only if f translates by l(f) on an invariant geodesic line, as
required. Otherwise l(f) = 0, we prove that there exists a vertex which is �xed by f . Take
a sequence of points vp in C such that the distance dC(vp, f2 ·vp) tends to 0. If these points
belong to the interior of a square, their image will also be in the interior of a square. Since
the distance between vp and f2 · vp is arbitrarily small, they should belong to two squares
Sp, S

′
p which intersect, the only solution is that the intersection is �xed by f2, hence f2

�xes a vertex or an edge or a square. Since each edge is joined by two vertices of di�erent
type and since f2 preserves the type of vertices, we conclude that f2 �xes a vertex in the
complex. Similarly, if f2 �xes a square, then it also �xes the unique vertex of type III on
the given square. A similar argument also holds if the sequence vp are contained in the
edges of C. In any of these cases, we conclude that f must also preserve a vertex in the
complex C, as required.
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3.2 Degree growths of elliptic automorphisms

In this section, we apply the results of the previous section to study the degree growth of
particular tame automorphisms. Recall from the previous section that a tame automor-
phism is elliptic or hyperbolic if its action on the complex �xes a vertex or preserves a
geodesic line of the complex on which it acts by translation respectively.

The following result classi�es the degree growth of any elliptic tame automorphisms.

Theorem 3.3. Let f ∈ Tame(Q) be any tame automorphism of Q �xing a vertex in the
square complex. Then we are in one of the following situations:

(i) The sequence (deg(fn),deg(f−n)) is bounded and f is linear or f2 is conjugated in
Bir(P3) to an automorphism of the form (x, y, z) 7→ (ax, by+xR(x), b−1z+xP (x, y))
with a, b ∈ k∗, P ∈ k[x, y] and R ∈ k[x].

(ii) There exists a constant C > 0 such that:

1

C
n 6 deg(f εn) 6 Cn,

where ε ∈ {+1,−1} and f is conjugated in Bir(P3) to an automorphism of the form:

(x, y, z) 7→ (ax, b−1(z + xR(x)), b(y + xP (x)z)),

with a, b ∈ k∗, R ∈ k[x] and P ∈ k[x] \ k.

(iii) There exists a constant C > 0 and an integer d such that:

1

C
dn 6 deg(f εn) 6 Cdn,

where ε ∈ {+1,−1} and f is conjugated in Bir(P3) to a composition of elements of
the form:

(x, y, z) 7→ (ax, b(z + xP (x, y)), b−1(y + xR(x))),

where a, b ∈ k∗, R ∈ k[x] and P ∈ k[x, y] such that degy(P ) > 2.

Remark 3.4. In case (iii) of the previous Theorem, suppose f is a normal form, then
deg(fp) = Cdp + C0 where C > 0 and C0 ∈ Z.
Remark 3.5. We summarize the growth of the degree of elliptic automorphisms.

Fixed vertex Action on the link Fibration Behavior on the �ber deg(fn)

Type III bounded
Type II over P2 Flow of a vector �eld bounded
Type I trivial on the Bass-Serre tree overP1 Flow of a vector �eld bounded
Type I involution on the Bass-Serre tree over P1 A�ne linear
Type I hyperbolic on the Bass-Serre tree over P1 Composition of Henon exponential

Proof. Take f ∈ Tame(Q) an elliptic automorphism. Since f �xes a vertex on the complex,
we will distinguish three cases depending on the type of vertices f �xes. Moreover, recall
that the degree growth is an invariant of conjugation and that by Proposition 2.6, the
tame group acts transitively on the set of vertices of type I, II and III respectively. We are
thus reduced to compute the degree growth for f in the subgroups Stab([Id]), Stab([x, z])
and Stab([x]) respectively.

First case: If f ∈ Stab([Id]) = O4, the sequence (deg(fn), deg(f−n)) is bounded.

Second case: Suppose that f ∈ Stab([x, z]). By Proposition 2.5, one has:

Stab([x, z]) = EH o
{(

ax+ bz a′y + b′t
cx+ dz c′y + d′t

)
|
(
a b
c d

)(
d′ −b′
−c′ a′

)
= I2 ∈M2(k)

}
.
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Denote by πxz : Q → A2 \ {(0, 0)} the map induced by the projection

(x, y, z, t)→ (x, z).

Recall that π−1
xz (A2\({0}×A1)) is isomorphic to A2\({0}×A1)×A1. We �x an isomorphism,

since f �xes the �bration π, it induces a regular automorphism on A2 \ ({0} × A1) × A1

of the form:
f : (x, z, y) 7→

(
ax, b−1z, b(y + xP (x, z))

)
.

In particular, the sequence (deg(fn),deg(f−n)) is bounded and f satis�es assertion (i).

Third case: Consider f ∈ Stab([x]) such that f /∈ Stab([x, y]) ∪ Stab([x, z]). Since f
preserves the �bration πx : Q → A1 and since π−1

x (A1 \{0}) is isomorphic to A1 \{0}×A2,
the automorphism f is of the form:

f : (x, y, z)→ (x, f1, f2),

where (f1, f2) de�nes an element of Aut(A2
k[x]).

By Proposition 2.9, f induces an action on the subtree of the Bass-Serre tree associated
to Aut(A2

k(x)). If f induces an action on this subtree which �xes every point of the tree,
then f belongs to A[x]. By Proposition 2.9.(iv), f is then of the form:(

ax b(y + xP (x))
b−1(z + xS(x)) a−1(t+ zP (x) + yS(x) + xP (x)S(x))

)
where P, S ∈ k[x] \ k. In particular, the sequences (deg(fn)) and deg(f−n)) are bounded
and f satis�es assertion (i) since in the �xed trivialization, f is of the form (x, y, z) 7→
(x, by + xP (x), z + xS(x)).

Recall that the vertices of type II in the Bass-Serre tree Tk(x) were equivalence classes
of components (f1, f2) of automorphisms in Aut(A2

k(x)) where two components (f1, f2) '

(g1, g2) if and only if there exists

(
a b
c d

)
∈ GL2(k(x)) such that (g1, g2) = (af1 +

bf2, cf1 + df2).
Suppose that f, f2 /∈ A[x] and the action of f on the subtree of Tk(x) �xes a vertex. If

the �xed vertex in the tree Tk(x) is of type II, then we can suppose that f �xes the vertex
given by [y, z]. In particular, this implies that f is conjugated to(
ax b(y + xP (x)z)
b−1(z + xR(x)) a−1(t+ z2P (x) + yR(x))

)
or

(
ax b−1(z + xR(x))
b(y + xP (x)z) a−1(t+ z2P (x) + yR(x))

)
with P ∈ k[x] \ k and R ∈ k[x]. In particular, the sequences deg(fn) and deg(f−n) are
bounded in the �rst case and grow linearly in the second. In the �rst case, f satis�es
assertion (i) and f satis�es assertion (ii) in the second.

If f, f2 /∈ A[x] and the action f on TC(x) �xes a vertex of type I but no vertices of type
II, then f is conjugated to an element which �xes the vertex [z] in the Bass-Serre tree, in
particular it is conjugated to(

ax b(y + xP (x, z))
b−1(z + xR(x)) a−1(t+ z2P (x) + yR(x))

)
with P ∈ k[x, y], R ∈ k[x] \ k. In this case, the degrees are both bounded and f satis�es
assertion (i).

The remaining case is when the action on the tree Tk(x) is hyperbolic and using the
amalgamated product structure, we deduce that f is conjugated to a composition of ele-
ments of the form:(

ax b(z + xP (x, y))
b−1(y + xR(x)) a−1(t+ zR(x) + yP (x, y) + xP (x, y)R(x))

)
,

where R ∈ k[x] and P ∈ k[x, y] such that degy(P ) > 2. In this case, the degree sequences
(deg(fn)), (deg(f−n) are both equivalent to dn and f satis�es assertion (iii).
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4 Valuative estimates

This section is devoted to the generalization of the so-called parachute inequalities (see
[BFL14, Minoration A.2]). Our proof extends the method of [LV13] to more general
valuations. The plan of the section is as follows. First we recall some general facts on
valuations (�4.1), then we consider a particular class of valuations in �4.2. For these
particular valuations, we introduce the parachute associated to a pair of regular functions
on the quadric allowing us to estimate the degree of a derivative on a given direction (�4.3).
Using this and some elementary facts on key polynomials (�4.4), we �nally deduce our key
estimates in �4.5.

4.1 Valuations on a�ne and projective varieties

Let X be an a�ne variety of dimension n over k. By convention for us, a valuation on X
is a map ν : k[X]→ R ∪ {+∞} which satis�es the following properties.

1. We have ν−1({+∞}) = {0}.
2. The function ν is not constant on k[X] \ {0}.
3. For any a ∈ k∗, one has ν(a) = 0.

4. For any f1, f2 ∈ k[X], one has ν(f1f2) = ν(f1) + ν(f2).

5. For any f1, f2 ∈ k[X], one has ν(f1 + f2) > min(ν(f1), ν(f2)).

When the subset ν−1({+∞}) is not reduced to {0}, we say that ν is a semi-valuation. We
endow the space of valuations with the coarsest topology for which all evaluation maps
ν 7→ ν(f) are continuous where f ∈ k[X].

The group R∗+ naturally acts on the set of valuations by multiplication.

The main examples of valuations are monomial valuations. We recall their de�nition
below. Fix a point p on X, an algebraic system of coordinates u = (u0, . . . , un−1) at this
point and some weights α = (α1, . . . , αn) ∈ Rn. We shall denote by uI =

∏n
j=0 u

ij
j when

I = (i0, . . . , in−1) ∈ Nn and by 〈I, α〉 = α0i0 + . . . + αn−1in−1 the usual scalar product.
The monomial valuation ν with weight α with respect to the system of coordinates u is
de�ned by:

ν

(∑
I∈Nn

aIu
I

)
= min {〈I, α〉 | aI 6= 0} ,

where aI ∈ k.
When f ∈ Op,X is a regular function at the point p, then one de�nes ν(f) as:

ν(f) = ν(
∑

aI(f)uI),

where
∑
aI(f)uI is a formal expansion of f near p. The fact that ν(f) does not depend

on the choice of the formal expansion of f near p is proved in [JMta12, Proposition 3.1].
Observe that when α = (1, 0, . . . , 0), then the associated valuation coincides with

the order of vanishing along {u0 = 0}. Furthermore, when X = Spec(k[x, y, z, t]), the
valuation −deg coincides with the monomial valuation with weight (−1,−1,−1,−1) with
respect to (x, y, z, t).

Consider a regular morphism f : X → Y where Y is an a�ne variety and a valuation
ν on X. The pushforward of the valuation ν on X by f is denoted f∗ν is given by the
formula:

f∗ν = ν ◦ f ],

where f ] denotes the morphism of k-algebra corresponding to f .

We also recall the notion of center of a valuation ν.
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When ν| k[X] > 0, then the center of ν in X, denoted Z(ν), is the scheme theoretic
point corresponding to the prime ideal {f1 ∈ k[X] | ν(f1) > 0}. When this condition
does not hold, there exists a regular function f1 such that ν(f1) < 0 and we say that ν
is centered at in�nity. In the latter case, for any projective variety X̄ containing X as a
Zariski open subset, the center of ν in X̄ is a non-empty Zariski closed irreducible subset
which is contained in X̄ \ X. Denote by Rν the valuation ring and by Mν its maximal
ideal, then the center Z(ν) of ν in X̄ can be de�ned as follows:

Z(ν) = {p ∈ X̄ | Op,X̄ ⊂ Rν ,Mp,X̄ =Mν ∩ Op,X̄},

where Op,X̄ denotes the local ring of regular functions at the point p and whereMp,X̄ is
its maximal ideal. The fact that Z(ν) is non-empty follows from the valuative criterion of
properness and we shall refer to [Vaq00] for the general properties of this set.

4.2 Valuations V0 on the quadric

We denote by q ∈ k[x, y, z, t] the polynomial q = xt− yz and by π : k[x, y, z, t]→ k[Q] the
canonical projection. Our objective is to de�ne a subset of the set of all valuations on the
quadric Q, with di�erent weights on some coordinate axis.

Take a point p = (x0, y0, z0, t0) ∈ A4 and a weight α = (α0, α1, α2, α3) ∈ (R−)4, we
write by ναp the monomial valuation on k[x, y, z, t] with weight α with respect to the system
of coordinates (x− x0, y − y0, z − z0, t− t0).

Proposition 4.1. For any point p ∈ A4 and any weight α = (α0, α1, α2, α3) ∈ (R− \{0})4

such that α0 + α3 = α2 + α1, the map ν : k[Q]→ R− ∪ {+∞} given by:

ν(f) := sup
{
ναp (R) | R ∈ k[x, y, z, t], π(R) = f

}
,

for any f ∈ k[Q] is a valuation on the quadric which is centered at in�nity.
Moreover, suppose p = (x0, y0, z0, t0) ∈ k4 and ν ′ : k[Q] → R− ∪ {+∞} is a valuation

such that ν(π(x − x0)) = ν ′(π(x − x0)), ν(π(y − y0)) = ν ′(π(y − y0)), ν(π(z − z0)) =
ν ′(π(z − z0)) and ν(π(t− t0)) = ν ′(π(t− t0)), then

ν ′(f) > ν(f),

for any regular function f ∈ k[Q].

De�nition 4.2. The set V0 is set of all valuations ν : k[Q]→ R− ∪ {+∞} de�ned by

ν(f) := sup{ναp (R) | π(R) = f},

for any f ∈ k[Q] where p ∈ k4 and where α = (α0, α1, α2, α3) ∈ (R−\{0})4 is a multi-index
for which α0 + α3 = α1 + α2.

The group R+,∗ acts naturally by multiplication on the set of valuations on the quadric
and this action descends on an action on V0.

Remark 4.3. Observe that for x0 = y0 = z0 = t0 = 0 and α1 = α2 = α3 = α4 = −1, the
corresponding valuation on the quadric is the order of vanishing along the hyperplane at
in�nity.

Example 4.4. Consider p = (0, 0, 0, 0) and α = (−1/2,−3/5,−9/10,−1), then the asso-
ciated valuation ν is the monomial valuation at the point [0, 0, 0, 1, 0] ∈ Q with weight
(2/5, 1/10, 1) with respect to the coordinate chart (u, v, w) 7→ [w2 + uv, u, v, 1, w] ∈ Q. In
particular, its center is the point [0, 0, 0, 1, 0] ∈ Q.
Example 4.5. Consider p = (1, 2, 3, 4) and α = (−1/2,−3/5,−9/10,−1), then the asso-
ciated valuation ν is the monomial valuation at the point [6, 2, 3, 1, 0] ∈ Q with weight
(2/5, 1/10, 1) with respect to the coordinate chart (u, v, w) 7→ [w2 + (2 + u)(3 + v), 2 +
u, 3 + v, 1, w] ∈ Q. In particular, its center is the point [6, 2, 3, 1, 0] ∈ Q.
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To prove the proposition, we shall need the following technical lemma.

