NEWTON'S METHOD FOR ANALYTIC SYSTEMS OF EQUATIONS WITH
CONSTANT RANK DERIVATIVES.

Jean-Pierre Dedieu
MIP
Université Paul Sabatier
31062 Toulouse Cedex 04, France.
dedieu@cict.fr

Myong-Hi Kim
Department of Mathematics
State University of New York
College at Old Westbury, NY 11568
myonghi@math.sunysb.edu

ABSTRACT. In this paper we study the convergence properties of Newton's sequence for analytic systems of equations with constant rank derivatives. Our main result is an alpha-theorem which insures the convergence of Newton's sequence to a least-square solution of this system.

Subject Classification: 65H10.
Key words: Newton's Method, System of Equations, Least-Square Solution.
1This paper was completed when Jean-Pierre Dedieu was visiting IBM T. J. Watson Research Center in March 1999.
1. Introduction.

Newton's method is a classical numerical method to solve a system of nonlinear equations

$$f : \mathbf{E} \rightarrow \mathbf{F}$$

with E and F two Euclidean spaces or more generally two Banach spaces. If $x \in \mathbf{E}$ is an approximation of a zero of this system then, Newton's method updates this approximation by linearizing the equation $f(y) = 0$ around x so that

$$f(x) + Df(x)(y - x) = 0.$$

When $Df(x)$ is an isomorphism we obtain the classical Newton's iterate

$$y = N_f(x) = x - Df(x)^{-1}f(x).$$

When E and F are two Euclidean spaces and when $Df(x)$ is not an isomorphism we choose its Moore-Penrose inverse $Df(x)^\dagger$ instead of its classical inverse:

$$y = N_f(x) = x - Df(x)^\dagger f(x).$$

We recall that the Moore-Penrose inverse of a linear operator

$$A : \mathbf{E} \rightarrow \mathbf{F}$$

is the composition of two maps: $A^\dagger = B \circ \Pi_{\text{Im } A}$ where $\Pi_{\text{Im } A}$ is the orthogonal projection in F onto $\text{Im } A$ and B is the right inverse of A whose image is the orthogonal complement of Ker A in E i.e. the inverse of the restriction

$$A|_{(\text{Ker } A)^\perp} : (\text{Ker } A)^\perp \rightarrow \text{Im } A.$$

We have $A^\dagger = (A^*A)^{-1}A^*$ when A is injective, $A^\dagger = A^*(AA^*)^{-1}$ when A is surjective, where A^* denotes the adjoint of A. Notice that $A^\dagger A = \Pi_{(\text{Ker } A)^\perp}$ and $AA^\dagger = \Pi_{\text{Im } A}$.

For underdetermined systems, when $Df(x)$ is surjective, $Df(x)^\dagger$ is injective in F and hence the zeros of $f(x)$ corresponds to the fixed points of the Newton operator

$$N_f(x) = x - Df(x)^\dagger f(x).$$

The case of overdetermined systems is completely different. This iteration has been introduced for the first time by Gauss in 1809 [6] and, for this reason, it is called Newton-Gauss iteration. When $Df(x)$ is injective, the fixed points of $N_f(x)$ do not necessarily correspond to the zeros of f but to the least-square solutions of $f(x) = 0$, i.e. to the stationary points of $F(x) = \|f(x)\|^2$. In other words $N_f(x) = x$ if and only if $D(\|f(x)\|^2) = 0$.

In this paper, our aim is to study the properties of Newton’s iteration for analytic systems of equations with constant rank derivatives. This case generalizes both the underdetermined case (Rank $Df(x) = \text{Dim } \mathbf{F}$) and the overdetermined case of (Rank $Df(x) = \text{Dim } \mathbf{E}$). It has been considered for the first time by Ben-Israel [2].

We consider an analytic function $f : \mathbf{E} \rightarrow \mathbf{F}$ between two Euclidean spaces. We let $n = \text{Dim } \mathbf{E}$ and $m = \text{Dim } \mathbf{F}$. We also consider the case of a function f defined in an open set $U \subset \mathbf{E}$ but by abuse of notation we continue to write $f : \mathbf{E} \rightarrow \mathbf{F}$.
As in the injective-overdetermined case, the fixed points of Newton’s operator do not necessarily correspond to the zeros of f but to the least square solutions of this system:

Proposition 1. The following statements are equivalent:

1. $N_f(x) = x$,
2. $Df(x)^{\dagger}f(x) = 0$,
3. $Df(x)^*f(x) = 0$,
4. $f(x) \in \text{Im} \ Df(x)^{\perp}$,
5. $DF(x) = 0$ with $F(x) = \|f(x)\|^2$.

The proof is easy and left to the reader. □

There are two points of view to analyze the convergence properties for Newton’s method: Kantorovich like theorems and Smale’s alpha-theory. Let $x \in \mathbb{E}$ be given. Under which hypothesis does the sequence

$$x_{k+1} = N_f(x_k), \ x_0 = x,$$

converges to a zero ξ of f?

Kantorovich gives an answer in terms of the behavior of f in a neighborhood of x with a weak regularity assumption, say f is C^2. See Ostrowski [12] or Ortega-Rheinboldt [11].

Alpha-theory, which was introduced by Kim in [8], [9] for one variable polynomial equations and by Smale for general systems of equations in [18], gives an answer in terms of three invariants.

$$\alpha(f,x) = \beta(f,x)\gamma(f,x)$$

$$\beta(f,x) = \|Df(x)^{-1}f(x)\|$$

$$\gamma(f,x) = \sup_{k \geq 2} \left\|Df(x)^{-1}\frac{D^k f(x)}{k!}\right\|^{\frac{1}{k-1}}$$

which only depend on the derivatives $D^k f(x)$ at the given starting point x. Here a stronger regularity assumption is made: f is an analytic system of equations.

The main feature of Newton’s iteration is its quadratic convergence to the zeros of f. Alpha-theory gives the size of the basin of attraction around these zeros in terms of the invariant $\gamma(f,x)$. We have:

Theorem 1. (Smale) When ξ is a zero of f and $Df(\xi)$ is an isomorphism then, for any $x \in \mathbb{E}$ satisfying

$$\|x - \xi\|\gamma(f,\xi) \leq \frac{3 - \sqrt{7}}{2},$$

1. the sequence $x_{k+1} = N_f(x_k), \ x_0 = x$ is well defined,
2. for any $k \geq 0$,

$$\|x_k - \xi\| \leq \left(\frac{1}{2}\right)^{2k-1} \beta(f, x).$$
This theorem is extended by Shub and Smale in [14] to the case of underdetermined systems of equations with surjective derivatives. They introduce the following invariants,

\[
\alpha(f, x) = \beta(f, x) \gamma(f, x)
\]

\[
\beta(f, x) = \|Df(x)\| \|f(x)\|
\]

\[
\gamma(f, x) = \sup_{k \geq 2} \left\| \frac{D^k f(x)}{k!} \right\|^{\frac{1}{k-1}}
\]

when \(Df(x)\) is onto and \(\infty\) otherwise. They give the following:

