Due in Class: February 5, 2015.

Reading: Read Chapter 5, Sect. 5.5.

Turn in the following exercises. Exercise a.b refers to Exercise b in Chapter a in the Textbook.

Problem 1. Exercise 5.2. You can take for granted that $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ is a vector space.

Problem 2. Exercise 5.4.

Problem 3. Exercise 5.7.

Problem 4. Exercise 5.25.

Problem 5. Exercise 5.27. Note: The term *meager* means that the set is a countable union of nowhere dense sets.

Problem 6. Exercise 5.32.

Problem 7. Exercise 5.38.

Problem 8. Show that if (α_j) is a sequence of complex numbers such that $\sum_j \alpha_j \xi_j$ converges for every sequence (ξ_j) of complex numbers with $\xi_j \to 0$ as $j \to \infty$, then $\sum_j |\alpha_j| < \infty$.

Problem 9. Does there exist a sequence of continuous positive functions f_n on \mathbb{R} such that the sequence $(f_n(x))$ is unbounded if and only if x is rational? *Hint:* Is \mathbb{Q} a G_δ?