Lemma 4.6. Let ν ′ : k[x, y, z, t]→ R− ∪ {+∞} be a valuation such that ν ′| k[x,y,z,t]\k < 0.

For any polynomial R ∈ k[x, y, z, t] given by

R =
∑
ijkl

aijmnx
iyjzmtn,

with aijmn ∈ k, the following assertions are equivalent:

(i) There exists a polynomial R1 ∈ k[x, y, z, t] such that π(R1) = π(R) ∈ k[Q] and such
that ν ′(R1) > ν ′(R).

(ii) The polynomial q divides Rw where Rw is the homogeneous polynomial given by:

Rw =
∑

iν′(x)+jν′(y)+mν′(z)+nν′(t)=ν′(R)

aijmnx
iyjzmtn.

Proof. The implication (ii) ⇒ (i) is straightforward. If q|Rw then we can decompose R
as:

R = qR1 + S,

where R1, S ∈ k[x, y, z, t] such that ν ′(S) > ν ′(qR1). Hence π(R1 + S) = π(R) and
ν ′(R1 + S) > min(ν ′(R1), ν ′(S)) > ν ′(R) as required.

Let us prove the implication (i)⇒ (ii). Take a polynomial R1 which satis�es (i). Then
we can write:

R1 = R+ (q − 1)S,

where S ∈ k[x, y, z, t]. Let us prove that Rw + qSw = 0. As ν ′(R1) > ν ′(R), the above
equality implies that ν ′(qS) = ν ′(R). Let us suppose by contradiction that Rw + qSw 6= 0.
This implies that ν ′(Rw1 ) = ν ′(Rw+qSw) = ν ′(Rw) which also contradicts our assumption.
Hence Rw + qSw = 0 and q|Rw as required.

The above lemma proves that the supremum ν(f) in Proposition 4.1 is a maximum
which is reached on a value R ∈ k[x, y, z, t] such that π(R) = f and such that q does not
divide Rw.

Proof of Proposition 4.1. Fix p ∈ k4 and α ∈ (R− \{0})4. Observe that for any f1 ∈ k[Q],
the value ν(f1) is smaller or equal than 0. If a ∈ k∗, then by de�nition ν(a) = ν ′(a) = 0.

Fix f1, f2 ∈ k[Q] and let us prove that ν(f1 + f2) > min(ν(f1), ν(f2)). Take R1, R2 ∈
k[x, y, z, t] such that ν ′(R1) = ν(π(R1)) and ν ′(R2) = ν(π(R2)).

As ναp is a valuation on k[x, y, z, t], we have by de�nition:

ν ′(R1 +R2) > min(ν ′(R1), ν ′(R2)) = min(ν(π(R1)), ν(π(R2))).

In particular, the maximal value in the right hand side yields:

ν(f1 + f2) > min(ν(f1), ν(f2)).

We prove that ν(π(f1f2)) = ν(π(f1)) + ν(π(f2)). Take two polynomials R1 and R2 ∈
k[x, y, z, t] such that π(R1) = f1, π(R2) = f2 and ν(f1) = ναp (R1), ν(f2) = ναp (R2).
Observe that (R1R2)w = Rw1 R

w
2 . As the polynomial q does not divide either Rw1 or Rw2 , it

does not divide (R1R2)w since the ideal generated by q is a prime ideal. Hence by Lemma
4.6, one has ν(f1f2) = ναp (R1R2) = ναp (Rw1 ) + ναp (Rw2 ) = ν(f1) + ν(f2) as required.

By construction, the valuation ν is centered at in�nity since ν takes negative values on
the regular functions on the quadric.

Let us prove that the valuation ν is minimal, take another valuation ν ′ : k[Q] →
R−∪{+∞} such that ν ′(π(x−x0)) = ν(x−x0), ν ′(π(y−y0)) = ν(π(y−y0)), ν ′(π(z−z0)) =
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ν(π(z−z0)) and ν ′(π(t−t0)) = ν(π(t−t0)). Then the map ν̂ ′ : R ∈ k[x, y, z, t]→ ν ′(π(R))
de�nes a semi-valuation on k[x, y, z, t]. Remark that the monomial valuation ναp is minimal
in k[x, y, z, t], in the sense that for any R ∈ k[x, y, z, t]:

ν̂ ′(R) > ναp (R).

Take f ∈ k[Q] and choose a polynomial R ∈ k[x, y, z, t] such that ναp (R) = ν(f), the above
inequality implies:

ν ′(f) > ν(f),

hence, ν is also minimal.

4.3 Parachute

In this subsection, we de�ne the parachute associated to a component of a tame automor-
phism. For any 4-tuple (R1, R2, R3, R4) ∈ k[x, y, z, t] of polynomials, we write:

dR1 ∧ dR2 ∧ dR3 ∧ dR4 = Jac(R1, R2, R3, R4)dx ∧ dy ∧ dz ∧ dt,

with Jac(R1, R2, R3, R4) ∈ k[x, y, z, t].

De�nition 4.7. The pseudo-jacobian of a triple (f1, f2, f3) of regular functions on Q is
de�ned by

j(f1, f2, f3) := Jac(q,R1, R2, R3))| Q,

where Ri ∈ k[x, y, z, t] are polynomials such that π(Ri) = fi for i = 1, 2, 3.

Observe that the pseudo-jacobian j(f1, f2, f3) is well-de�ned since any two representa-
tives R1, R2 ∈ k[x, y, z, t] of the same equivalence class in k[Q] are equal modulo (q − 1).

Remark 4.8. Geometrically, the Poincare residue of the map induced by the rational map
(x, y, z, t) 7→ (f1, f2, f3, f4) for fi ∈ k[Q] is given by 1/j(f1, f2, f3)df1 ∧ df2 ∧ df3. In other
words, j(f1, f2, f3) controls how the volume form Ω on the quadric is changed by the
induced rational map.

Lemma 4.9. Let ν ∈ V0 be a valuation. For any f1, f2, f3 ∈ k[Q], we have:

ν(j(f1, f2, f3)) > ν(f1) + ν(f2) + ν(f3)− ν(xt)

Proof. Fix f1, f2, f3 ∈ k[Q] and a valuation ν ∈ V0. By de�nition, there exists a valuation
ν ′ : k[x, y, z, t] → R− ∪ {+∞} such that ν(P ) = sup{ν ′(R)|π(R) = P} for any P ∈ k[Q]
where π : k[x, y, z, t]→ k[Q] is the canonical projection. Take R1, R2, R3, R4 ∈ k[x, y, z, t].
We �rst claim that:

ν ′(Jac(R1, R2, R3, R4)) > ν ′(R1) + ν ′(R2) + ν ′(R3) + ν ′(R4)− ν ′(xyzt).

Let a(k)
I ∈ k be the coe�cients of Rk for k = 1, 2, 3, 4 so that:

Rk =
∑

I=(i1,i2,i3,i4)

a
(k)
I xi1yi2zi3ti4 .

One obtains by linearity that Jac(R1, R2, R3, R4) is a sum of monomials where the valua-
tion of each term is greater or equal to:

ν ′(R1) + ν ′(R2) + ν ′(R3) + ν ′(R4)− ν ′(xyzt).

Hence:

ν ′(Jac(R1, R2, R3, R4)) > ν ′(R1) + ν ′(R2) + ν ′(R3) + ν ′(R4)− ν ′(xyzt).
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In particular, we apply to R4 = q and obtain:

ν ′(Jac(R1, R2, R3, q)) > ν
′(R1) + ν ′(R2) + ν ′(R3)− ν ′(xt),

since ν ′(q) = ν ′(xt) = ν ′(yz). Take f1, f2, f3 ∈ k[Q], by Lemma 4.6, there exists
R1, R2, R3 ∈ k[x, y, z, t] such that π(Ri) = fi ∈ k[Q] and ν(fi) = ν ′(Ri) for all i = 1, 2, 3,
the above inequality implies:

ν(j(f1, f2, f3)) > ν ′(Jac(q,R1, R2, R3)) > ν ′(R1) + ν ′(R2) + ν ′(R3)− ν ′(xt),

where the �rst inequality follows from the de�nition of ν. Observe that ν ′(xt) = ν(xt) by
Lemma 4.6, hence we have proven that:

ν(j(f1, f2, f3)) > ν(f1) + ν(f2) + ν(f3)− ν(xt),

as required.

The regular function j(f1, f2, f3) may vanish so that ν(j(f1, f2, f3)) may be equal to
+∞, even if ν ∈ V0.

Lemma 4.10. For any algebraically independent functions f1, f2 ∈ k[Q], one of the four
regular functions j(x, f1, f2), j(y, f1, f2), j(z, f1, f2), j(t, f1, f2) is not identically zero. In
particular,

min(ν(j(x, f1, f2)), ν(j(y, f1, f2)), ν(j(z, f1, f2)), ν(j(t, f1, f2))) < +∞,

for any valuation ν ∈ V0.

Proof. Consider two algebraically independent regular functions f1, f2 ∈ k[Q] and suppose
by contradiction that j(x, f1, f2) = j(y, f1, f2) = j(z, f1, f2) = j(t, f1, f2) = 0. If K ⊂ L
are two �elds of characteristic zero, then [Lan02, Section VIII.5, Proposition 5.5] states
that

trdegK L = dimL DerK(L), (5)

where DerK(L) denotes the vector space of K derivations of L. When K = k(f1, f2) and
L = k(Q), the above equality implies that any two k(f1, f2)-derivations are proportional.
Since j(x, f1, ·), j(y, f1, ·), j(z, f1, ·) and j(t, f1, ·) are k(f1, f2)-derivations, this translates
as:

j(x, f1, x)j(y, f1, y)− j(x, f1, y)j(y, f1, x) = 0 ∈ k[Q],

Hence,
j(x, f1, y) = 0 ∈ k(Q).

The same argument also yields:

j(f1, x, y) = j(f1, x, z) = j(f1, x, t) = j(f1, y, z) = j(f1, y, t) = j(f1, z, t) = 0.

Hence the maps j(x, y, ·), j(x, z, ·), j(y, z, ·) are also k(f1)-derivations. By (5) applied to
K = k(f1) and to L = k(Q), the space of k(f1) derivations is 2-dimensional and there
exists a, b, c ∈ k(Q) such that:

aj(x, y, ·) + bj(x, z, ·) + cj(y, z, ·) = 0,

where a, b and c are not all equal to zero. Suppose that a 6= 0, we then conclude that:

aj(x, y, z) = 0 ∈ k(Q),

which in turn implies that j(x, y, z) = x = 0 ∈ k[Q] and this is impossible.
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De�nition 4.11. For any monomial valuation ν ∈ V0 and for any algebraically indepen-
dent regular functions f1, f2 ∈ k[Q], the parachute ∇(f1, f2) with respect to the valuation
ν is de�ned by the following formula:

∇(f1, f2) = min(ν(j(x, f1, f2)), ν(j(y, f1, f2)), ν(j(z, f1, f2)), ν(j(t, f1, f2)))−ν(f1)−ν(f2).

Observe that Lemma 4.10 and Lemma 4.9 imply that ∇(f1, f2) is �nite and is strictly
greater than zero.

For any polynomial R ∈ k[x, y], we write by ∂2R ∈ k[x, y] the partial derivative with
respect to y. The next identity is similar to [LV13, Lemma 5] and is one of the main
ingredient to �nd an upper bound on the value of a valuation.

Lemma 4.12. Let ν ∈ V0, let R ∈ k[x, y] and let f1, f2 ∈ k[Q] be two algebraically
independent elements. Suppose that there exists an integer n such that ν(∂n2R(f1, f2)) is
equal to the value on ∂n2R of the monomial valuation in two variables having weight ν(f1)
and ν(f2) on x and y respectively. Then

ν(R(f1, f2)) < degy(R)ν(f2) + n∇(f1, f2).

Proof. Lemma 4.9 proves that j(x, f1, f2) > ν(f1) + ν(f2) − ν(xt) for any f1, f2 ∈ k[Q].
Using this and the fact that j(x, f1, ·) is a derivation, we obtain:

ν(∂2R(f1, f2)j(x, f1, f2)) = ν(j(x, f1, R(f1, f2))) > ν(f1) + ν(R(f1, f2)) + ν(x)− ν(xt).

In particular since ν(x)− ν(xt) = −ν(t) > 0, this yields:

ν(∂2R(f1, f2) > −(ν(j(x, f1, f2))− ν(f1)− ν(f2)) + ν(R(f1, f2))− ν(f2).

A similar argument with y, z and t also gives:

ν(∂2R(f1, f2)) > −∇(f1, f2) + ν(R(f1, f2))− ν(f2). (6)

We apply (6) inductively and obtain the following inequalities:

ν(∂2
2R(f1, f2)) > −∇(f1, f2) + ν(∂2R(f1, f2))− ν(f2),

. . .

ν(∂n2R(f1, f2)) > −∇(f1, f2) + ν(∂n−1
2 R(f1, f2))− ν(f2).

This implies that:

ν(∂n2R(f1, f2)) > −n∇(f1, f2)− nν(f2) + ν(R(f1, f2)).

As ν(∂n2R(f1, f2)) is equal to the value of the monomial valuation with weight (ν(f1), ν(f2))
applied to ∂n2 (R), the last inequality rewrites as:

(degy R− n)ν(f2) > ν(∂n2R(f1, f2)) > −n∇(f1, f2)− nν(f2) + ν(R(f1, f2)).

Hence,
ν(R(f1, f2)) < degy(R)ν(f2) + n∇(f1, f2),

as required.
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4.4 Key polynomials

Let us explain how one can �nd a polynomial which satis�es the hypothesis of Lemma
4.12.

Consider µ : k[x, y] → R− ∪ {+∞} any valuation and µ0 : k[x, y] → R− ∪ {+∞}
the monomial valuation having weight µ(x) and µ(y) on x and y respectively. For any
polynomial R ∈ k[x, y], we write by R ∈ k[x, y] the homogeneous polynomial given by:

R =
∑

iµ(x)+jµ(y)=µ0(R)

aijx
iyj ,

with aij ∈ k such that R =
∑

ij aijx
iyj .

Proposition 4.13. Consider µ : k[x, y]→ R−∪{+∞} any valuation and µ0 the monomial
valuation having weights µ(x) and µ(y) on x and y respectively. The following properties
are satis�ed.

(i) For any R ∈ k[x, y], one has µ(R) > µ0(R).

(ii) If µ 6= µ0, then there exists two coprime integers s1, s2 satisfying s1µ(x) = s2µ(y)
and a unique constant λ ∈ k for which the polynomial H = xs1 − λys2 satis�es
µ(H) > µ0(H).

(iii) For any R ∈ k[x, y], one has µ(R) > µ0(R) if and only if H|R.

The polynomial H associated to µ is called a key polynomial associated to µ.