Theorem 2. (Shub-Smale) Let \(f : \mathbb{R}^n \to \mathbb{R}^m\) have zero as a regular value and define

\[
\gamma = \max_{\xi \in f^{-1}(0)} \gamma(f, \xi)
\]

Then there is a universal constant \(C\) so that if \(d(x, f^{-1}(0)) < \frac{\xi}{\gamma}\) then

1. the sequence \(x_{k+1} = N_f(x_k), x_0 = x\), is well defined,
2. it converges to a zero of \(\xi\) of \(f\) and

\[
\|x_k - \xi\| \leq \left(\frac{1}{2}\right)^{2^{k-1}} \beta(f, x).
\]

The case of injective-overdetermined systems is slightly different. The main feature of Newton-Gauss iteration is a quadratic convergence to the zeros of \(f\) and a linear convergence to certain least-square solutions. Kantorovich like theorems are given in Ben-Israel [2], Dennis-Schnabel [5] and Seber-Wild [13]. Alpha-theory is studied by Dedieu-Shub in [4]. They introduce the following invariants,

\[
\alpha_1(f, x) = \beta_1(f, x) \gamma_1(f, x)
\]

\[
\beta_1(f, x) = \|Df(x)\| \|f(x)\|
\]

\[
\gamma_1(f, x) = \sup_{k \geq 2} \left\| \frac{D^k f(x)}{k!} \right\|^{\frac{1}{k-1}}
\]

which differ slightly from \(\alpha, \beta \) and \(\gamma\) introduced in the undetermined case. They prove the following theorems.

Theorem 3. (Dedieu-Shub) Let \(x \) and \(\xi \in \mathbb{E}\) be such that \(f(\xi) = 0\), \(Df(\xi)\) is injective and

\[
v = \|x - \xi\| \gamma_1(f, \xi) \leq \frac{3 - \sqrt{7}}{2}.
\]

Then Newton’s sequence \(x_k = N_f^{(k)}(x)\) satisfies

\[
\|x_k - \xi\| \leq \left(\frac{1}{2}\right)^{2^{k-1}} \|x - \xi\|.
\]
Theorem 4. (Dedieu-Shub) Let x and $\xi \in \mathbf{E}$ satisfying $Df(\xi)^\dagger f(\xi) = 0$, $Df(\xi)$ injective and
\[v = \|x - \xi\| \gamma_1(f, \xi) < 1 - \frac{\sqrt{2}}{2}. \]
If
\[\lambda = \frac{v + \sqrt{2}(2 - v)\alpha_1(f, \xi)}{1 - 4v + 2v^2} < 1 \]
then Newton's sequence satisfies
\[\|x_k - \xi\| \leq \lambda^k \|x - \xi\|. \]

Let us now come back to our problem: We recall that
\[f : \mathbf{E} \to \mathbf{F} \]
is an analytic function with Rank $Df(x) \leq r$ for any $x \in \mathbf{E}$. We let
\[V = f^{-1}(0) = \{ \xi \in \mathbf{E} : f(\xi) = 0 \} \]
and
\[V_{ls} = \{ \xi \in \mathbf{E} : Df(\xi)^\dagger f(\xi) = 0 \}. \]
V is the set of zeros of f and V_{ls} the set of least square solutions. See Proposition 1. The following proposition describes the smooth part of V:

Proposition 2. Let $\xi \in V$ with Rank $Df(\xi) = r$. Then
1. For any $x \in \mathbf{E}$ with $\|x - \xi\| \gamma_1(f, \xi) < 1 - \frac{\sqrt{2}}{2}$ one has Rank $Df(x) = r$,
2. $V \cap B_{(1 - \frac{\sqrt{2}}{2})/\gamma_1(f, \xi)(\xi)}$ is a submanifold in \mathbf{E} with Dim = $n - r$.

Proof. The first assertion is proved in Lemma 1 below, the second assertion is a classical consequence of the first one, see Helgason [7], Chap. 1, Sect. 15.2. \qed

We do not have a similar result for V_{ls}: if $\xi \in V_{ls}$ with Rank $Df(\xi) = r$ is V_{ls} a submanifold around ξ?

In order to state our next result we introduce some more notation. Let $\psi(u) = 1 - 4u + 2u^2$. It is decreasing from 1 to 0 when $0 \leq u \leq 1 - \frac{\sqrt{2}}{2}$. Π_{E_1} denotes the orthogonal projection onto the subspace $E_1 \subset E$. For any linear operator $L : \mathbf{E} \to \mathbf{F}$,
\[K(L) = \|L\| \|L^\dagger\| \]
denotes its condition number and $\|L\|$ the operator norm. We also use the following function
\[A(v, K) = \frac{1}{\psi(v)} + \frac{2 - v}{(1 - v)^2} + \frac{1 + \sqrt{5}(1 - v)^2(2 - v)}{\psi(v)^2} \left(K + \frac{2v - v^2}{(1 - v)^2} \right) , \]
defined for $0 \leq v < 1 - \frac{\sqrt{2}}{2}$ and $K \geq 0$ and
\[B(v, \alpha) = \frac{1 + \sqrt{5}(1 - v)^2(2 - v)}{\psi(v)^2} + \frac{\theta(\alpha)}{\alpha} , \]
with

$$\theta(\alpha) = \alpha \left(2 + \frac{(1 + \sqrt{5})(1 + 2\alpha)}{(1 - 2\alpha)^2} \right)$$

defined for $0 \leq \alpha < 1 - \frac{\sqrt{5}}{2}$ and $0 \leq \alpha < \frac{1}{2}$. When ξ_0 is a zero of f with Rank $Df(\xi_0) = r$, then for any $x_0 \in E$ in a neighborhood of ξ_0 Newton’s sequence starting at x_0 converges quadratically to a zero of f, but not necessarily equal to ξ_0. More precisely we prove here the following: let

$$\gamma_R = \max_{\xi \in B_R(\xi_0) \cap V} \gamma_1(f, \xi)$$

$$A_R = \max_{x \in B_R(\xi_0)} A(\|x - \xi\| \gamma_1(f, \xi), K(Df(\xi))).$$

Theorem 5. Let $\xi_0 \in E$, such that $f(\xi_0) = 0$ and Rank $Df(\xi_0) = r$. Let $R > 0$ satisfying the condition $R A_R \gamma_R \leq \frac{1}{2}$, with γ_R and A_R as above. Let $x_0 \in B_{\frac{1}{2} R}(\xi_0)$ such that $\xi_0 = \text{proj}_V x_0$ i.e. ξ_0 is the point in V the closest to x_0. Then Newton’s sequence $x_k = N^{(k)}(x_0)$ is contained in $B_R(\xi_0)$ and

$$d(x_k, V) \leq \left(\frac{1}{2} \right)^{k-1} d(x_0, V).$$

As in the case of overdetermined systems with injective derivatives, the convergence of Newton’s sequence to the set of least square solutions fails to be quadratic. We have