Proof. Let us prove assertion (i). Write R ∈ k[x, y] as R =
∑
aijx

iyj where aij ∈ k.
Recall that the fact that µ0 is monomial implies that:

µ0(R) = min{iµ0(x) + jµ0(y) | aij 6= 0}.

Also, µ is a valuation, hence:

µ(R) > min{iµ0(x) + jµ0(y) | aij 6= 0} = µ0(R).

We have thus proved that µ(R) > µ0(R), as required.

Step 1: Fix s1, s2 two coprime integers and λ ∈ k. Suppose that s1µ(x) = s2µ(y) and
that the polynomial H = xs1 − λys2 satis�es µ(H) > µ0(H), we prove that λ is unique.
Take λ′ 6= λ ∈ k, then

µ(xs1 − λ′ys2) = µ(H + (λ− λ′)ys2) = s2µ(y),

since µ(H) > µ((λ− λ′)ys2). Hence µ(xs1 − λ′ys2) = µ0(xs1 − λ′ys2) for any λ′ 6= λ.

Step 2: Choose two integers s1, s2 such that s1µ(x) = s2µ(y). We prove that there
exists λ ∈ k∗ such that µ(xs1 − λys2) > s1µ(x) = s2µ(y). Suppose by contradiction that
for any λ ∈ k, one has µ(xs1 − λys2) = s1µ(x). We claim that µ(R) = µ0(R) for any
polynomial R ∈ k[x, y]. Fix R ∈ k[x, y]. Observe that if R is a homogeneous polynomial
with respect to the weight (µ(x), µ(y)), then R is of the form:

R = αxk0
∏
i

(xs1 − λiys2)

where α, λi ∈ k∗ and k0 ∈ N. Our assumption implies that µ(R) = µ0(R) for any
homogeneous polynomial R.

If R is a general polynomial, then R can be decomposed into R =
∑

iRi where
each polynomial Ri is homogeneous. Since µ(Ri) = µ0(Ri) for each i, this proves that
µ(R) = µ0(R) for any R ∈ k[x, y], which contradicts our assumption. We have thus proven
assertion (ii).
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Step 3: We prove assertion (iii). Suppose that µ(R) = µ(R), we claim that H does
not divide R. Observe that µ0(R) = µ0(R), hence µ(R) = µ(R) = µ0(R). The equality
µ(R) = µ0(R) implies that H does not divide R by the previous argument.

Conversely, suppose that H does not divide R, we prove that µ(R) = µ0(R). Since
H does not divide R, we have that µ(R) = µ0(R). Decompose R into R = R + S where
S ∈ k[x, y] such that µ0(S) > µ0(R). We have that:

µ(R) > min(µ(R), µ(S)).

Since µ(S) > µ0(S) > µ0(R) = µ(R), we have thus:

µ(R) = µ(R) = µ0(R),

as required. We have proven that µ(R) = µ0(R) if and only if H does not divide R which
is equivalent to assertion (iii).

4.5 Parachute inequalities

We introduce various notions of resonances of components of a tame automorphism. These
notions will play an important role in the theorem below. Consider a valuation ν ∈ V0

and a component (f1, f2) of a tame automorphism. We are interested in the value of ν on
R(f1, f2) where R ∈ k[x, y]. The estimates of the value ν(R(f1, f2)) will depend on the
possible values of the pair (ν(f1), ν(f2)). We shall distinguish the following three cases:

1. The family (ν(f1), ν(f2)) is Q-independent and we say that the component (f1, f2)
is non resonant with respect to ν.

2. There exists two coprime integers s1, s2 such that s1 > s2 > 2 or s2 > s1 > 2
such that s1ν(f1) = s2ν(f2) and we say in this case that the component (f1, f2) is
properly resonant with respect to ν.

3. Either ν(f1) is a multiple of ν(f2) or ν(f2) is a multiple of ν(f1) and there exists
a polynomial H ∈ k[x, y] of the form x − λyk where k ∈ N∗, λ ∈ k∗ such that
ν(H(f1, f2)) > ν(f1) = kν(f2). In this case, the component (f1, f2) is called criti-

cally resonant with respect to ν.

Example 4.14. When ν = −deg : k[Q] → R− ∪ {+∞}, the family (x, y) is not critically
resonant, but it is neither properly resonant nor non resonant (in particular there is no
alternative). However, (x, y) is non resonant for the monomial valuation with weight
(−
√

2,−
√

3,−
√

2,−
√

3) on (x, y, z, t).

Example 4.15. Take f1 = x, f2 = y + x2 ∈ k[Q], then (f1, f2) is critically resonant with
respect to the valuation ordH∞ = − deg.

Example 4.16. Take f1 = z + x2, f2 = y + x3 ∈ k[Q], then (f1, f2) is properly resonant
with respect the valuation ordH∞ = −deg.

For ν ∈ V0 and (f1, f2) a component of a tame automorphism, the following theorem
allows us to estimate the value of ν on R(f1, f2) only when (f1, f2) is not critically resonant.

Theorem 4.17. Let ν ∈ V0 be a valuation and let ν0 be the monomial valuation on k[x, y]
with weight (ν(f1), ν(f2)) with respect to (x, y). The following assertions hold.

(i) For any polynomial R ∈ k[x, y], one has the lower bound ν(R(f1, f2)) > ν0(R(x, y)).

(ii) If the component (f1, f2) is non resonant with respect to ν, then for any polynomial
R ∈ k[x, y], one has ν(R(f1, f2)) = ν0(R(x, y)).

(iii) Suppose that the component (f1, f2) is properly resonant with respect to ν and let
s1, s2 be two coprime integers such that s1ν(f1) = s2ν(f2), then for any polynomial
R ∈ k[x, y], either ν(R(f1, f2)) = ν0(R(x, y)) or ν(R(f1, f2)) > ν0(R(x, y)) and we
have:

ν(R(f1, f2)) < min

{(
s1 − 1− s1

s2

)
ν(f1),

(
s2 − 1− s2

s1

)
ν(f2)

}
.
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Remark 4.18. Observe that in assertion (iii), only one inequality is relevant. Suppose for
example that ν(f1) < ν(f2), then s1 < s2 and the value (s2− 1− s2/s1)ν(f2) is greater or
equal to 0 whereas ν(R(f1, f2)) < 0.

Remark that the inequalities in Theorem 4.17 are strict and this fact is crucial in our
proof. Before giving the proof of Theorem 4.17, we state two consequences of this theorem
below.

Corollary 4.19. Let ν ∈ V0 be a monomial valuation and let f = (f1, f2, f3, f4) be an
element of Tame(Q). We suppose that ν(f1) < ν(f2) and that (f1, f2) is not critically
resonant with respect to ν. Then for any polynomial R ∈ k[x, y] \ k[y], we have:

ν(f2R(f1, f2)) < ν(f1).

Proof. Two cases appear. Either ν(R(f1, f2)) = ν0(R(x, y)) where ν0 is the monomial
valuation with weight (ν(f1), ν(f2)) with respect to (x, y), and we are �nished since R ∈
k[x, y] \ k[y]. Or ν(R(f1, f2)) > ν0(R(x, y)) and there exists some integers s1, s2 such that
s1ν(f1) = s2ν(f2) where s2 > s1 > 2. Using Theorem 4.17.(iii) and the fact that s1 > 2,
we have thus:

ν(f2R(f1, f2)) < (s1 − 1)ν(f1) < ν(f1),

as required.

We state the second corollary for which the constant 4/3 appears naturally.

Corollary 4.20. Let ν ∈ V0 be a valuation and let (f1, f2) a properly resonant component
with respect to ν such that ν(f1) < ν(f2). Then for any polynomial R ∈ k[x, y] \ k[y], one
has:

ν(f1R(f1, f2)) <
4

3
ν(f1).

Proof. Denote by ν0 : k[x, y]→ R−∪{+∞} the monomial valuation with weight (ν(f1), ν(f2))
with respect to (x, y). Two cases appear, either ν(R(f1, f2)) = ν0(R(x, y)) and we are done
since ν(R(f1, f2)) 6 2ν(f1) as R ∈ k[x, y]\k[y] or ν(R(f1, f2)) > ν0(R(x, y)). In the latter
case, consider two coprime integers s1, s2 such that s1ν(f1) = s2ν(f2). Since ν(f1) < ν(f2)
and the component (f1, f2) is properly resonant, the inequality s2 > s1 > 2 holds. Using
Theorem 4.17.(iii), we obtain:

ν(f1R(f1, f2)) <

(
s1 −

s1

s2

)
ν(f1).

Suppose s1 > 3, then s1 − s1/s2 > 2 as s1/s2 6 1. In particular, the above inequality
gives:

ν(f1R(f1, f2) 6 2ν(f1) <
4

3
ν(f1).

The only remaining case is when s1 = 2 and s2 > s1 = 2. Then s1/s2 6 2/3 and we
obtain:

ν(f1R(f1, f2)) <

(
2− 2

3

)
ν(f1) =

4

3
ν(f1).

Proof of Theorem 4.17. Let us denote by R =
∑
aijx

iyj . Consider the projection πxy :
Q → A2 induced by the embedding of Q into A4 composed with the projection onto A2

of the form:
πxy : (x, y, z, t) ∈ Q(k) 7→ (x, y).

Choose an automorphism f such that f = (f1, f2, f3, f4) where f3, f4 ∈ k[Q]. We denote
by µ the valuation on k[x, y] given by µ = πxy∗f∗ν.
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Observe that for any polynomial R ∈ k[x, y], we have ν(R(f1, f2)) = µ(R(x, y)) and
assertion (i) follows directly from Proposition 4.13.(i). Observe also that assertion (ii)
follows immediately from the fact that ν(f1) and ν(f2) are Q-independent.

Let us prove assertion (iii). We can suppose by symmetry that ν(f1) < ν(f2). Since
the component (f1, f2) is properly-resonant, there exists two coprime integers s1, s2 such
that s1ν(f1) = s2ν(f2) and such that s2 > s1 > 2.

By Proposition 4.13 applied to µ, there exists λ ∈ k∗ such that the polynomial H =
xs1 − λys2 satis�es

µ(H(x, y)) = ν(H(f1, f2)) > ν0(H) = s1ν(f1).

For any polynomial R ∈ k[x, y], denote by R be the polynomial given by:

R =
∑

iµ(x)+jµ(y)=ν0(R(x,y))

aijx
iyj .

By construction, we have that there exists an integer n > 1 such that R ∈ (Hn) \ (Hn+1).
We shall use the following lemma (proved at the end of this section):

Lemma 4.21. Let R ∈ k[x, y] such that H|R . Consider the integer n = max{k | Hk divides R} >
1. Then the following properties are satis�ed.

(i) For any integer k 6 n, we have ∂k2 (R) = ∂2R.

(ii) For any integer k 6 n, we have Hn−k|∂k2R but Hn−k+1 - ∂k2R.

The above lemma implies that ∂k2R = ∂k2R and that Hn−k)|∂k2R but Hn−k+1 - ∂k2R for
any k. In particular, H does not divide ∂n2R and Proposition 4.13.(iii) implies that:

µ(∂n2R(x, y)) = ν0(∂n2R) = ν0(∂n2 R̄).

The previous equation translates as:

ν((∂n2R)(f1, f2)) = ν0(∂n2R)

and R satis�es the conditions of Lemma 4.12 (for the same integer n), which in turn asserts
that:

ν(R(f1, f2)) < degy(R)ν(f2) + n∇(f1, f2),

Since Hn|R̄, one has degy(R) > degy(R) = s2n, we get:

ν(R(f1, f2)) < n (s2ν(f2) +∇(f1, f2)) .

As n > 1 and ∇(f1, f2) 6 −ν(f1)− ν(f2), the above implies that

ν(R(f1, f2)) < s2ν(f2)− ν(f1)− ν(f2).

Since s1ν(f1) = s2ν(f2), we �nally prove that:

ν(R(f1, f2)) < ν(f1)

(
s1 − 1− s1

s2

)
,

as required.

Proof of Lemma 4.21. Consider a monomial valuation ν0 : k[x, y] → R− ∪ {+∞} with
weight (α, β) ∈ (R−,∗)2 with respect to (x, y) and H = xs1−λys2 where s1, s2 are coprime
integers such that s1α = s2β.

Let us prove assertion (i) for k = 1. Fix R ∈ k[x, y] and write R as:

R =
∑
ij

aijx
iyj ,
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where aij ∈ k. The partial derivative is given explicitly by:

∂2R =
∑

i≥0,j≥1

jaijx
iyj−1.

Since H|R, one has R ∈ k[x, y] \ k[x] and ν0(R) = ν0(R). Take (i, j) such that aij 6= 0
and iα + (j − 1)β = ν0(∂2R). Then iα + jβ = ν0(∂2R) + ν0(y) ≤ ν0(R). Conversely,
since H|R, there exists (i, j) such that iα+ jβ = ν0(R) where j ≥ 1, hence we have that
iα+ (j − 1)β ≥ ν0(∂2R). Hence, ν0(∂2R) = ν0(R)− β and ∂2R = ∂2R.

Let us prove assertion (ii) for k = 1. We have that Hn|R but Hn+1 - R, then we have:

R = HnS,

where S ∈ k[x, y] is a homogeneous polynomial such that H - S. By de�nition,

∂2R = ns2H
n−1ys2−1S +Hn∂2S.

Hence Hn−1|∂2R. Suppose by contradiction that Hn|∂2R, then this implies that H|ys2−1S
which is impossible since H does not divide S. We have thus proven that Hn−1|∂2R but
Hn - ∂2R, as required.

An immediate induction on k 6 n proves assertion (i) and (ii).

5 Proof of Theorem 1 and Theorem 4

This section is devoted to the proof of Theorem 1 and Theorem 4. The proof of these two
results are very similar and rely on a lower bound of the degree of an automorphism f by
(4/3)p where p is an integer that we determine.

Let us explain our general strategy. Take an automorphism f /∈ O4.
Step 1: We choose an appropriate valuation ν.
We consider a geodesic line γ in the complex joining [Id] and [f ]. Recall from Propo-

sition 2.2 that the set of 1 × 1 squares containing [Id] is in bijection with the points on
the hyperplane at in�nity H∞ ⊂ Q ⊂ P4. Depending on which 1× 1 square the geodesic
γ near the vertex [Id] is contained, we choose accordingly a valuation ν in V0 centered on
the corresponding point at in�nity in Q̄.

Step 2 (see �5.1): We de�ne an integer p according to the geometry of some geodesics
in the complex and according to the choice of the valuation ν.

Recall that a path in the 1-skeleton of C induces a sequence of numbers obtained
by evaluating the valuation ν on the consecutive vertices. The integer p is de�ned as
the distance in a graph denoted Cν and encodes the shortest path in the 1-skeleton with
minimal degree sequence.

Step 3: We prove that deg(f) > (4/3)p.
Consider the graph Cν associated to ν and denote by dν the distance in this graph.

This step is the content of the following theorem. Recall that the standard 2 × 2 square
S0 is the square whose vertices are [x], [y], [z] and [t].

Theorem 5.1. Pick any valuation ν ∈ V0 satisfying:

max(ν(y) + ν(t), ν(z) + ν(t)) < ν(x) < min(ν(y), ν(z), ν(t)). (7)

Consider any geodesic segment of C joining [Id] to a vertex v of type I which intersects an
edge of the square S0, then the following assertions hold.

1. We have:

ν(v) 6

(
4

3

)dν([t],v)−1

max(ν(x), ν(y), ν(z), ν(t)).
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2. For any valuation ν ′ ∈ V0 satisfying (7), we have:

dν([t], v) = dν′([t], v).

The proof of Theorem 5.1 basically proceeds by induction on the distance between [t]
and v in the graph Cν . The essential ingredient to bound below the degree inductively
are the parachute inequalities stated in Theorem 4.17. We explain in �5.2 how to arrive
to the situation where these inequalities can be applied using the local geometry near the
vertices of type I (i.e the geometry of its link). We then use these arguments to compute
the degree or estimate the valuation ν when one passes from one square to another in each
possible situation, this is done successively in �5.3, �5.4, �5.5 and �5.6.

Once we conjugate appropriately to arrive to the situation of Theorem 5.1, we then
deduce directly both Theorem 1 and Theorem 4.

5.1 The graph Cν associated to a valuation and the orienta-

tion of certain edges of the complex

Fix a valuation ν ∈ V0. Given any automorphism f = (f1, f2, f3, f4) ∈ Tame(Q), we
remark that ν(f1) does not depend on the choice of representative of the class [f1] so that
ν induces a function on the vertices of type I of C.

We say that a vertex v ∈ C of type I is ν-minimal (resp. ν-maximal) in a 2 × 2
square S if ν(v) is strictly smaller (resp. greater) than the value of the valuation ν on
every other vertices of type I of S. Observe that for some valuations, two vertices of type
I can have the same value on ν, hence there can be no ν-minimal or ν-maximal vertices.

We now de�ne a graph Cν associated to a valuation ν ∈ V0 as follows:

1. the vertices are the vertices of C type I;

2. one draws an edge between two vertices v1 and v2 of C′ if there exists a 2× 2 square
S centered at a vertex of type III in C containing v1, v2 such that the vertices v1, v2

belong to an edge of S or v1 and v2 are the ν-minimal and ν-maximal vertices of S
respectively.

Observe that whenever there is no ν-maximal or minimal vertex in a 2 × 2 square S
centered at a point of type III, then we only draw the four edges of the square S.

The graph Cν is endowed with the distance dν such that its the edges have length 1.

Lemma 5.2. The graph Cν is a connected metric graph.

Proof. This follows from the fact that the 1-skeleton of C is connected.

Since we will exploit the properties of this function on the vertices of type I, we intro-
duce the following convention on the �gures. Take an edge of length 2 between two type
I vertices v1, v2, then we put an arrow pointing to v2 if ν(v2) < ν(v1) as in the following
�gure.

◦v1 ◦v2

Lemma 5.3. Let ν : k[Q] → R ∪ {+∞} be a valuation which is trivial over k∗ and such
that ν(x), ν(y), ν(z), ν(t) < 0. Let S be a 2× 2 square of the complex C centered at a type
III vertex. Suppose S has a unique ν-maximal vertex (resp. ν-minimal), then there exists
a unique ν-minimal (resp. ν-maximal) vertex and the ν-minimal and ν-maximal vertices
are at distance 2

√
2 in C.
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Let S be a 2× 2 square centered at a vertex of type III which satis�es the conditions
of Lemma 5.3. and let φ be the associated isometry. Denote by [x1], [y1], [z1] and [t1] the
vertices of type I of the square S where x1, y1, z1, t1 ∈ k[Q] such that the vertex [x1] is
ν-minimal and [t1] is ν-maximal in S. Then there exists a unique isometry φ : S → [0, 1]2

such that:
φ([x1]) = (2, 2),

and
φ([t1]) = (0, 0),

and such that the horizontal edges of S are given the geodesic segments between [x1] and
[y1], and between [z1] and [t1].

Using this convention, Lemma 5.3 implies that we are in the following situation:

[x1]

[z1][t1]

[y1]

◦ ◦

◦◦

�

In particular, the subgraph of C′ containing the vertices of S looks as follows:

◦ [x1]

◦ [z1]◦[t1]

◦[y1]

Proof of Lemma 5.3. Let S be a 2 × 2 square satisfying the hypothesis of the Lemma.
Denote [t1] the ν-maximal vertex of S. Denote also by [z1], [y1], [x1] the type I vertices
of S such that the edges between [t1] and [z1], between [t1] and [y1] are horizontal and
vertical respectively.

Observe that ν(x1), ν(y1), ν(z1), ν(t1) < 0 and that:

ν(x1t1 − y1z1) = ν(1) = 0.

This implies that:
ν(x1) + ν(t1) = ν(y1) + ν(z1).

In particular, ν(t1) > ν(y1) implies that:

ν(x1) < ν(z1).

By symmetry, we also prove that ν(x1) < ν(y1) and this implies that [x1] is the unique
ν-minimal vertex of S, as required.

Observe that for two distinct valuations ν1, ν2 ∈ V0, the graphs Cν1 and Cν2 are not in
general equal.

Lemma 5.4. Fix any valuation ν ∈ V0, and any two adjacent 2× 2 squares S, S′ centered
at a vertex of type III. Suppose that v is a vertex in S ∩ S′ which is ν-minimal in S.

Then the unique vertex v′ ∈ S′ \ S which belongs to an edge containing v is also ν-
minimal in S′.

One has the following �gure:
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S

v

S′

v′

◦ ◦ ◦

◦ ◦ ◦

Proof of Lemma 5.4. Take x1, y1, z1, t1 ∈ k[Q] such that v = [x1], [z1] ∈ S ∩ S′ and
[y1], [t1] ∈ S are the four distinct vertices of S. We claim that we are in the following
situation:

S

◦
[x1]

◦
[z1]

S′

◦
[t1]

◦
[y1]

◦
[t1 + z1P (x1, z1)]

◦
[y1 + x1P (x1, z1)]

where P ∈ k[x, y] \ k. Indeed, recall that the tame group acts as g · [f ] = [f ◦ g−1].
In particular, if S0 is the standard 2 × 2 square containing [x], [y], [z], [t] and [Id] and if
f = (x1, y1, z1, t1), then S = f−1 · S0. Since S and S′ are adjacent along an two edges of
type I, there exists an element e ∈ EH such that S′ = (f−1 ◦ e ◦ f) · S. This proves that
S′ = (f−1 ◦ e) · S0, and the vertex v′ is given by:

v′ = [y ◦ e−1 ◦ f ],

as required.

Since ν(x1) < ν(y1) and since ν(P (x1, z1)) < 0, this implies that:

ν(y1 + x1P (x1, z1)) = ν(x1P (x1, z1)) < ν(x1).

Similarly, one has:

ν(t1 + z1P (x1, z1)) = ν(z1P (x1, z1)) < ν(z1).

Hence since the vertex [z1] is ν-maximal, we have that v′ = [y1 + x1P (x1, z1)] is the
ν-minimal vertex in S′ by Lemma 5.3, as required.

The following proposition compares the distance dν with the distance dC .

Proposition 5.5. The distance dν and the distance dC are equivalent, i.e there exists a
constant C > 0 such that for any vertices v1, v2 ∈ C of type I, one has:

1

2
√

2
dC(v1, v2) 6 dν(v1, v2) 6 3dC(v1, v2).

Proof. For each 2 × 2 square S centered at a vertex of type III in C, the restriction to
S∩Cν of the distance in Cν and the distance dC are bi-lipschitz equivalent. More precisely,
for any v1, v2 ∈ S ∩ Cν , the following inequality holds:

dC(v1, v2)

2
√

2
6 dν(v1, v2) 6 3dC(v1, v2).

Hence, if we apply the previous inequality to a chain of points which belong successively
to the same square, we obtain the distance in C is equivalent to the distance dν and for
any vertices v1, v2 of type I in C, we have:

dC(v1, v2)

2
√

2
6 dν(v1, v2) 6 3dC(v1, v2),

as required.
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5.2 Avoiding critical resonances

Fix a valuation ν ∈ V0 and �x a 2×2 square S. Consider a vertex [x1] of type I in S which
is ν-minimal in S where x1 ∈ k[Q] and denote by [z1] another vertex of type I in S such
that [x1] and [z1] belong to a vertical edge of the square S. For any square S′ which is
adjacent to S along the edge containing [x1] and [z1], Lemma 5.4 implies that the function
induced by ν on the vertices is as follows,

S

◦
[x1]

◦
[y1]

◦
[t1]

◦
[z1]

◦
[y1 + x1P (x1, z1)]

◦
[t1 + z1P (x1, z1)]

S′

where y1, t1,∈ k[Q] and P ∈ k[x, y] \ k. Observe that if the component (x1, z1) is not
critically resonant with respect to ν, then by Corollary 4.20, one has:

max(ν(y1 + x1P (x1, z1), ν(t1 + z1P (x1, z1))) <
4

3
ν(z1).

Moreover, Corollary 4.19 implies also:

max(ν(y1 + x1P (x1, z1), ν(t1 + z1P (x1, z1))) < ν(x1)

When the component (x1, z1) is critically resonant, then the previous inequality does
not necessarily hold since we cannot apply Corollary 4.20.

Our key observation is that the previous inequality remains valid whenever there exists
a square S1 adjacent to S along the edge containing [t1], [z1] and such that its other edge
containing [z1] is not critically resonant. If we choose S1 so that the squares S1, S, S

′ are
�at, we arrive at the following situation where a blue edge means that the corresponding
component is not critically resonant and a red edge that the component is critically
resonant:

◦
[f1]

◦
[f2]

S1

S S′

◦
[f ′1]

◦

◦

◦

◦

◦

◦

In the rest of section, we keep the same convention on the colors of the edges.
We now illustrate our argument in the following lemma.

Lemma 5.6. Fix ν ∈ V0 and S, S′ two adjacent 2×2 squares. Consider v1, v2 two vertices
of the common edge of these squares and suppose that v1 is ν-minimal in S. Suppose that
the edge joining v1 and v2 corresponds to a component (f1, f2) which is not critically
resonant. Then for any vertex v′ ∈ S′ distinct from v1, v2, we have:

ν(v′) < min

(
4

3
ν(v2), ν(v1)

)
.
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Proof. Observe that this lemma follows immediately from Corollary 4.20 and Corollary
4.19.

The Proposition below is the key ingredient in our proof and explains how one can �nd
a square which has an edge which is not critically resonant.

Proposition 5.7. Fix a valuation ν ∈ V0. Let S be any 2× 2 square having a unique ν-
minimal vertex, and let [f1], [f2] be any horizontal (resp. vertical) edge of S. Suppose that
ν(f1) < ν(f2), that (f1, f2) is critically resonant and that for any polynomial R ∈ k[x] \ k,
one has:

ν(f1 − f2R(f2)) < ν(f2).

Then there exists a square S1 adjacent to S along the vertical (resp. horizontal) edge
containing [f2] which satis�es the following properties.

(i) For any square S2 adjacent to S along the edge containing [f1], [f2], the squares
S1, S, S2 are �at.

(ii) The horizontal (resp. vertical) edge in S1 containing [f2] is not critically resonant.

(iii) There exists an element g ∈ A[f2] such that g · S = S1.

Proof. Statement (i) and (iii) follow from Lemma 2.15.(ii) and Lemma 2.15.(i) respec-
tively. Indeed pick any polynomial R ∈ k[x] \ k, and let SR be the square containing
[f2], [f1 − f2R(f2)] which is adjacent to S along the vertical edge containing [f2]. Since
R depends on a single variable, it follows that for any square S2 adjacent to S along the
edge containing [f1], [f2], the squares SR, S2, S are �at.

We now prove (ii), and produce a polynomial R ∈ k[x] \ k such that the component
(f2, f1 − f2R(f2)) is not critically resonant. Since the component (f1, f2) is critically
resonant, there exists a constant λ ∈ k∗ and an integer n > 1 such that

ν(f1 − λfn2 )) > ν(f1) = nν(f2).

Since ν(f1) < ν(f2), we get n > 2 so that R1 := λxn−1 ∈ k[x] \ k.
If the component (f2, f1 − f2R(f2)) is not critically resonant, then the square S1 con-

taining [f2], [f1 − f2R(f2)] which is adjacent to S along the vertical edge containing [f2]
satis�es assertion (ii) and we are done. Otherwise, (f2, f1−f2R(f2)) is critically resonant.
Observe that by assumption, we have

ν(f1 − f2R1(f2)) < ν(f2) ,

so that ν(f1 − f2R1(f2)) = n2ν(f2) for some n2 > 1, and ν(f1 − f2R2(f2)) > n2ν(f2)
for some polynomial R2 ∈ k[x] \ k of the form R2(x) = R1(x) + λ′xn2−1. Repeating this
argument we get a sequence of polynomials Ri ∈ k[x] \ k, and either (f2, f1 − f2Ri(f2))
is not critically resonant for some index i; or (f2, f1 − f2Ri(f2)) is critically resonant for
all i. However in the latter case, the sequence (ν(f1 − f2Ri(f2)) is strictly increasing and
(ν(f1 − f2Ri(f2)) are all multiples of ν(f2) which yields a contradiction. The proof is
complete.

5.3 Degree estimates between adjacent squares

Theorem 5.8. Take a valuation ν ∈ V0. Let v be any ν-maximal vertex of a 2× 2 square
S and let S′ be an adjacent square which does not contain v. Suppose that the vertex v is
also ν-maximal in any square S̃ adjacent to S. Then S′ admits a unique ν-minimal vertex
and for any vertex v′ ∈ S′ \ S, one has:

ν(v′) <
4

3
ν(v2),

where v2 is the vertex in S ∩ S′ which is not ν-minimal in S.
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Proof. Observe that Lemma 5.4 implies that S′ has a unique ν-minimal vertex. If the edge
S ∩ S′ is not critically resonant, then Lemma 5.6 implies the conclusion of the theorem.
Otherwise, the edge S ∩ S′ is critically resonant and we check that the squares S and S′

satisfy the hypothesis of Proposition 5.7.

Denote by [f1] the ν-minimal vertex in S and by [f2] = v2. For any polynomial
R ∈ k[x]\k, take SR to be the square containing [f1−f2R(f2)], [f2] and v. By construction,
the square SR is adjacent to S along an edge containing v, hence the vertex v is ν-maximal
in SR and this implies that the vertex [f1− f2R(f2)] is ν-minimal in SR. In particular, we
have proved that ν(f1 − f2R(f2)) < ν(f2). By Proposition 5.7, there exists two squares
S′1, S

′
2 such that the union S∩S′1∪S′∪S′2 forms a 4×4 square centered along the vertex [v2]

and such that the edge S′1 ∩ S′2 is not critically resonant. We thus arrive at the following
situation (with the same convention on colors as in the previous section).