Theorem 6. For $\xi_0 \in V_is$ with Rank $Df(\xi_0) = r$ and $0 < R < 1 - \frac{\sqrt{5}}{2}$, define

$$\Lambda = \max_{\xi \in B_R(\xi_0) \cap V_is} A(v, K(Df(\xi))) v + B(v, \alpha_1(f, \xi)) \alpha_1(f, \xi),$$

with $v = \|x - \xi\| \gamma_1(f, \xi)$, and

$$\alpha_1 = \max_{\xi \in B_R(\xi_0) \cap V_is} \alpha_1(f, \xi).$$

Let us suppose that $B_R(\xi_0) \cap V_is$ is a smooth submanifold in E, that $\Lambda < 1$ and $2\alpha_1 < 1$. Then, for any $x_0 \in E$ such that

$$x_0 - \xi_0 \in (T_{\xi_0} V_is)^\perp,$$

and $\|x_0 - \xi_0\| \leq \frac{1 - \Lambda}{2\Lambda} R,$

Newton’s sequence $x_k = N^{(k)}(x_0)$ is contained in $B_R(\xi_0)$ and

$$d(x_k, V) \leq \Lambda^k d(x_0, V).$$

Notice the following facts. The hypothesis in Theorem 6 is satisfied in a suitable neighborhood of $\xi_0 \in V_is$ when V_is is smooth around ξ_0 and $\alpha_1(f, \xi_0)$ small enough i.e. when $\lim_{R \to 0} \Lambda < 1$.

The invariant $\alpha_1(f, \xi_0)$ is small when the residue function $F(\xi_0) = \|f(\xi_0)\|^2$ is itself small.

The nonconvergence of Newton’s sequence to least square solutions with large residues is a well known fact, see Dennis-Schnabel [5] and Dedieu-Shub [4].

When $\alpha_1(f, \xi_0)$ is small then ξ_0 is a strict local minimum for the residue function over $\xi_0 + (\ker Df(\xi_0))^\perp$. More precisely
Proposition 3. For any \(\xi \in V_{1n} \) with Rank \(DF(\xi) = r \) and \(\alpha_1(f, \xi) < \frac{1}{2} \) we have \(DF(\xi) = 0 \) and \(D^2F(\xi)(\hat{x}, \hat{x}) > 0 \) for any \(\hat{x} \in \ker DF(\xi), \hat{x} \neq 0 \).

In the following, under a simple assumption on \(f \) at \(x_0 \) we prove the existence of a least square solution \(\xi \) for \(f \) in a neighborhood of \(x_0 \) and the linear convergence of Newton’s sequence \(N^k_f(x_0) \) to \(\xi \).

Theorem 7. Suppose
\[
\alpha_1(f, x_0) K(Df(x_0)) \leq \frac{1}{48}.
\]
Then Newton’s sequence \(x_{k+1} = N_f(x_k) \) satisfies
\[
\|x_{k+1} - x_k\| \leq \left(\frac{1}{2} \right)^k \|x_1 - x_0\|.
\]
This sequence converges to a least square solution \(\xi \) of \(f \):
\[
DF(\xi)^\top f(\xi) = 0 \text{ and } \|\xi - x_0\| \leq 2\|x_1 - x_0\|.
\]

We close this section with some examples. Examples of “constant rank” systems of equations are given by distance geometry problems: an important tool in determining the three-dimensional structure of a molecule. Distance geometry problems are concerned with finding positions \(x_1, \ldots, x_n \) of \(n \) atoms in \(\mathbb{R}^3 \) such that
\[
\|x_i - x_j\| = \delta(i, j), \quad (i, j) \in S,
\]
where \(S \) is a subset of the atom pairs and \(\delta(i, j) \) is the given distance between atoms \(i \) and \(j \). When all these distances are given, this system has \(3n \) unknowns and \(n(n-1)/2 \) equations. The dimension of the solution set, when it is nonempty, is at least 6 because these equations are invariant under translations and orthogonal transformations. Similar examples arise from the protein folding problem. For example the Lennard-Jones problem is to find the minimum energy structure of a cluster of \(n \) identical atoms using the Lennard-Jones potential energy:
\[
\min_{x_i \in \mathbb{R}^3} \sum_{1 \leq i \leq n} \sum_{i < j} p(\|x_i - x_j\|)
\]
with \(p(r) = r^{-12} - 2r^{-6} \). Typically \(n \) can take large values: 10 000 for example. This global optimization problem is still unsolved. We can see this problem as a nonlinear least square problem related to the system of equations
\[
(p(\|x_i - x_j\|) + 1)^{1/2} = 0, \quad i < j.
\]
Such a system enters in the category of “constant rank” systems. A good reference for such problems is the survey paper by A. Neumaier [10].
2. Proofs.

In this section we give the proofs of theorems 5, 6 and 7. We begin by a series of lemmas.

Lemma 1. Let \(x, y \in \mathbb{E} \) with Rank \(Df(y) \leq \text{Rank} \ Df(x) = r \) and \(u = \| x - y \| \gamma_1(f, x) < 1 - \frac{\sqrt{2}}{2} \). Then

1. \(Df(y) \) and \(\Pi_{\text{im} \ Df(x)} Df(y) \) have rank \(r \),
2. \(\Pi_{\text{Ker} \ Df(x)} + Df(x)^\dagger Df(y) \) is non-singular.
3. \(\| (\Pi_{\text{Ker} \ Df(x)} + Df(x)^\dagger Df(y))^{-1} \| \leq \frac{(1-u)^2}{\psi(u)} \).

Proof. \(Df(x)^\dagger(Df(x) - Df(y)) = -Df(x)^\dagger \sum_{k \geq 2} k \frac{D_k f(x)}{k!} (y - x)^{k-1} \) so that

\[
\| Df(x)^\dagger(Df(x) - Df(y)) \| \leq \frac{1}{(1-u)^2} - 1 < 1.
\]

By a classical linear algebra argument

\[
\text{id}_E - Df(x)^\dagger(Df(x) - Df(y)) = \Pi_{\text{Ker} \ Df(x)} + Df(x)^\dagger Df(y)
\]

is invertible and its inverse is bounded by

\[
\frac{1}{1 - \left(\frac{1}{(1-u)^2} - 1\right)} = \frac{(1-u)^2}{\psi(u)}.
\]

This proves 2 and 3. Moreover

\[
\Pi_{\text{im} \ Df(x)} Df(y) = Df(x)(\Pi_{\text{Ker} \ Df(x)} + Df(x)^\dagger Df(y)) = (\text{Rank} \ r) \circ (\text{nonsingular})
\]

has Rank \(r \). Thus \(\text{Rank} \ Df(y) \geq \text{Rank} \ \Pi_{\text{im} \ Df(x)} Df(y) = r \) and we are done. \(\square \)

The following linear algebra lemmas will be useful. Let \(A \) and \(B \) be \(m \times n \) real or complex matrices with non-zero singular values \(\sigma_1 \geq \cdots \geq \sigma_r > 0 \) and \(\tau_1 \geq \cdots \geq \tau_r > 0 \). Thus \(\text{Rank} \ A = \text{Rank} \ B = r \). Let us denote by \(\| A \| \) the usual spectral norm so that

\[
\| A \| = \sigma_1 \quad \text{and} \quad \| A^\dagger \| = \sigma_r^{-1}.
\]

We have (see Stewart-Sun [19], Chap. IV, Theorem 4-11):

Lemma 2. (Mirsky)

\[
\max | \sigma_i - \tau_i | \leq \| A - B \|
\]

We also need bounds for \(\| A^\dagger - B^\dagger \| \). The following lemma is valid in our context (see Stewart-Sun [19], Chap. III, Theorem 3.8):

Lemma 3. (Wedin)

\[
\| A^\dagger - B^\dagger \| \leq \frac{1 + \sqrt{5}}{2} \max(\| A^\dagger \|^2, \| B^\dagger \|^2) \| A - B \|.
\]
The constant \((1 + \sqrt{5})/2\) appearing in Lemma 3 may be improved according to the values of \(m, n\) and the ranks of \(A\) and \(B\). The precise statement is given in [19], Chapter III, Theorem 3.9. The case of Frobenius norm and arbitrary matrix norms are considered.

The following lemma generalizes a well-known result for square and non-singular matrices. It is probably well-known but we were not able to find it in the literature.

Lemma 4. Let \(A\) and \(B\) two \(m \times n\) matrices with \(\text{Rank } (A + B) \leq \text{Rank } A = r\) and \(\|A^\dagger\| \cdot \|B\| < 1\). Then

\[
\text{Rank } (A + B) = r \text{ and } \| (A + B)^\dagger \| \leq \frac{\|A^\dagger\|}{1 - \|A^\dagger\| \cdot \|B\|}.
\]

Proof. Let us denote by \(\sigma_1 \geq \cdots \geq \sigma_r > 0\) the non-zero singular values of \(A\) and by \(\rho_1 \geq \cdots \geq \rho_p \geq 0\) \((p = \min(m, n))\) the singular values of \(A + B\). By Lemma 2

\[
\frac{\sigma_r^{-1}}{\sigma_r} \leq \frac{\|A^\dagger\| \cdot \|B\|}{1 - \|A^\dagger\| \cdot \|B\|} < 1
\]

so that \(\rho_r > 0\) and consequently \(\text{Rank } (A + B) \geq r\). Since \(\text{Rank } (A + B) \leq r\) by the hypothesis, we have proved the equality. The nonzero singular values of \(A + B\) are

\[
\rho_1 \geq \cdots \geq \rho_r > 0.
\]

We have

\[
\| (A + B)^\dagger \| = \rho_r^{-1} = \frac{\sigma_r^{-1}}{1 - \frac{\sigma_r - \rho_r}{\sigma_r}} \leq \frac{\|A^\dagger\|}{1 - \|A^\dagger\| \cdot \|B\|}
\]

and we are done. \(\square\)

Lemma 5. Let \(x, y \in \mathbb{E}\) with \(\text{Rank } Df(y) \leq \text{Rank } Df(x) = r\) and \(u = \|x - y\| \gamma_1(f, x) < 1 - \frac{\sqrt{2}}{2}\). Then

1. \(\|Df(y) - Df(x)\| \leq \|Df(x)^\dagger\|^{-1} \frac{2u - u^2}{(1-u)^2}\),
2. \(\|Df(y)\| \leq \|Df(x)^\dagger\|^{-1} \left(K(Df(x)) + \frac{2u - u^2}{(1-u)^2}\right)\),
3. \(\|Df(y)^\dagger\| \leq \frac{(1-u)^2}{\psi(u)} \|Df(x)^\dagger\|\),
4. \(\|Df(x)^\dagger - Df(y)^\dagger\| \leq \frac{1 + \sqrt{2} (1-u)^2 (2u-u^2)}{2 \psi(u)} \|Df(x)^\dagger\|\).

Proof. \(Df(y) = Df(x) + \sum_{k \geq 2} k \frac{D^k f(x)}{k!} (y - x)^{k-1}\) so that

\[
\|Df(y) - Df(x)\| \leq \|Df(x)^\dagger\|^{-1} \left(\frac{1}{(1-u)^2} - 1\right)
\]

and this proves 1) and 2). Assertion 3) comes from Lemma 4 with \(A = Df(x)\) and \(B = Df(y) - Df(x)\). We have \(\text{Rank } (A + B) = r\) by Lemma 1

\[
\|A^\dagger\| \cdot \|B\| \leq \|Df(x)^\dagger\| \times \|Df(x)^\dagger\|^{-1} \frac{2u - u^2}{(1-u)^2} \leq 1
\]

by Lemma 5.1 and because \(u \leq 1 - \frac{\sqrt{2}}{2}\). Thus, by Lemma 4,

\[
\|Df(y)^\dagger\| \leq \frac{\|Df(x)^\dagger\|}{1 - \frac{2u - u^2}{(1-u)^2}} = \frac{(1-u)^2}{\psi(u)} \|Df(x)^\dagger\|.
\]
The last assertion is a consequence of Lemma 3, Lemma 5.1 and Lemma 5.3.

\[\| Df(y)^\dagger - Df(x)^\dagger \| \leq \frac{1 + \sqrt{5} (1-u)^4}{2 \psi(u)^2} \| Df(x)^\dagger \|^2 \| Df(x)^\dagger \|^{-1} \frac{2u - u^2}{(1-u)^2}. \]

This achieves the proof of Lemma 5. \qed

Lemma 6. Let \(\xi \) and \(x \in \mathbf{E} \) with \(Df(\xi)^\dagger f(\xi) = 0 \), \(\text{Rank} \ Df(x) \leq \text{Rank} \ Df(\xi) = r \) and \(v = \| x - \xi \| \gamma_1(f, \xi) < 1 - \frac{\sqrt{2}}{2} \). Then

\[\| Df(x)^\dagger f(\xi) \| \leq \frac{1 + \sqrt{5} (1-v)^2(2-v)}{2 \psi(v)^2} \| x - \xi \| \alpha_1(f, \xi). \]

Proof. It is a consequence of Lemma 5.4:

\[\| Df(x)^\dagger f(\xi) \| = \| (Df(x)^\dagger - Df(\xi)^\dagger) f(\xi) \| \leq \| Df(x)^\dagger - Df(\xi)^\dagger \| \| f(\xi) \|
\]

\[\leq \frac{1 + \sqrt{5} (1-v)^2(2-v)}{2 \psi(v)^2} v \| Df(\xi)^\dagger \| \| f(\xi) \|. \]