S S′

[v2]
[v]

S′1 S′2

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦

In particular, by applying Lemma 5.4 to the square S′1 and S′2, we �nd that

ν(v′) <
4

3
ν(v2),

for any vertex v′ ∈ S′ \ S as required.

5.4 Degree estimates at a ν-maximal vertex

In this section, we analyze the situation of two 2× 2 squares adherent at a vertex of type
I.

Recall from Section 2.5 that a pair of adherent squares (S, S′) is contained in a spiral
staircase if there exists a sequence of squares S0 = S, . . . , Sp = S′ connecting S and S′

which are adjacent alternatively along vertical and horizontal edges and such that any
three consecutive squares Si, Si+1, Si+2 are not �at for i 6 p − 2. When the intersection
between S0 and S1 is a horizontal (resp. vertical) edge, we say that the staircase is vertical
(resp. horizontal).

Theorem 5.9. Fix a valuation ν ∈ V0.
Consider three 2×2 squares S, S1 and S′ having a vertex [x1] of type I in common. We

assume that S and S1 have a common horizontal edge [x1], [y1], and that the pair (S, S′)
is contained in a vertical spiral staircase containing S1. Denote by [z1] the vertex in S1

which forms a vertical edge with [x1].
Assume that [x1] is ν-maximal in S1, that the component (x1, z1) is not critically res-

onant, that ν(z1) < ν(y1) and ν(z1) < (4/3)ν(x1). Then for any vertex v ∈ S′ distinct
from [x1], one has:

ν(v) <
4

3
ν(x1).

The following �gure summarizes the situation of the Theorem (with the convention of
section 5.2 on the color of the edges).
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◦ ◦

• •

•

S

S1

S′

◦
[t1]

◦
[z1]

◦
[x1]

◦
[y1]

◦
[z′]

◦
[t′]

◦
[y′]

We shall use repeatedly the following lemma, whose proof is given at the end of this
section.

Recall from Section 2.4 the de�nition of the subgroup Av of the stabilizer of a vertex
v of type I.

Lemma 5.10. Take three 2× 2 squares S1, S2, S3 containing [x1] and which are adjacent
alternatively along vertical and horizontal edges. Suppose that S1, S2 and S3 are not �at.
Then the following assertions hold.

(i) Suppose that S′1 is a 2 × 2 square which is adjacent to S2 along S1 ∩ S2 such that
there exists an element g ∈ A[x1] for which g · S1 = S′1. Then the squares S′1, S2, S3

are not �at.

(ii) For any 2×2 squares S′1, S
′
2 such that S1, S2, S

′
1, S
′
2 are �at, the squares S′1, S

′
2, S3 are

not �at. Moreover, given any g1, g2 ∈ Stab([x1]) ∩ STame(Q) such that g1S1 = S′1,
and g2S2 = S′2, we have g1, g2 ∈ A[x1].

This lemma will allow us to consider alternative spiral staircase around the vertex [x1].
We thus have the following �gures in each situation.

S′1

S3

S1S2

◦

◦ ◦

◦
[x1]

◦

◦◦

◦

◦

◦

•

•

•

•

•

•

• •

•

•

•

•

S′2 S′1

S3

S1S2

[x1]

•

•

•

•

•

•

• •

◦

◦

◦

◦

◦

◦

◦

◦

◦ ◦ ◦

• • •

• •

•
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Proof of Theorem 5.9. Take a valuation ν ∈ V0 and three squares S, S1, S
′ satisfying the

conditions of the theorem. By assumption, there exists an integer p > 2 and a sequence
of adjacent squares S2, . . . , Sp−1 such that S0 = S, S1, S2, . . . , Sp = S′ forms a vertical
staircase.

We denote by [y1], [z1], [t1], [x1] and [z′], [y′], [t′] the vertices of S1 and S′ respectively
so that the edges [x1], [y1] and [x1], [y′] are horizontal and the edges [x1], [z1] and [x1], [z′]
are vertical. We are thus in the following situation.

S

S1

S′

◦
[t1]

◦
[z1]

◦
[x1]

◦
[y1]

◦
[z′]

◦
[t′]

◦
[y′]

◦ ◦•

• • •

•
•

•

Recall that S and S′ are connected by a vertical staircase S = S0, S1, . . . , Sp−1, Sp = S′.

Lemma 5.11. The theorem holds whenever the edges Si ∩Si+1 are not critically resonant
for all i ≥ 1.

Lemma 5.12. For any vertex v such that [x1], v is an edge of S′, there exists a vertical
staircase S = S0, S̃1, S̃2, . . . , S̃q−1, S̃q such that

• S̃1 = S1;

• S̃q and S′ are adjacent along the edge [x1], v;

• the edges S̃i ∩ S̃i+1 are not critically resonant for all i ≥ 1.

Take any vertex v of S′ such that [x1], v is an edge of S′. By Lemma 5.12 we get a
sequence of squares S̃i connecting S to S̃q and satisfying the assumptions of Lemma 5.11.

This proves ν(v) <
4

3
ν(x1) as required.

Proof of Lemma 5.11. We prove by induction on i the following two properties:

(P1) For any vertex v 6= [x1] in Si \ S0, one has:

ν(v) <
4

3
ν(x1).

(P2) Let v1 6= [x1] be the unique vertex which is contained in the edge Si ∩ Si−1 and let
v2 be the other vertex in Si which belongs to an edge containing [x1]. Then one has:

ν(v2) < ν(v1).

Observe that (P1) and (P2) are satis�ed when i = 1 by our standing assumption on
S1.

Let us prove the induction step. For all i, denote by ti the unique vertex of Si which
does not lie in Si−1 ∪Si+1; by yi the vertex in Si ∩Si−1 distinct from x1. We also write zi
for the vertex in Si∩Si+1 distinct from x1 (so that yi+1 = zi). We thus have the following
picture:
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Si

Si−1

[ti−1] [zi−1]

Si+1

[x1] [yi + x1P (x1, zi)]
[yi]

[ti] [zi] [ti+1]

◦

◦

◦

◦

◦

◦

◦

◦

•

•

•

By our induction hypothesis, we have:

ν(zi) < ν(yi) < ν(x1) .

Observe that yi+1 is given by:

yi+1 = yi + x1P (x1, zi).

for some polynomial P ∈ k[x, y]. Since the squares (Si−1, Si, Si+1) is not �at, Lemma
2.15.(i) and Lemma 2.13 imply that that P /∈ k[x].

Since the component (x1, zi) is not critically resonant, Corollary 4.19 and Corollary
4.20 applied to f1 = zi and f2 = x1 imply:

ν(x1P (x1, zi)) < min

(
4

3
ν(x1), ν(zi)

)
,

hence:

ν(yi+1) = ν(yi + x1P (x1, zi)) = ν(x1P (x1, zi)) < min

(
4

3
ν(x1), ν(zi)

)
.

This proves that [x1] is ν-maximal in Si+1, hence [ti+1] is ν-minimal in Si+1 by Lemma
5.3 and assertion (P1) and (P2) hold for i+ 1, as required.

Proof of Lemma 5.12. We prove by induction on the length of the vertical staircase, i.e.
on p the following stronger version of the lemma. For any vertex v such that [x1], v is an
edge of S′, there exists a vertical staircase S = S0, S̃1, S̃2, . . . , S̃q−1, S̃q such that

• S̃1 = S1;

• S̃q and S′ are adjacent along the edge [x1], v, and there exists an element g ∈ A[x1]

for which g · S̃q = S′.

• the edges S̃i ∩ S̃i+1 are not critically resonant for all i ≥ 1.

For p = 2, we may choose S̃1 = S1, S̃2 = S′, and there is nothing to prove since [x1], [z1]
is not critically resonant by our standing assumption.

Let us prove the induction step. Suppose that the claim is true for any staircase of
length p, and pick a staircase (S = S0, S1, . . . , Sp+1 = S′) joining S to S′. By the induction
step applied to the vertex vp ∈ Sp ∩ Sp+1 distinct from x1, we may �nd another vertical
spiral staircase (S = S0, S1 = S̃1, S̃2, . . . , S̃p) such that the edges S̃i∩S̃i+1 are not critically
resonant for all 1 ≤ i ≤ p, and there exists an element g ∈ A[x1] for which g · S̃p = Sp.

Observe that the S̃p and Sp+1 are adjacent along the edge containing [x1], vp. Since
Sp−1, Sp, Sp+1 are not �at, Lemma 5.10.(ii) implies that the squares S̃p−1, S̃p, Sp+1 are
also not �at.

If the edge Sp+1 ∩ S̃p is not critically resonant, the proof is complete. Otherwise, the
edge S̃p ∩Sp+1 is critically resonant. Denote by [zp] and v′ the vertices in S̃q distinct from
x1 and lying in S′ and S̃p−1 respectively. By Lemma 5.11, we have ν(zp) < ν(v′) < ν(x1),
and we have the following picture.
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S̃p−1

Sp+1 = S′S̃p

zp

[x1]
v′ v

◦

◦

◦

◦

◦

◦

◦

◦

•

•

•

We claim that
ν(zp − x1R(x1)) < ν(x1).

for any polynomial R ∈ k[x] \ k. Taking this claim for granted we conclude the proof of
the lemma. By Proposition 5.7, we may �nd a square S′′p adjacent to S̃p along the edge
containing [x1], v′ whose edges containing [x1] are not critically resonant and such that
the triple S̃p, S′′p , Sp+1 is �at. Let S̃p+1 be the 2 × 2 square completing the 4 × 4 square

containing S̃p, S′′p , Sp+1.

Since the squares S̃p−1, S̃p and Sp+1 are not �at, Lemma 5.10.(ii) implies that the
triple S̃p−1, S

′′
p and S′p+1 is also not �at, so that the sequence (S1, S̃2, . . . , S̃p−1, S

′′
p , S̃p+1)

is contained in a spiral staircase such that any edge lying in two consecutive squares is not
critically resonant. Lemma 5.10.(ii) applied to S̃p−1, S̃p, Sp+1 implies the existence of an
element g ∈ A[x1] such that g · S̃p+1 = Sp+1. This �nishes the proof of the induction step.

We now prove our claim. Fix a polynomial R ∈ k[x] \ k, and consider the square SR
containing [x1], [zp − x1R(x1)] and v′. Since xR(x) ∈ k[x], the squares SR, S̃p and Sp+1

are �at by Lemma 2.15.(ii). We thus have the following picture.

S̃p−1

Sp+1S̃p

[zp]

[x1]
v′

[zp − x1R(x1)]

v

◦

◦

◦

◦

◦

◦

◦

◦

◦ ◦ ◦

•

•

•

• •

• • •

By Lemma 2.15, there exists an element g ∈ A[x1] such that g · S̃p = SR. By Lemma

5.10.(i) the triple S̃p−2, S̃p−1, SR are not �at since S̃p−2, S̃p−1, S̃q are not �at. We have
thus proven that the sequence (S, S1, S̃2, . . . , S̃p−1, SR) is contained in a spiral staircase for
which any edge lying in two consecutive squares is not critically resonant. By Lemma 5.11
the vertex [x1] is ν-maximal in SR, hence:

ν(zp − x1R(x1)) < ν(x1),

as required.

Proof of Lemma 5.10. By transitivity of the action of STame(Q) on the 2× 2 squares, we
can suppose that S2 is the standard 2× 2 square containing [x], [t], [y], [z] and that S1 and
S3 are adjacent along the vertical and horizontal edge containing [x] respectively. Take
g1, g3 ∈ Stab([x]) ∩ STame(Q) such that g1 · S2 = S1 and g3S2 = S3.
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Let us prove assertion (i). Since S1, S2, S3 are not �at, Lemma 2.13 implies that
g1, g3 /∈ A[x]. Observe that gg1 · S2 = S′1 and g3 · S2 = S3 where g ◦ g1 /∈ A[x], hence the
squares S′1, S2, S3 are also not �at by Lemma 2.13.

Let us prove assertion (ii).
Consider g, g′ ∈ Stab([x]) ∩ STame(Q) such that g · S1 = S′1, g

′ · S2 = S′2. Since
g1 /∈ A[x] but the squares S

′
1, S1, S2 are �at, Lemma 2.13 implies that g, g′ ∈ A[x]. Observe

that gg1g
′−1 · S′2 = S′1 and g3g

′−1 · S′2 = S3 and that g ◦ g1 ◦ g′−1, g3 ◦ g′−1 /∈ A[x], hence
the squares S′1, S

′
2, S3 are not �at by Lemma 2.13.

5.5 Degree at a non-extremal vertex

Theorem 5.13. Take a valuation ν ∈ V0. Consider two 2× 2 adherent squares S and S′

at a vertex of type I given by [x1] with x1 ∈ k[Q] such that the pair (S, S′) is contained in
a vertical spiral staircase. Denote by [y1] the unique vertex in S distinct from [x1] which
belongs to the horizontal edge containing [x1]. Suppose that the edge containing [x1], [y1]
is not critically resonant. Then for any vertex v distinct from [x1] in S′ one has:

ν(v) <
4

3
ν(x1).

One has the following picture:

S

S′

◦
[t1]

◦
[z1]

◦
[x1]

◦
[y1]

◦
[z′]

◦
[t′]

◦
[y′]

•

•
•

•

Remark 5.14. By symmetry, observe that the same assertion holds if [z1] is ν-minimal in
S and the pair (S, S′) is contained in a horizontal spiral staircase.

Proof. Consider two squares S, S′ and the vertices [x1], [y1] ∈ S satisfying the conditions
of the Theorem. By de�nition, there exists an integer p and p adjacent squares S0 =
S, . . . , Sp = S′ containing [x1] connecting S and S′.

Since S0 = S and S1 are adjacent, the vertex [x1] is ν-maximal in S1 by Lemma 5.4.
Denote by [z1] the vertex in S1 such that the vertices [x1] and [z1] are contained in the

vertical edge of S1 so that we are in the following situation:

S

S′

[y1]
[x1]

S1

[z1]

◦ ◦

◦ ◦

◦ ◦ ◦ ◦

◦

• •

•

•
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Fix any polynomial R ∈ k[x] \ k. Consider SR the square containing [x1], [y1] and [z1 −
x1R(x1)]. By Lemma 2.15, the squares S1, SR, S2 are �at. Take S̃R the 2 × 2 square
completing the 4× 4 square containing S1, SR, S2. Lemma 5.10.(ii) implies that S, SR, S̃R
are not �at since S, S1, S2 are not �at. This proves in particular that the vertex [x1] is
ν-maximal in SR, hence:

ν(z1 − x1R(x1)) < ν(x1).

By Proposition 5.7, there exists a square S′1 adjacent to S along [x1], [y1] such that the
squares S′1, S1, S2 are �at and such that the vertical edge in S′1 containing [x1] is not crit-
ically resonant. Consider the square S′2 completing the 4× 4 square containing S′1, S1, S2.
By construction, the edge S′1 ∩ S′2 is not critically resonant. Observe also that Lemma 5.6
implies that for any vertex v ∈ S′1 distinct from [x1] and [y1], one has:

ν(v) < max

(
ν(y1),

4

3
ν(x1)

)
.