\qed

Lemma 7. Under the hypothesis of Lemma 6, we have

\[\| N_f(x) - \xi \| \leq \| \Pi_{\text{Ker} Df(x)}(x - \xi) \| + \frac{v \| x - \xi \|}{\psi(v)} + \frac{1 + \sqrt{5} (1-v)^2(2-v)}{2 \psi(v)^2} \| x - \xi \| \alpha_1(f, \xi). \]

Proof. We have

\[N_f(x) - \xi = x - \xi - Df(x)^\dagger f(x) = \Pi_{\text{Ker} Df(x)}(x - \xi) + Df(x)^\dagger (Df(x)(x - \xi) - f(x) + f(\xi)) - Df(x)^\dagger f(\xi). \]

Using Taylor’s formula for both \(f(x) \) and \(Df(x) \) at \(\xi \) gives

\[Df(x)(x - \xi) - f(x) + f(\xi) = \sum_{k \geq 1} (k - 1) \frac{Dk f(\xi)}{k!} (x - \xi)^k \]

so that

\[\| Df(x)(x - \xi) - f(x) + f(\xi) \| \leq \| Df(\xi)^\dagger \|^2 \| x - \xi \| \sum_{k \geq 2} (k - 1) v^{k-1} \]

\[= \| Df(\xi)^\dagger \|^2 \| x - \xi \| \frac{v}{(1-v)^2}. \]

By Lemma 5.3 we get

\[\| Df(x)^\dagger (Df(x)(x - \xi) - f(x) + f(\xi)) \| \leq \frac{(1-v)^2}{\psi(v)} \| x - \xi \| \frac{v}{(1-v)^2} = \frac{v \| x - \xi \|}{\psi(v)}. \]

The conclusion comes from Lemma 6:

\[\| N_f(x) - \xi \| \leq \| \Pi_{\text{Ker} Df(x)}(x - \xi) \| + \frac{v \| x - \xi \|}{\psi(v)} + \frac{1 + \sqrt{5} (1-v)^2(2-v)}{2 \psi(v)^2} \| x - \xi \| \alpha_1(f, \xi) \]

\qed
Lemma 8. Under the hypothesis of Lemma 6, we have
\[\| \Pi_{\text{Ker} Df(x)}(x - \xi) \| \leq \| \Pi_{\text{Ker} Df(\xi)}(x - \xi) \| + v \| x - \xi \| \left(\frac{2 - v}{(1 - v)^2} + \frac{1 + \sqrt{5} (1 - v)^2 (2 - v)}{\psi(v)^2} \left(K(Df(\xi)) + \frac{2v - v^2}{(1 - v)^2} \right) \right). \]

Proof. \[
\Pi_{\text{Ker} Df(x)}(x - \xi) = \left(id_E - Df(x)^\dagger Df(x) \right) (x - \xi) \]
\[= \Pi_{\text{Ker} Df(\xi)}(x - \xi) + Df(\xi)^\dagger (Df(\xi) - Df(x))(x - \xi) + (Df(\xi)^\dagger - Df(x)^\dagger) Df(x)(x - \xi) \]
\[= a + b + c. \]

We give a bound for \(\| b \| \) via Lemma 5.1:
\[\| b \| \leq \frac{2v - v^2}{(1 - v)^2} \| x - \xi \| \]
and a bound for \(\| c \| \) via Lemma 5.2 and 5.4:
\[\| c \| \leq \frac{1 + \sqrt{5} (1 - v)^2 (2v - v^2)}{2 \psi(v)^2} \left(K(Df(\xi)) + \frac{2v - v^2}{(1 - v)^2} \right) \| x - \xi \|. \]

\[\square \]

Lemma 9. Let \(\xi \) and \(x \in E \) with \(f(\xi) = 0 \), \(\text{Rank} Df(\xi) = r \) and \(v = \| x - \xi \| \gamma_1(f, \xi) \leq 1 - \frac{\sqrt{2}}{2} \). Then we have
\[\| N_f(x) - \xi \| \leq \| \Pi_{\text{Ker} Df(\xi)}(x - \xi) \| + \| x - \xi \| v A(v, K(Df(\xi))) \]
with
\[A(v, K) = \frac{1}{\psi(v)} + \frac{2 - v}{(1 - v)^2} + \frac{1 + \sqrt{5} (1 - v)^2 (2 - v)}{\psi(v)^2} \left(K + \frac{2v - v^2}{(1 - v)^2} \right) \]
and
\[K(Df(\xi)) = \| Df(\xi) \| \| Df(\xi)^\dagger \|. \]

Proof. It is an easy consequence of Lemma 7 and Lemma 8 with \(f(\xi) = 0 \).

\[\square \]

Proof of Theorem 5. Recall that \(\| x_0 - \xi_0 \| \leq \frac{\sqrt{2}}{2} R \). We first notice that, for any \(x \in B_R(\xi_0) \) we have
\[\| x - \xi_0 \| \gamma(f, \xi_0) \leq R \gamma_{R, \xi_0} \leq \frac{1}{2A_{R, \xi_0}} < 1 - \frac{\sqrt{2}}{2}. \]
The last inequality is from the fact that \(A(v, K) \geq 3 \). Thus \(V \cap B_R(\xi_0) \) is a smooth submanifold in \(E \) (Proposition 2). Since \(\xi_0 \) is the projection of \(x_0 \) onto \(V \), and because \(V \cap B_R(\xi_0) \) is smooth, the orthogonality relation
\[\Pi_{\text{Ker} Df(\xi_0)}(x_0 - \xi_0) = 0 \]
holds. By Lemma 9, we get
\[\| N_f(x_0) - \xi_0 \| \leq \| x_0 - \xi_0 \|^2 \gamma_1(f, \xi_0) A(v_0, K_0) \leq \| x_0 - \xi_0 \| R \gamma_{R, \xi_0} A_{R, \xi_0} \leq \frac{1}{2} \| x_0 - \xi_0 \|, \]
so that \(x_1 = N_f(x_0)\) is in \(B_{\frac{3}{2}}(\xi_0)\) and consequently projects on \(V\) in a point \(\xi_1 \in B_{\mathcal{R}}(\xi_0)\) because

\[
\|\xi_1 - \xi_0\| \leq \|x_1 - \xi_1\| + \|x_1 - \xi_0\| \leq 2\|x_1 - \xi_0\| \leq R.
\]

Now we proceed by induction. Let \(x_{k+1} = N_f(x_k)\) and \(\xi_k\) be the projection of \(x_k\) onto \(V\). Then

\[
x_{k+1} - \xi_{k+1} \leq \|x_{k+1} - \xi_k\| \leq \|x_k - \xi_k\|^2 \gamma_1(f, \xi_k) A(v_k, K_k)
\]

\[
\leq \left(\frac{1}{2} \right)^{2^k - 1} \|x_0 - \xi_0\|^2 \gamma_1(f, \xi_k) A(v_k, K_k)
\]

\[
\leq \left(\frac{1}{2} \right)^{2^k - 1} \|x_0 - \xi_0\| \|x_0 - \xi_0\| \gamma_{R, \xi_0} A_{R, \xi_0}
\]

\[
\leq \frac{1}{2} \left(\frac{1}{2} \right)^{2^k - 2} \|x - \xi_0\| = \left(\frac{1}{2} \right)^{2^k - 1} \|x - \xi_0\|.
\]

Here \(K_k = K(f, \xi_k), v_k = \|x_k - \xi_k\| \gamma_1(f, \xi_k)\). Further we have \(\xi_{k+1} \in B_{\mathcal{R}}(\xi_0)\) by noting that

\[
\|\xi_{k+1} - \xi_k\| \leq \|x_{k+1} - \xi_{k+1}\| + \|x_{k+1} - \xi_k\| \leq 2 \|x_{k+1} - \xi_k\|,
\]

\[
\|\xi_{k+1} - \xi_0\| \leq \sum_{j=0}^{k} \|\xi_{j+1} - \xi_j\| \leq 2 \sum_{j=0}^{k} \|x_{j+1} - \xi_j\|
\]

\[
\leq 2 \sum_{j=0}^{k} \left(\frac{1}{2} \right)^{2^j - 1} \|x_0 - \xi_0\| \leq \frac{2}{1 - 1/4} \|x_0 - \xi_0\|
\]

\[
\leq \frac{4}{3} \|x_0 - \xi_0\| \leq R,
\]

which completes the induction. \(\square\)

The following lemmas will be used to prove Proposition 3 and to compute the tangent space \(T_{\xi_0} V_{\xi}\) for \(\xi_0 \in V_{\xi}\) as required in Theorem 5. We begin with an identity given in Stewart-Sun [19] Chapter III, §3.4.

Lemma 10. Let \(A\) and \(B\) be \(m \times n\) matrices with \(\text{Rank } A = \text{Rank } B = r\). Then

\[
B^\dagger = A^\dagger - A^\dagger (B - A) A^\dagger + (A^\star A)^\dagger (B - A)^\star \Pi_{\text{Im } A} \Pi_{\text{Ker } A} (B - A)^\star (AA^\star)^\dagger + O(\|B - A\|^2).
\]

Lemma 11. When \(\text{Rank } Df(x) = r\), the derivative of \(Df(x)^\dagger f(x)\) is given by

\[
D(Df(x)^\dagger f(x))(\dot{x}) = \Pi_{\text{Ker } Df(x)^\dagger}(\dot{x}) - Df(x)^\dagger (D^2 f(x)(\dot{x})) Df(x)^\dagger f(x) + (Df(x)^\star Df(x))^\dagger (D^2 f(x)(\dot{x}))^\star \Pi_{\text{Im } Df(x)^\dagger} f(x)
\]

\[
+ (Df(x)^\dagger Df(x))^\dagger (D^2 f(x)(\dot{x}))^\star \Pi_{\text{Ker } Df(x)^\dagger} f(x) - \Pi_{\text{Ker } Df(x)} (D^2 f(x)(\dot{x}))^\star (Df(x) Df(x)^\dagger)^\dagger f(x).
\]

Proof. Note that

\[
D(Df(x)^\dagger f(x))(\dot{x}) = D(Df(x)^\dagger)(\dot{x}) f(x) + Df(x)^\dagger Df(x)(\dot{x}).
\]

Now use Lemma 10 with \(A = Df(x)\) and the chain rule to \(\dagger \circ Df\). Notice that \(Df(y)\) has rank \(r\) in a neighborhood of \(x\). \(\square\)
Lemma 12. When $Df(\xi)\parallel f(\xi) = 0$ and $\text{Rank } Df(\xi) = r$, we have

$$D(Df(\xi)\parallel f(\xi))\dot{x} = \Pi_{(\text{Ker } Df(\xi))} \dot{x} + (Df(\xi)^*)^\dagger(D^2f(\xi)\dot{x})^\star f(\xi).$$

When V_{ξ} is smooth around ξ, its tangent space is the kernel in E of this linear operator.

Proof. In Lemma 11, use the fact $f(\xi) \in \text{Im } Df(\xi)\parallel$; this gives us $\Pi_{(\text{Im } Df(\xi))}\parallel f(\xi) = f(\xi)$ which simplifies the third term, and that $(Df(\xi)Df(\xi)^\dagger) f(\xi) = 0$ which annihilates the last term in Lemma 11. This is because $\text{Ker } (AA^*) = \text{Ker } (A^*) = \text{Im } A^\perp$, for any matrix A. \qed

Lemma 13. When $Df(\xi)\parallel f(\xi) = 0$, $\text{Rank } f(\xi) = r$ and $\alpha_1(f, \xi) < \frac{1}{2}$, then

$$\|\Pi_{\text{Ker } Df(\xi)}(x - \xi)\| \leq \|\Pi_{r_{\xi}V_{\xi}}(x - \xi)\| + \theta(\alpha_1(f, \xi))\|x - \xi\|$$

with

$$\theta(\alpha) = \alpha \left(2 + \frac{1 + \sqrt{5}}{2(1 - 2\alpha)^2}\right), 0 \leq \alpha < \frac{1}{2}.$$

Proof. We first notice that $D(Df(\xi)\parallel f(\xi))\dot{x}$ is always in $\text{Ker } Df(\xi)\parallel$ so that the rank of this operator is $\leq r$. Let us write $A = \Pi_{(\text{Ker } Df(\xi))}\parallel$ and $B\dot{x} = (Df(\xi)^*Df(\xi))^\dagger(D^2f(\xi)\dot{x})^\star f(\xi)$. We have

$$D(Df(\xi)\parallel f(\xi)) = A + B, \Pi_{\text{Ker } Df(\xi)} = \Pi_{\text{Ker } A} \text{ and } \Pi_{r_{\xi}V_{\xi}} = \Pi_{\text{Ker } (A + B)}.$$

We also can notice that $\|A\| = \|A^\dagger\| = 1$ and $\|B\| \leq 2\alpha_1(f, \xi) < 1$, by the definition of α_1. By Lemma 4 we get $\text{Rank } (A + B) = r$ and

$$\|(A + B)^\dagger\| \leq \frac{1}{1 - \|B\|} \leq \frac{1}{1 - 2\alpha_1(f, \xi)}.$$