Suppose that p > 3, then the triple (S, S′1, S
′) satis�es the assumptions of Theorem 5.9

and we conclude that for any vertex v distinct from [x1] in S′:

ν(v) <
4

3
ν(x1).

We have thus proven the theorem.

Suppose that p = 2 and the squares S′ and S1 are adjacent. We are thus in the
following situation:

S′1 S′2

S

S′S1

[z1]

[x1]
[y1] v

◦

◦

◦

◦

◦

◦

◦

◦

◦ ◦ ◦

•

•

•

• •

• • •

where v is the unique vertex in S′ distinct from [x1] which belongs to the horizontal edge
containing [x1]. By Theorem 5.9, [x1] is ν-maximal in S′2, hence it is also ν-maximal in S′

and ν(v) < 4/3ν(x1). Observe also that Lemma 5.6 implies that:

ν(z1) <
4

3
ν(x1).

This proves that for any v ∈ S′ distinct from [x1], one has:

ν(v) <
4

3
ν(x1),

and the theorem holds.

5.6 Degree estimates at a ν-minimal vertex

Theorem 5.15. Consider any valuation ν ∈ V0. Let S and S′ be two adherent 2 × 2
squares intersecting at a vertex v which is ν-minimal in S. Then the following holds.

(i) The vertex v is the ν-maximal vertex of S′.

45



(ii) If v′ is a vertex in S′ which does not belong to any square adjacent to S, then we
have:

ν(v′) <
4

3
ν(v)

Remark 5.16. Suppose that the vertex v ∈ S′ belongs to a square adjacent to S, then we
will apply the estimates in Theorem 5.8 instead.

Proof. Let us prove assertions (i) and (ii).
Suppose �rst that S and S′ belong to a 4x4 squares containing S, S′, S1 and S2 as in

the �gure below. Since S, S1 and S, S2 are adjacent along an edge containing v, Lemma
5.4 implies that we are in the following situation:

S

S1 S′

[z1 + x1R(x1, y1)]

v

v′

[y1 + xP (x1, z1)][y1]

[z1][t1]

S2

◦ ◦ ◦

◦◦ ◦

◦ ◦ ◦

where v = [x1], [y1], [z1], [t1] ∈ S and P,R ∈ k[x, y] \ k. Observe that v is ν-maximal in
S′ and we have proved assertion (i). Since the squares S, S1, S2 are �at, Lemma 2.15 and
Lemma 2.13 imply that P ∈ k[x] \ k or R ∈ k[x] \ k. Suppose that P ∈ k[x] \ k, then we
have (4/3)ν(x1) > ν(y1 + x1P (x1)) = (deg(P ) + 1)ν(x1) > ν(v′) proving (ii) as required.

Suppose next that (S, S′) is contained in a spiral staircase. Choose a sequence of
squares S0 = S, . . . , Sp = S′ of squares containing v and connecting S and S′ such that
each triple of consecutives squares is not �at. By symmetry, we can suppose that S0 and
S1 are adjacent along a horizontal edge containing v. Observe that Lemma 5.4 applied to
S, S1 implies that the edge S1 ∩ S2 contains the ν-minimal vertex in S1.

If the edge S1 ∩ S2 is not critically resonant, then the pair (S1, S
′) is contained in a

horizontal staircase so that one has the following picture:

S

S1 S′

v3

v

◦ ◦

◦ ◦

◦ ◦ ◦ ◦

◦

• •

•

•

By Theorem 5.13, the vertex v is ν-minimal in S′ and one has ν(v′) < (4/3)ν(v) for
all v′ 6= v in S′. We have thus proved assertion (i) and (ii).

We now suppose that the edge S1 ∩ S2 is critically resonant. Denote by [f1] the ν-
minimal vertex in S1 and by v = [f2]. Fix any polynomial R ∈ k[x] \ k and take SR the
square containing [f1 − f2R(f2)], [f2] and the edge S1 ∩ S0. Lemma 2.15.(ii) implies that
the squares S1, SR, S2 are �at. Take S′R the 2 × 2 square completing the 4 × 4 square
containing S1, SR, S2. Since the squares S, S1, S2 are not �at, Lemma 5.10 implies that
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S, SR, S
′
R are also not �at. In particular, the squares S and SR intersect along an edge

containing v, Lemma 5.4 implies that

ν(f1 − f2R(f2)) < ν(f2).

By Proposition 5.7 applied to the edge [f1], [f2], we can �nd a square S′1 adjacent to S
along S ∩ S1 and g ∈ Av such that g · S1 = S′1 and such that the vertical edge containing
v in S1 is not critically resonant. By Lemma 2.13, the squares S1, S

′
1, S2 are �at. Take S′2

the 2 × 2 square completing the 4 × 4 square containing S1, S2, S
′
1. As the three squares

S, S1, S2 are not �at, Lemma 5.10 implies that the squares S, S′1, S
′
2 are also not �at.

If p > 3, then the pair (S′1, Sp) is contained in a horizontal spiral staircase and the edge
S′1 ∩ S′2 is not critically resonant. Hence, by Theorem 5.13, the vertex v is ν-maximal in
S′ and for any vertex v′ distinct from v in S′, one has:

ν(v′) <
4

3
ν(v),

proving (i) and (ii) as required.

Suppose that p = 2 so that S2 = S′. Observe that S′2 and S′ are adjacent along a
horizontal edge containing v. Since v is ν-maximal in S′2, it is also ν-maximal on the
edge S′2 ∩ S′. Since v is ν-maximal on the vertical edge S1 ∩ S′, we have thus proven
that v is ν-maximal in S′ and assertion (i) holds. Take v2 the vertex contained in S′ ∩ S′2
distinct from v. Since the edge S′1 ∩ S′2 is not critically resonant, Lemma 5.6 implies that
ν(v2) < 4/3ν(v). Hence, for any vertex v′ ∈ S′ not contained in the same band as S, one
has ν(v′) < (4/3)ν(v) proving (ii) as required.

5.7 Proof of Theorem 5.1

Take S0 the standard square containing [x], [y], [z], [t]. Fix a valuation ν ∈ V0 such that:

max(ν(y) + ν(t), ν(z) + ν(t)) < ν(x) < min(ν(y), ν(z), ν(t)).

Pick any vertex v of type I such that the geodesic segment in C joining [Id] to v intersects
an edge of the standard square. Choose any geodesic segment γ : [0, n] → Cν joining
[t] to v such that the sequence (ν(γ(i)))0≤i≤n is maximal for the lexicographic order in
Rn+1 among all geodesic segments joining [t] to v. Pick any sequence S̃0, . . . , S̃n−1 of
2 × 2 squares such that γ(i), γ(i + 1) ∈ S̃i for all i 6 n − 1. We claim that the following
properties hold.

(A) The vertex γ(i) is the unique ν-maximal vertex in S̃i for all 0 ≤ i ≤ n− 1.

(B) We have ν(γ(i+ 1)) <
4

3
ν(γ(i)) for all 1 6 i 6 n− 1.

(C) For any other valuation ν ′ ∈ V0 satisfying (7), the vertex γ(i) is also ν ′-maximal in
S̃i for all 0 ≤ i ≤ n− 1.

Observe �rst that these properties (A), (B) and (C) imply Theorem (i) and (ii).
Observe the slight discrepancy in the indices between (A), (C) and (B). We do not

claim that ν(γ(1)) <
4

3
ν([t]) in general. This claim is however su�cient to imply Theo-

rem 5.1 (1) and (2).
Observe that assertion (C) implies that dν([t], v) ≥ dν′([t], v) and we conclude by

symmetry that dν([t], v) = dν′([t], v) for any other valuation ν ′ ∈ V0 satisfying (7). This
proves that assertion 2 of the theorem holds.

We shall prove the claim by induction on n > 1. Fix another valuation ν ′ ∈ V0

satisfying (7).
Suppose n = 1. There is only one square S̃0 containing [t] and v (it may not be the

standard square). Since n = 1, we only need to prove assertions (A) and (C).
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Lemma 5.17. Take any 2× 2 square S adjacent to the standard square S0 along an edge
containing [t]. Then the vertex [t] is ν-maximal in S.

Moreover, denote by v1 the vertex in S ∩ S0 distinct from [t] in S and by v2 the vertex
distinct from v1 for which the vertices [t], v2 form an edge of S. Then one has ν(v2) <
ν(v1).

Grant this lemma. If S̃0 and S0 are adjacent along an edge containing [t] Lemma 5.17
implies assertions (A) and (C) immediately. Suppose now that S̃0 and S0 are adherent at
[t]. If the squares S̃0 and S0 are �at, then Lemma 5.17 applied to the two squares adjacent
to both S0 and S̃0 again implies that [t] is also ν-maximal and ν ′-maximal in S̃0.

Otherwise (S0, S̃0) are contained in a spiral staircase. Take an integer p > 2 and a
sequence of squares S0, S

′
1, . . . , S

′
p = S̃0 connecting S0 to S̃0 such that each three con-

secutive squares are not �at. If the edge S0 ∩ S′1 is not critically resonant, take [f1] the
vertex distinct from [t] of the edge S′2 ∩ S′1. Denote by [f2] the vertex in S0 ∩ S′1 distinct
from [t]. By Lemma 5.17, one has ν(f1) < ν(t) and ν(f1) < ν(f2). Take any polynomial
R ∈ k[x] \ k, denote by SR the square containing [f1 − tR(t)], [t], [f2]. By construction,
SR is adjacent to S0 and Lemma 5.17 implies that ν(f1 − tR(t)) < ν(t). By Proposition
5.7, we can �nd a square S′′1 = g · S′1 with g ∈ A[t] such that S′1, S

′′
1 , S

′
2 are �at and the

edge containing [t] in S′′1 distinct from S0 ∩S′1 is not critically resonant. Take S′′2 the 2× 2
square completing the 4× 4 square containing S′1, S

′
2, S
′′
1 .

If p > 3, the triple S0, S
′
1, S
′
2 is not �at by Lemma 5.10.(ii), hence S0, S

′′
1 , S

′′
2 are also

not �at. The squares (S0, S
′′
1 , S̃0) thus satisfy the conditions of Theorem 5.9, and [t] is

ν-maximal in S̃0. If p = 2, then S′2 = S̃0 and by Theorem 5.9 applied to (S0, S
′′
1 , S

′′
2 ), the

vertex is ν-maximal in S′′2 . Since S
′′
2 and S̃0 are adjacent along an edge containing [t] and

[t] is also ν-maximal in S′1, it is also ν-maximal in S̃0, proving assertion (A) as required.
Observe that the same argument also applies for ν ′ ∈ V0, hence assertion (C) also holds.

We have thus proven the claim for n = 1.

Let us suppose that the claim is true for n > 1. We shall prove it for n+1. Choose any
geodesic γ : [0, n+ 1]→ Cν joining [t] to a vertex v for which the sequence (ν(γ(i)))0≤i≤n
is maximal. Denote by vi = γ(i). Take any sequence of squares S̃0, . . . , S̃n for which
vi, vi+1 ∈ S̃i.

By our induction hypothesis applied to the vertex vn, the sequence S̃0, . . . , S̃n−1 satisfy
assertions (A), (B) and (C).

Suppose �rst that S̃n−1 and S̃n are adjacent or equal. Observe that assertion (A)
implies that v = γn+1 cannot belong to the square S̃n−1, otherwise it would contradict
the fact that γ is a geodesic in Cν (recall that in this graph we draw an edge joining the
ν-maximal to the ν-minimal edge). This implies that S̃n−1 and S̃n are adjacent along
an edge containing the ν-minimal vertex in S̃n−1. Lemma 5.4 shows that the vertex in
S̃n−1 ∩ S̃n which is not ν-minimal in S̃n−1 is ν-maximal in S̃n. By the maximality of the
sequence (ν(γ(i)))0≤i≤n the vertex vn cannot be ν-minimal in S̃n−1, hence is ν-maximal
in S̃n, proving assertion (A). The following �gure summarizes the situation:

vn−1 vn

S̃nS̃n−1

◦ ◦ ◦

◦ ◦ ◦

Since vn−1 is also ν ′-maximal in S̃n−1, the vertex vn is also ν ′-maximal in S̃n by Lemma
5.4. We have thus proven assertion (C).

Let us check that S̃n−1 satis�es the condition of Theorem 5.8. Take another square S̃
adjacent to S̃n−1 containing vn−1, vn. Observe that the sequence S̃0, . . . , S̃n−2, S̃ satis�es
the conditions of the theorem and contains vn which is at distance n. We apply our
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induction hypothesis to the vertex vn and to the sequence of squares S̃0, . . . , S̃n−2, S̃.
Assertion (A) implies that the vertex vn−1 is ν-minimal in S̃, as required.

We may thus apply Theorem 5.8 to the band S̃n−1 ∪ S̃n which yields

ν(vn+1) <
4

3
ν(vn),

proving (B), as required.

Suppose that the squares S̃n−1, S̃n are adherent and �at. If vn, vn−1 form an edge of
S̃n−1, then we can �nd a band of two squares containing vn−1, vn, vn+1, which corresponds
to the previous situation. Otherwise (vn, vn−1) is not an edge of S̃n−1, and since vn−1

is ν-maximal and ν ′-maximal in S̃n−1 by assertions (A) and (C), the vertex vn is ν-
minimal and ν ′-minimal in S̃n−1. Observe that the vertex vn+1 cannot belong to a band
containing vn, vn−1 since we have chosen a geodesic γ for which the sequence (ν(γ(i)))0≤i≤n
is maximal. We thus arrive at the following situation:

S̃n−1

vn−1

vn

vn+1

S̃n

◦ ◦ ◦

◦◦ ◦

◦ ◦ ◦

•

•

•

• • •

• •

•

By Theorem 5.15 (i) and (ii) applied to S̃n−1 and S̃n, the vertex νn is ν-maximal and
ν ′-maximal in S̃n (hence (A), (C) hold), and one has ν(vn+1) < 4/3ν(vn), and assertion
(B) holds.

Suppose that the squares S̃n−1, S̃n are contained in a spiral staircase.
Let us suppose �rst that the vertices vn−1, vn do not belong to the same edge of S̃n−1.

By assertions (A) and (C) applied to vn−1, the vertex vn−1 is ν-maximal and ν ′-maximal
in S̃n−1, hence vn is ν-minimal and ν ′-minimal in S̃n−1. We thus have the following �gure:

S̃n−1

vn−1

vn

S̃n

◦ ◦

◦ ◦

◦ ◦ ◦•

•

• •

•

In particular, by Theorem 5.15.(i) applied to the squares S̃n−1, S̃n implies that vn is ν-
maximal and ν ′-maximal in S̃, proving (A) and (C). Observe that vn+1 cannot belong to
a band containing vn−1, vn since we have chosen the geodesic such that ν(γ(i)) is maximal.
In particular, Theorem 5.15.(ii) implies that:

ν(vn+1) <
4

3
ν(vn),

proving (B) as required.
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Let us suppose that the vertices vn−1, vn belong to an edge of S̃n−1. Since the argument
are similar for horizontal edges, we can suppose that the edge joining vn−1, vn is vertical,
and the pair (S̃n−1, S̃n) belongs to a vertical spiral staircase.