We have

$$\Pi_{\text{Ker } A} - \Pi_{\text{Ker } (A + B)} = (A + B)^\dagger(A + B) - A^\dagger A = ((A + B)^\dagger - A^\dagger)(A + B) + A^\dagger B,$$

so that, by Lemma 3

$$\|\Pi_{\text{Ker } A} - \Pi_{\text{Ker } (A + B)}\| \leq \frac{1 + \sqrt{5}}{2} \max \left(\|(A + B)^\dagger\|^2, \|A^\dagger\|^2\right)\|B\| \left(\|A\| + \|B\|\right) + \|A^\dagger\| \|B\|$$

$$\leq \frac{1 + \sqrt{5}}{2} \frac{2\alpha_1(f, \xi)}{(1 - 2\alpha_1(f, \xi))^2}(1 + 2\alpha_1(f, \xi)) + 2\alpha_1(f, \xi) = \theta(\alpha_1(f, \xi)).$$

The conclusion is now easy. \qed

Lemma 14. Let ξ be given as in Lemma 13 and $x \in E$ with $v = \|x - \xi\|\gamma_1(f, \xi) < 1 - \frac{1}{\sqrt{2}}$. Then

$$\|N_f(x) - \xi\| \leq \|\Pi_{r_{\xi}V_{\xi}}(x - \xi)\| + A(v, K(Df(\xi)))v\|x - \xi\| + B(v, \alpha_1(f, \xi)\alpha_1(f, \xi))\|x - \xi\|$$

with

$$B(v, \alpha) = \frac{1}{2} \frac{(1 - v)^2(2 - v)}{\psi(v)^2} + \frac{\theta(\alpha)\alpha}{\alpha}.$$
Proof of Theorem 6. The proof of Theorem 6 is similar to the proof of Theorem 5 but uses Lemma 14 instead of Lemma 9. We define \(x_{k+1} = N_f(x_k) \) inductively and let \(\xi_k = \text{proj}_{V_i} x_k \). Inductively by Lemma 14,
\[
\|x_1 - \xi_1\| \leq \|x_1 - \xi_0\| \leq \Lambda \|x_0 - \xi_0\| \leq \frac{(1 - \Lambda)R}{2},
\]
recalling that \(\|x_0 - \xi_0\| \leq \frac{1 - \Lambda}{2 \Lambda} R \) and \(\Lambda < 1 \). Moreover because
\[
\|\xi_1 - \xi_0\| \leq \|\xi_1 - x_1\| + \|x_1 - \xi_0\| \leq \|\xi_1 - x_1\| + 2 \|x_0 - \xi_0\| \leq (1 - \Lambda)R < R
\]
so that \(\xi_1 \in B_R(\xi_0) \). Inductively by Lemma 14 with \(x = x_{k-1} \), we have
\[
\|x_k - \xi_k\| \leq \|x_k - \xi_{k-1}\| \leq \Lambda \|x_0 - \xi_0\|,
\]
Note that \(\|\xi_k - \xi_{k-1}\| \leq \|x_k - \xi_k\| + \|x_k - \xi_{k-1}\| \leq 2 \|x_k - \xi_{k-1}\| \). Moreover \(\xi_k \in B_R(\xi_0) \), because
\[
\|\xi_k - \xi_0\| \leq \sum_{j=1}^{k} \|\xi_j - \xi_{j-1}\| \leq \sum_{j=1}^{k} 2 \|x_j - \xi_{j-1}\| \leq 2 \sum_{j=1}^{k} \Lambda^j \|x_0 - \xi_0\| \leq 2 \Lambda \frac{\Lambda^k}{1 - \Lambda} \|x_0 - \xi_0\| \leq R,
\]
which completes the proof. \[\square\]

Proof of Proposition 3. We first notice that
\[
\|Df(\xi)\| = \mu^{-1} \text{ with } \mu = \min_{\dot{\xi} \in (\text{Ker } Df(\xi))^\perp} \|Df(\xi)\dot{\xi}\|.
\]
We also have
\[
\frac{1}{2} D^2 F(\xi, \dot{\xi}) = (D^2 f(\dot{\xi})f(\xi) + (Df(\xi))^2 f(\xi)) \dot{\xi}
\]
so that
\[
\frac{1}{2} D^2 F(\xi, \dot{\xi}) = f(\xi) f(\xi) \dot{\xi} + (Df(\xi))^2 f(\xi) \dot{\xi} \geq \mu^2 \|Df(\xi)\| \|\dot{\xi}\| \|f(\xi)\| \|D^2 f(\xi)\| \geq \mu^2 (1 - 2\alpha_1(f, \xi)) > 0.
\]

Lemma 15. Let \(x, y \in E \) and \(u = \|y - x\| \gamma_1(f, x) < 1 - \frac{\sqrt{2}}{2} \) as in Lemma 5. Then
\[
1. \beta_1(f, y) \leq \frac{(1 - u^2)}{\psi(u)} (\beta_1(f, x) + \frac{u}{2} \|y - x\| + K(Df(x))\|y - x\|),
\]
\[
2. \gamma_1(f, y) \leq \frac{\gamma_1(f, x)}{(1 - u)^2},
\]
\[
3. \alpha_1(f, y) \leq \frac{1 - u}{\psi(u)^2} \left(\alpha_1(f, x) + \frac{u^2}{2} + K(Df(x))u \right).
\]

Proof. 3) is a consequence of 1) and 2). 1) goes as follows: Recall that \(\gamma_1 = \text{sup} \left(\|Df(x)\| \|\frac{D^k f(x)}{k!}\| \right)^{1/k-1} \) and \(u = \|y - x\| \gamma_1(f, x) \). We have
\[
f(y) = f(x) + Df(x)(y - x) + \sum_{k \geq 2} \frac{D^k f(x)}{k!} (y - x)^k
\]
so that

$$\|f(y)\| \leq \|f(x)\| + \|Df(x)\| \|y - x\| + \|Df(x)^\dagger\|^{-1} \|y - x\| \frac{u}{1 - u}$$

and we conclude by Lemma 5.3. To prove 2) we start from

$$D^k f(y) = \sum_{\ell=0}^{\infty} \frac{(k + \ell)!}{\ell!} D^{k+\ell} f(x) (y - x)^\ell.$$

This gives

$$\frac{\|D^k f(y)\|}{k!} \leq \sum_{\ell=0}^{\infty} \left(\frac{k + \ell}{\ell} \right) \frac{D^{k+\ell} f(x)}{(k + \ell)!} \|y - x\|^\ell$$

noting that \((\frac{1}{1-u})^{(k)} = \frac{1}{(1-u)^{k+r}} = \sum_{\ell=0}^{\infty} \left(\frac{k + \ell}{\ell} \right) u^\ell\). By Lemma 5.3, we obtain

$$\|D f(y)^\dagger\| \frac{\|D^k f(y)\|}{k!} \leq \frac{(1-u)^2}{\psi(u)} \frac{\gamma_1^{k-1}}{(1-u)^{k+1}} = \frac{1}{\psi(u)} \frac{\gamma_1^{k-1}}{(1-u)^{k-1}}$$

thus

$$\gamma_1(f, y) \leq \frac{\gamma_1(f, x)}{(1-u)\psi(u)}.$$

In the following Lemmas we consider \(x_0, x \in E\) with \(\text{Rank } Df(x_0) = r\) and such that

$$u = \|x - x_0\|\gamma_1(f, x_0) \leq 2\alpha_1(f, x_0) < 1 - \frac{\sqrt{2}}{2}.$$

We also introduce \(y = N_f(x)\). Our objective is to give an estimate for \(\|N_f(y) - N_f(x)\|\) in terms of \(\|y - x\|\). We begin a series of Lemmas. We often use the notations \(\alpha_0 = \alpha_1(f, x_0)\) and \(K_0 = K(Df(x_0))\).