Write by vn = [f2] and let [f1] be the vertex distinct from vn in S̃n−1 which belongs
to the horizontal edge containing vn. For any polynomial R ∈ k[x] \ k, denote by SR the
2× 2 containing [f2], [f1 − f2R(f2)], vn−1. We thus have the following �gure:

[f1 − f2R(f2)]

SR

S̃n

S̃n−1

vn−1

[f2][f1]

◦ ◦

◦ ◦

◦ ◦ ◦•

•

• •

•

◦

◦

•

•
•

Using our induction hypothesis for the vertex vn and to the sequence of squares S̃0, . . . , S̃n−2, SR,
assertions (A) and (C) imply that the vertex vn−1 is ν-maximal and ν ′-maximal in SR,
hence ν(f1 − f2R(f2)) < ν(f1) and ν ′(f1 − f2R(f2)) < ν ′(f1). By Proposition 5.7, we
can �nd a square S′ containing vn−1, vn for which the horizontal edge containing vn is not
critically resonant and such that there exists g ∈ Avn such that g · S′ = S̃n−1. By Lemma
5.10, since (S̃n−1, S̃n) is contained in a vertical spiral staircase, this implies that the pair
(S′, S̃n) is also contained in a vertical spiral staircase. Since vn is neither ν-maximal nor
ν-minimal in S′, the pair (S′, S̃n) satis�es the conditions of Theorem 5.13.

One has the following �gure:

S′

S̃n

S̃n−1

vn−1

vn[f2]

◦ ◦

◦ ◦

◦ ◦ ◦•

•

• •

•

◦

◦

Observe that the same argument applies for ν ′ and we can �nd another square S′′ adjacent
to S̃n−1 along vn, vn−1 such that S′′, S̃n−1 is contained in a vertical spiral staircase and such
that the horizontal edge in S′′ containing vn is not critically resonant for ν ′. By Theorem
5.13, the vertex vn is ν-maximal and ν ′-maximal in S̃n and ν(vn+1) < (4/3)ν(vn), proving
(A), (B) and (C) as required.

We have thus proven that our induction step is valid, and the theorem is proved.

Proof of Lemma 5.17 . Fix a valuation ν ∈ V0 satisfying (7) and take a square S adjacent
to S0 along an edge containing [t].

Observe that the edge S ∩ S0 is either vertical or horizontal. Since the proof is similar
for both cases, we can suppose that S ∩S0 is vertical so that S and S0 intersect along the
edge containing [y], [t]. Remark that in this case, we have v1 = [y] and v2 is the vertex
distinct from [t] which belongs to the horizontal edge in S containing [t].

We are thus in the following situation:
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S S0

v2 = [z + tP (y, t)]

[x]

[z][t]

v1 = [y][x+ yP (y, t)]

◦ ◦ ◦

◦ ◦ ◦

where P ∈ k[x, y] \ k.
Observe also that the edge S ∩ S0 is not critically resonant.
Since ν(P (y, t)) 6 min(ν(y), ν(t)) and since (7) implies that 2ν(t) < ν(z) and ν(y) +

ν(t) < ν(z), we get:
ν(tP (y, t)) < ν(z),

hence ν(z+ yP (y, t)) < ν(z) and the vertex [z+ tP (y, t)] is ν-maximal in S. Observe also
that the component (y, t) is not critically resonant. By Corollary 4.19, we obtain:

ν(z + tP (y, t)) < ν(y),

hence ν(v2) < ν(v1), as required.

5.8 Proof of Theorem 1

Consider a tame automorphism f ∈ Tame(Q). Since the complex C is CAT(0) and since
the action of f is an isometry and a morphism of complex, the action of f on the complex
either �xes a vertex or a geodesic line. In the �rst case, f is elliptic and by Theorem
3.3, the sequences (deg(fn)), (deg(f−n)) are either both bounded, both linear or both
equivalent to Cdn where C > 0 and d ∈ N.

We are thus reduced to prove the theorem in the case where f induces an action which
�xes a geodesic line γ : R → C. Take an hyperbolic automorphism f and a geodesic line
γ : R → C �xed by f . Denote by S0 the standard 2 × 2 square containing [x], [y], [z] and
[t]. Since for any tame automorphism h ∈ Tame(Q), there exists a constant C > 0 such
that:

1

C
6

deg(fn)

deg(h−1fnh)
6 C,

by taking an appropriate conjugate of f , we can suppose that γ starts in S0 and intersects
an edge of S0. Consider the geodesic segment γ′n joining [Id] and [x◦f−n]. By construction,
γ′n intersects an edge of the standard square S0 as γ starts in S0.

Fix any valuation ν such that (7) is satis�ed. There are in�nitely many valuations
in V0 satisfying (7) arbitrarily close to −deg. Indeed, consider the sequence of weight
αi = (−1,−1 + 3/i,−1 + 5/i,−1 + 7/i), then by Proposition 4.1, there exists a sequence
of valuations νi with weight αi on (x, y, z, t) which converges to −deg.

All assumptions of Theorem 5.1 are then satis�ed and we get:

νi(f
n · [x]) = νi(x ◦ f−n) 6

(
4

3

)dνi ([t],[x◦f−n])−1

max(νi(y), νi(z), νi(x), νi(t)).

Observe that νi tends to − deg, moreover, assertion (2) of Theorem 5.1 implies that the
distance dνi([t], [x ◦ f−n]) are all equal for all i which implies:

deg(f−n) >

(
4

3

)dν([t],[x◦f−n])−1

,

for a given valuation ν satisfying (7).
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We now prove that the sequence (dν([t], [x ◦ f−n]))n grows at least linearly. Indeed
since the invariant geodesic γ passes through S0, then it passes through all the squares
f i · S0 for all i 6 n. Observe that all the squares f i · S0 are distinct and there are at least
n squares. Consider a geodesic segment γ1n in Cν joining [t] and [x ◦ f−n] and a shortest
path γ2n in Cν contained in a sequence of squares containing the geodesic γ between these
two vertices. The hyperbolicity of C implies that the lengths l(γ1n), l(γ2n) in Cν of γ1 and
γ2 are comparable as n tends to in�nity:

lim inf
n→+∞

l(γ1n)

l(γ2n)
= 1.

Since the length in Cν of γ2n is larger or equal than n, we have proven that:

lim
n→+∞

1

n
dν([t], [x ◦ f−n]) > 1.

Hence

deg(f−n) > C

(
4

3

)n−1

,

where C > 0. Since the argument is similar for deg(fn), we have thus proven that:

min(deg(fn),deg(f−n)) > C

(
4

3

)n
where C > 0.

5.9 Proof of Theorem 4

Take f, g ∈ Tame(Q). Since the tame group acts by isometries on the complex, we can
suppose that g = Id. Consider γ the geodesic in C joining [Id] to [x◦f ]. Since the stabilizer
of [Id] is the group O4 by Proposition 2.6 and since the group O4 acts transitively on the
1 × 1 squares containing [Id] by Proposition 2.2, we can suppose that the geodesic γ
intersects an edge of type I containing [x] of the 1 × 1 square containing [x], [Id], [z, x]
and [x, y]. In particular, the geodesic γ intersects an edge of the standard square S0. We
have proved that the vertex v = [x ◦ f ] satis�es the conditions of Theorem 5.1, and by
considering a sequence of valuations νp ∈ V0 converging to −deg satisfying (7), we have:

νp(x ◦ f) 6

(
4

3

)dνp ([t],[x◦f ])−1

max(νp(y), νp(z), νp(x), νp(t)).

By Proposition 5.5, we have for all integer p:

1

2
√

2
dC(v1, v2) 6 dνp(v1, v2).

for any vertices v1, v2 of type I. Since dC([t], [x ◦ f ]) > dC([Id], [f ])− 2
√

2, we thus obtain
after taking the limit as p→ +∞:

log deg(f) > CdC([f ], [Id])− C ′,

where C ′ = 2 log(4/3) and C = log(4/3)/(2
√

2) so that:

log deg(f−1 ◦ g) >
log(4/3)

2
√

2
dC(f · [Id], g · [Id])− 2 log(4/3),

as required.
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6 Application to random walks on the tame group

In this section, we consider a random walk on the tame group and its associated degree
sequence. After recalling some general facts on random walks on groups (�6.1), we then
discuss when the degree exponents of a random walk are well-de�ned and their properties
(�6.2). We then classify in �6.3 the �nitely generated subgroup of Tame(Q). Finally we
prove Theorem 5, which asserts that the degree exponent of a symmetric random walk on a
�nitely generated group G is strictly positive if and only if it contains two non-commuting
automorphisms with dynamical degree strictly larger than 1 generating a free group of
rank 2.

6.1 General facts on random walks on groups

LetG be a �nitely generated subgroup of the tame group and let µ be an atomic probability
measure on G. The (left) random walk on G with respect to the measure µ is the Markov
chain whose initial distribution is the Dirac mass at Id with transition matrix p(g, g′) =
µ({g′g−1}) for all g, g′ ∈ G. We denote by Ω = (GN∗ , µ⊗N

∗
) the product probability space

which encodes the successive increments of the random walk on G with respect to the
measure µ. Consider an element s = (s1, . . . , sn, . . .) ∈ Ω, set g0(s) = Id and

gn(s) = snsn−1 . . . s1,

for all n > 1. The image P of the map s ∈ Ω 7→ (Id, g1(s), . . . , gn(s), . . .) ∈ GN∗ is called
the path space and an element of P is a path in the group G. We naturally endow P
with the probability measure P de�ned on the σ-algebra of cylinders as the pushforward
of the product measure on Ω by the map s ∈ Ω 7→ (gi(s))i. More explicitly, consider the
probability measure νn of the projection of P onto the n+ 1-th component gn, then νn is
equal to the n-fold convolution µ∗n ∗ δId so that for all g ∈ G, one has:

νn({g}) = P(gn = g) =
∑

s1,...,sn
sn...s1=g

n∏
i=1

µ(si).

Fix a reference vertex v0 = [Id] in the complex C. Since the tame group acts on the
complex, a path in the group (Id, g1, . . . , gn, . . .) induces an element in CN∗ given by (v0, g1 ·
v0, . . . , gn ·v0, . . .). The sequence (v0, g1 ·v0, . . . , gn ·v0, . . .) is called a path in the complex.

6.2 Degree exponents of a random walk

LetG be a �nitely generated subgroup of the tame group and let µ be an atomic probability
measure on G. We shall de�ne in this section the degree exponents of a random walk with
respect to the measure µ. To do so, the measure µ must satisfy a �niteness condition on
its �rst moment: ∫

g∈G
log(deg(g))dµ(g) < +∞. (8)

Let us de�ne the two degree exponents λ1(µ), λ2(µ) by:

λ1(µ) := lim sup
n→+∞

1

n

∫
g∈G

log(deg(g))dνn(g),

and

λ2(µ) := lim sup
n→+∞

1

n

∫
g∈G

log(deg(g−1))dνn(g),

where νn is the probability measure of gn.

The following proposition proves that these quantities are �nite and give a few basic
properties of these numbers.
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Proposition 6.1. Take G a countably generated subgroup of the tame group and µ an
atomic probability measure on G satisfying condition (8). Then the following properties
are satis�ed.

(i) The degree exponents λ1(µ), λ2(µ) are �nite and are equal to:

λ1(µ) = lim
n→+∞

1

n

∫
g∈G

log(deg(g))dµn(g),

and

λ2(µ) = lim
n→+∞

1

n

∫
g∈G

log(deg(g−1))dµn(g),

(ii) The following inequality holds:

λ1(µ) >
λ2(µ)

2
.

(iii) Consider σ : G→ G the inverse map, then λ2(µ) = λ1(σ∗µ).

(iv) The degree exponents are invariant by conjugation, i.e for any h ∈ Tame(Q), we
have:

λi(Conj(h)∗µ) = λi(µ),

where Conj(h) : Tame(Q)→ Tame(Q) denotes the conjugation by h in G.

Proof. Let us �rst prove (i). Using the fact that deg(g)2 > deg(g−1) for all g ∈ G, we
obtain a �niteness condition on the inverse:∫

g∈G
log(deg(g−1))dµ(g) 6 2

∫
g∈G

log(deg(g))dµ(g) < +∞

Since the function deg is submultiplicative, according to Kingman's subadditivity theorem
applied to the functions log(deg(g)) and log(deg(g−1), the degree exponents are �nite and
the lim sup in the de�nition is a limit. This proves assertion (i).

Assertion (ii) follows from the fact that deg(g)2 > deg(g−1) for all g ∈ Tame(Q). To
prove assertion (iii), observe that for all (s1, . . . , sn, . . .) ∈ Ω, we have:

s−1
n s−1

n−1 . . . s
−1
1 = (s1s2 . . . sn)−1.

In particular, we obtain:

lim
n→+∞

1

n

∫
Ω

log(deg((s1s2 . . . sn)−1)))dµ⊗n = lim
n→+∞

1

n

∫
Ω

log(deg(snsn−1 . . . s1))dσ∗µ
⊗n.

Since the right hand side of the equality is equal to λ1(σ∗µ) and the left hand side to
λ2(µ), we have thus proven (iii).

Finally, let us prove assertion (iv). Fix h ∈ Tame(Q), recall that there exists a constant
C(h) > 0 such that for all g ∈ Tame(Q), we have:

deg(g)

C(h)
6 deg(hgh−1) 6 C(h) deg(g).

The last inequality directly implies that λi(Conj(h)∗µ) = λi(µ) for all i = 1, 2 and all
h ∈ Tame(Q).
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6.3 Classi�cation of �nitely generated subgroups

In this section, we give a classi�cation of the �nitely generated subgroups of the tame
group. To that end, we recall the terminology due to Gromov ([Gro87]) on subgroups of
isometries of a hyperbolic space.

Fix a Gromov hyperbolic space X and a group G acting on it by isometry. The action
of G on X is called elementary if it does not contain two hyperbolic isometries whose
action do not �x the same geodesic line. We call the action of G on X elliptic if it globally
�xes a point in X and we shall say that the action of G is lineal if there exists an elliptic
subgroup H of G, a geodesic line γ on X invariant by G, pointwised �xed by H on which
the quotient G/H acts faithfully by translation.

In our case, any element of the tame group induces an isometry of the complex. We
will also need to distinguish among the subgroups which �x a vertex in the complex, more
particularly when the �xed vertex is of type I. Remark that a subgroup G of the tame
group which �xes a vertex of type I is conjugated to a subgroup of Stab([x]) and recall
that we have constructed in Subsection 2.4 a natural action from the stabilizer subgroup
Stab([x]) on a subtree of the Bass-Serre tree. We have have the following classi�cation.

Theorem 6.2. Let G be a �nitely generated subgroup of the tame group. Then one of the
following situation occurs.

(i) The action of G on the complex is non-elementary.

(ii) There exists an automorphism h in G whose action in the complex is hyperbolic and
such that any automorphism f ∈ G can be decomposed into f = g ◦ hp where p is an
integer and where g belongs to a subgroup H. Moreover, the subgroup H is conjugated
in Tame(Q) to a subgroup of O4 or to one of

EH o
{(

ax by
b−1z a−1t

)
| a, b ∈ k∗

}
.

(iii) The group G is conjugated to a subgroup of the linear group O4.

(iv) There exists a G-equivariant morphism ϕ : Q → A2 \ {(0, 0)} where G acts on
A2 \ {(0, 0)} linearly.

(v) The group G contains two non-commuting automorphisms with dynamical degree
larger or equal that 2 and there exists a G-equivariant morphism ϕ : Q → A1 where
G acts on A1 by multiplication.

(vi) The group G contains an automorphism h with λ1(h) > 2 and there exists a G-
equivariant morphism ϕ : Q → A1 on which G acts on A1 by multiplication and an
isomorphism ϕ−1(A1 \{0}) ' A1 \{0}×A2 such that any automorphisms f ∈ G can
be decomposed into g ◦ hp where p is an integer and g is of the form

g : (x, y, z) ∈ A1 \ {0} × A2 7→ (ax, by, cz) ∈ A1 \ {0} × A2,

where a, b, c ∈ k∗.

(vii) There exists a G-equivariant morphism ϕ : Q→ A1 where G acts on A1 by multipli-
cation and any automorphism of G has dynamical degree 1.

Proof. Let us give a tree summarizing how our proof proceeds where each end of the
tree corresponds to a conclusion of the previous theorem. Denote by T the associated
Bass-Serre tree constructed in Subsection 2.3.
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non-elementary in C elliptic in T non elementary in T lineal in T

conjugated to a subgroup of Stab([x])

kk OO 33

G

OO

//

��

elliptic in C

33

//

++

conjugated to a subgroup of Stab([x, y])

lineal in C conjugated to a subgroup ofO4

Theorem 6.3. Let G be a �nitely generated subgroup of the tame group whose action on
the complex C is elementary. The following possibilities occur.

(i) The action of G on the complex is elliptic, i.e G �xes globally a vertex in the complex.

(ii) The action of G is lineal on the complex, i.e there exists an elliptic subgroup H of G, a
geodesic line γ on C invariant by G pointwised �xed by H on which the quotient G/H
acts faithfully by translation. Moreover, the subgroup H is conjugated in Tame(Q)
to a subgroup of O4 or to one of

EH o
{(

ax by
b−1z a−1t

)
| a, b ∈ k∗

}
.

Assume that the above theorem holds, we prove that our classi�cation holds. The
situation (ii) in Theorem 6.3 implies that there exists an hyperbolic automorphism h ∈ G
such that any f ∈ G can be decomposed into f = g ◦ hp where p is an integer and g ∈ H.
This falls into situation (ii) of the theorem.

Let us extend the case (i) of Theorem 6.3. Take a group G whose action �xes a vertex
of type III, then it is naturally conjugated to a subgroup of O4 by Proposition 2.4 and
assertion (iii) holds. If G �xes a vertex of type II in the complex, then by Proposition 2.5,
G satis�es assertion (iv) of the Theorem.

Suppose now that G �xes a vertex of type I then G is conjugated to a subgroup of
Stab([x]) by transitivity of the action on the vertices of type I (Proposition 2.6.(ii)). In
this situation, recall that we have constructed in Subsection 2.4 a natural action from the
stabilizer subgroup Stab([x]) on a subtree of the Bass-Serre tree, in particular, there exists
a G-equivariant morphism ϕ : Q → A1 where the action of G on A1 is multiplicative.
In the case where the group G �xes a vertex of type I, its action on the corresponding
subtree of the Bass-Serre tree is either non-elementary or elementary. If the action of G
is non-elementary on the corresponding Bass-Serre tree, then equivalently G contains two
non-commuting morphisms with dynamical degree larger or equal to two and G satis�es
assertion (v) in our classi�cation.

Suppose that the action of G on the corresponding Bass-Serre tree is elementary. Let
us �x an isomorphism ϕ−1(A1 \ {0}) ' A1 \ {0}×A2. If G contains only elliptic elements
on the Bass-Serre tree, then by [Lam01, Proposition 3.11] G is conjugated to a subgroup
whose action of the generic �ber of ϕ is a�ne or elementary and assertion (vii) is satis�ed.
Otherwise, the action of G on the Bass-Serre tree is lineal. In particular, there exists an
automorphism h ∈ G whose action on the Bass-Serre tree is hyperbolic such that any f ∈ G
can be decomposed into f = g ◦ hp where p is an integer and where g is an automorphism
whose action on the Bass-Serre tree is elliptic and �xes pointwise the geodesic line on the
Bass-Serre tree �xed by h. By [Lam01, Proposition 3.3], g must be of the form:

(x, y, z) ∈ A1 \ {0} × A2 7→ (ax, by, cz) ∈ A1 \ {0} × A2,

where a, b, c ∈ k∗. We have thus proved that assertion (vi) holds.
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Proof of Theorem 6.3. Take G a �nitely generated subgroup of the tame group. By [BS99,
Theorem 2], the subgroup G′ must satisfy one of the following three cases.

(a) The group G′ is elliptic.

(b) There exists an integer 2 > k > 1, an elliptic subgroup H ⊂ G and a subspace E ⊂ C
which is isometric to a k-dimensional euclidean space, is pointwise �xed by H and
on which the group G/H acts as a cocompact lattice of translation.

(c) Every automorphism of G is elliptic and there exists a geodesic half-line and a se-
quence of vertices vn on this half-line for which the subgroups Gn = G ∩ Stab(vn)
form an increasing �ltration which satisfy G = ∪Gn.

Since the complex C is Gromov hyperbolic, it cannot contain any euclidean plane. As a
result, the case k = 2 in (b) is excluded. The remaining possibility is when k = 1 and there
exists a geodesic line E globally invariant by G in the complex, a subgroup H of G �xing
pointwisely E such that G/H acts faithfully transitive by translation on E. Remark also
that (c) cannot hold since the group G cannot contain in�nitely many subgroups since it
is �nitely generated.

To prove that (ii) holds amounts in proving that in case (b) the elliptic subgroup H is
conjugated to a subgroup of O4 or to a subgroup of

EH o
{(

ax by
b−1z a−1t

)
| a, b ∈ k∗

}
.

Since H �xes a pointwisely geodesic line E, we can choose a sequence vn of distinct vertices
near E all �xed by H lying on a quasi-geodesic line. Consider γn a geodesic path in the
1-skeleton of C joining vn and vn+1. Since the group G �xes the type of vertices and the
endpoint of γn, the geodesic γn must be �xed pointwise. If one of the geodesic γn contains
a vertex of type III, then G is conjugated to a subgroup of O4 and statement (ii) is proved.

Assume now that the geodesics γn contain only type I and II vertices. We prove that
(ii) also holds. For simplicity, we can assume that v0, v1, v2 pointwise �xed by G are
consecutive vertices on a geodesic line of the 1-skeleton of C. Assume also that v0, v2 are
of type I and that v1 is of type II. Conjugating with an element of Tame(Q), we can
assume that v0 = [z], v1 = [x, z] and v2 = [x]. Since G �xes [x], [x, z] and [z], it implies by
Proposition 2.5.(iii) that G is conjugated to a subgroup of

EH o
{(

ax by
b−1z a−1t

)
| a, b ∈ k∗

}
,

proving (ii) as required.

6.4 Proof of Theorem 5 and Corollary 6

Take G a �nitely generated subgroup of the tame group and take µ a symmetric atomic
measure on G whose support generates G and such that:∫

G
log(deg(g))dµ(g) < +∞.

We denote by gn the state of our random walk at the time n. Observe that since µ is
symmetric, Proposition 6.1.(iii) implies that λ2(µ) = λ1(µ).

Let us explain how we proceed to prove our result. By Theorem 6.2, the group G
satis�es one of the following conditions.

(i) The action of G on the complex is non-elementary in C.
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(ii) There exists an automorphism h in G whose action in the complex is hyperbolic and
such that any automorphism f ∈ G can be decomposed into f = g ◦ hp where p
is an integer and where g belongs to a subgroup H. Moreover, the subgroup H is
conjugated in Tame(Q) to a subgroup of O4 or to one of

EH o
{(

ax by
b−1z a−1t

)
| a, b ∈ k∗

}
.

(iii) The group G is conjugated to a subgroup of the linear group O4.

(iv) There exists a G-equivariant morphism ϕ : Q → A2 \ {(0, 0)} where G acts on
A2 \ {(0, 0)} linearly.

(v) The group G contains two non-commuting automorphisms with dynamical degree
larger or equal to 2 and there exists a G-equivariant morphism ϕ : Q→ A1 where G
acts on A1 by multiplication.

(vi) The group G contains an automorphism h with λ1(h) > 2 and there exists a G-
equivariant morphism ϕ : Q → A1 on which G acts on A1 by multiplication and an
isomorphism ϕ−1(A1 \{0}) ' A1 \{0}×A2 such that any automorphisms f ∈ G can
be decomposed into g ◦ hp where p is an integer and g is of the form

g : (x, y, z) ∈ A1 \ {0} × A2 7→ (ax, by, cz) ∈ A1 \ {0} × A2,

where a, b, c ∈ k∗.

(vii) There exists a G-equivariant morphism ϕ : Q→ A1 where G acts on A1 by multipli-
cation and any automorphism of G has dynamical degree 1.

Denote by λ = λ1(µ) = λ2(µ). We shall prove successively the following implications:
(i) ⇒ (λ > 0), (v) ⇒ (λ > 0), ((ii) or (iv) or (vi)) ⇒ (λ = 0), ((iii) or (vii)) ⇒ (λ = 0).
If all the above implications hold, then both Theorem 5 and Corollary 6 hold.

The essential ingredient to compute the degree exponents in situation (i) and (v) is
the following result. Suppose that G acts on a Gromov-hyperbolic space (X, d) and �x a
reference vertex x0 in X, then a random path (Id, g1, . . . , gn, . . .) in the group G induces
a random path in X given by (x0, g1 · x0, . . . , gn · x0, . . .). The following theorem is due to
Maher-Tiozzo ([MT14, Theorem 1.2]).

Theorem 6.4. Let G be a non-elementary countable subgroup of the tame group and let
µ be an atomic measure on G whose support generates G and such that the integral∫

G
d(g · v0, v0)dµ(g)

is �nite. Then there exists a constant L > 0 such that for almost every sample path in the
group, one has:

lim
n→+∞

d(gn · v0, v0)

n
= L.

We will apply this result for X = C and X = T in situation (i) and (v) respectively.
Let us prove the implication (i) ⇒ (λ > 0). Suppose that G is non-elementary in C.

By Theorem 4, there exists C,C ′ > 0 such that for any g ∈ G:

log(deg(g)) > CdC([Id], g · [Id]) log

(
4

3

)
+ C ′. (9)

In particular, the previous inequality and (8) imply that:∫
dC([Id], g · [Id])dµ(g) 6

∫
G

log(deg(g))dµ(g) < +∞.
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As G is non-elementary, Theorem 6.4 states that there exists a constant L > 0 such
that for almost every sample path

lim inf
n→+∞

dC([Id], gn · [Id])

n
= L. (10)

Moreover, by Theorem 4, the following inequality holds:

log deg(gn) > CdC([Id], gn · [Id]) log

(
4

3

)
+ C ′, (11)

where C,C ′ > 0. As a result, (10) and (11) imply that:

log deg(gn)

n
>
C

n
dC([Id], gn · [Id]) log

(
4

3

)
+
C ′

n
,

hence taking the limit as n→ +∞ yields:

λ > CL log

(
4

3

)
> 0,

and we have proved that λ > 0, as required. The implication (i)⇒ (λ > 0) holds.

Let us prove the implication (v) ⇒ (λ > 0). Suppose that G satis�es condition (v).
By conjugation, we can suppose that G is a subgroup of Stab([x]). Observe also that the
following inequality holds for each g ∈ G:

1

2
dT (g · [Id], [Id]) log(2) 6 log(deg(g)),

where dT denotes the distance in the corresponding Bass-Serre tree on which G acts by
isometry. In particular, using the fact that G contains two non-commuting hyperbolic
isometries on T and Theorem 6.4, we obtain similarly that:

1

n

∫
G

log deg(g)dνn(g) >
1

2n

∫
G
dT (g · [Id], [Id])dνn(g)→ L

2
,

as n→ +∞ where L > 0 is the drift of the associated to the random walk on the tree T .
We have thus proven that λ > 0 and the implication (v)⇒ (λ > 0) holds.

Let us prove that the implication ((ii) or (vi)) ⇒ (λ = 0) holds. Since the proof of
the two implications (ii)⇒ (λ = 0) and (vi)⇒ (λ = 0) are very similar, we will only give
the proof of (ii)⇒ (λ = 0). Suppose that there exists an hyperbolic automorphism h ∈ G
such that any automorphism f ∈ G can be decomposed into f = u(f) ◦ hp(f) where p(f)
is an integer and u(f) belongs to H. We have thus:

1

n

∫
G

log deg(g)dνn(g) =
1

n

∫
G

log deg(u(g) ◦ hp(g))dνn(g).

By the submultiplicativity of the degree, we have:

deg(u(g) ◦ hp(g)) 6 C deg(u(g)) deg(hp(g))

where C > 0. In particular, we obtain:

1

n

∫
G

log deg(g)dνn(g) 6
C

n
+

1

n

∫
G

log(deg(u(g)))dνn(g)+
1

n

∫
G

log deg(hp(g))dνn(g). (12)

Since the map p : G → Z is a morphism of groups, the random walk on G induces a
random walk on Z with transition given by the distribution p∗µ. As the measure p∗µ is
also symmetric, the law of large numbers implies that

1

n

∫
G

log deg(hp(g))dνn(g)→ 0,
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as n → +∞. Observe also that there exists a constant M > 0 such that deg(u(g)) 6 M
for all g ∈ G. In particular, the integral

1

n

∫
G

log deg(u(g))dνn(g)→ 0,

as n → +∞. Since each term on the right hand side of (12) tends to zero, we have thus
proven that

λ = lim
n→+∞

1

n

∫
G

log deg(g)dνn(g) = 0

and the implication (ii)⇒ (λ = 0) holds.

Let us prove that the implication ((iii) or (iv) or (vii)) ⇒ (λ = 0) holds. Observe
that if G satis�es assertion (iii) or (iv) or (vi) then the degree of any element of G is uni-
formly bounded, hence the degree exponent is zero. We have thus proved the implication
((iii) or (iv) or (vii))⇒ (λ = 0).
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