Lemma 16. Suppose that \(u = \|x - x_0\|\gamma_1(f, x_0) \leq 2\alpha_1(f, x_0) \leq \frac{1}{24}\). Then

1. \(\alpha_1(f, x) \leq 4.2\alpha_1(f, x_0) K(f(x_0))\),
2. \(K(f(x)) \leq 1.25K(f(x_0))\).

Proof. From Lemma 15.3 with \(x\) and \(x_0\) instead of \(y\) and \(x\), we have

$$\alpha_1(f, x) \leq \frac{1-u}{\psi(u)^2}(\alpha_0 + \frac{u^2}{1-u} + K_0 u) \leq \frac{1-u}{\psi(u)^2}(3K_0 \alpha_0 + \frac{2\alpha_0 u}{1-u})$$

$$\leq \frac{1-u}{\psi(u)^2}(3K_0 + \frac{2u}{1-u}) \leq (1.37)\alpha_0(3K_0 + 0.03) \leq 4.2\alpha_0 K_0,$$

for \(u \leq 2\alpha_0 \leq \frac{1}{24}\). A bound for \(K(Df(x))\) is given by Lemma 5.2 and 5.3.

$$K(Df(x)) \leq \frac{(1-u)^2}{\psi(u)}(K(Df(x_0)) + \frac{2u - u^2}{\psi(u)}) \leq (1.122)(K_0 + 0.11) \leq 1.25K_0,$$

for \(u \leq \frac{1}{24}\).

\(\Box\)
Lemma 17. When $y = N_f(x)$ then
\[
N_f(y) - N_f(x) = Df(x)^\dagger(Df(x)(y - x) + f(x) - f(y)) + (Df(x)^\dagger - Df(y)^\dagger)f(x) + (Df(x)^\dagger - Df(y)^\dagger)(f(y) - f(x)).
\]

Proof. Just note that $y - x = Df(x)^\dagger Df(x)(y - x)$, because $N_f(x) - x \in \text{Im } Df(x)^\dagger$.

In Lemma 17, $N_f(y) - N_f(x)$ appears as the sum of the three quantities. We will use the notation
\[
\|N_f(y) - N_f(x)\| \leq A + B + C,
\]
for the norm of each of these expressions.

Lemma 18. Let $u_x = \|y - x\| \gamma_1(f, x)$.

1. $A \leq \|x - y\| \frac{u_x}{1 - u_x}$.

2. $B \leq \frac{1 + \sqrt{5}(1 - u_x)^2(2 - u_x)}{\psi(u_x)^2} \alpha_1(f, x) \|y - x\|$.

3. $C \leq \frac{1 + \sqrt{5}(1 - u_x)^2(2 - u_x)}{\psi(u_x)^2} u_x(K(Df(x)) + \frac{u_x}{1 - u_x}) \|x - y\|$.

Proof. By using the Taylor series of $f(y)$ around x and the definition of $\gamma_1(f, x)$ we obtain
\[
A \leq \|Df(x)^\dagger(Df(x)(y - x) + f(x) - f(y))\|
\leq \|Df(x)^\dagger\| \sum_{k=2}^{\infty} \left\|\frac{D^k f(x)}{k!}\right\| \|y - x\|^k = \|y - x\| \frac{u_x}{1 - u_x}.
\]

\[\text{From Lemma 5.4, we have}\]
\[
\|Df(x)^\dagger - Df(y)^\dagger\| \leq \frac{1 + \sqrt{5}(1 - u_x)^2(2 - u_x)}{\psi(u_x)^2} u_x \|Df(x)^\dagger\|,
\]
so that
\[
B \leq \frac{1 + \sqrt{5}(1 - u_x)^2(2 - u_x)}{\psi(u_x)^2} \alpha_1(f, x) \|y - x\|.
\]

The Taylor expansion of $f(y)$ at x gives
\[
\|f(y) - f(x)\| \leq \|Df(x)^\dagger\|^{-1}(K(Df(x)) + \frac{u_x}{1 - u_x}) \|x - y\|.
\]
This yields, using Lemma 5.4,
\[
C \leq \frac{1 + \sqrt{5}(1 - u_x)^2(2 - u_x)}{\psi(u_x)^2} u_x(K(Df(x)) + \frac{u_x}{1 - u_x}) \|x - y\|
\]

Proof of Theorem 7. Let us denote $y = N_f(x)$ and $u = \|x - x_0\| \gamma_1(f, x_0)$. Under the hypothesis $\|y - x\| \leq \|x_1 - x_0\|$ and $u \leq \frac{1}{2a}$ we will prove that
\[
\|N_f(y) - N_f(x)\| \leq \frac{1}{2} \|y - x\|.
\]
First notice that, using Lemma 15.2,

\[u_x = \| y - x \| \gamma_1(f, x) \leq \| x_1 - x_0 \| \frac{\gamma_1(f, x_0)}{(1 - u)\psi(u)} \leq 1.25\alpha_0 \leq \frac{1}{38}, \]

for \(u \leq \frac{1}{24} \). Hence we have

\[A \leq \| y - x \| \frac{u_x}{1 - u_x} \leq \| y - x \| (1.25)\alpha_0 \frac{1}{1 - u_x} \leq (1.25)(1.03)\alpha_0\| y - x \| \leq 1.3\alpha_0\| y - x \|. \]

It is convenient to have the following estimate:

\[E_x \leq \frac{1 + \sqrt{5} (1 - u_x)^2(2 - u_x)}{2 \psi(u_x)^2} \leq 3.78 \]

for \(u_x \leq \frac{1}{38} \). For \(B \), by Lemma 16.1, we have

\[B \leq E_x \alpha_x \| y - x \| \leq (3.78)(4.2\alpha_0 K_0)\| y - x \| \leq 15.9\alpha_0 K_0\| y - x \|. \]

Using Lemma 16.2, we have

\[C \leq E_x u_x (K_x + \frac{u_x}{1 - u_x})\| y - x \| \leq E_x u_x (1.25 K_0 + 0.03)\| y - x \| \]
\[\leq (3.78)(1.25)\alpha_0 (1.28) K_0\| y - x \| \leq 6.1\alpha_0 K_0\| y - x \|. \]

Hence we have

\[\| N_f(y) - N_f(x) \| \leq A + B + C \leq \| y - x \| \leq 24\alpha_0 K_0\| y - x \| \leq \frac{1}{2}\| y - x \|, \]

because \(\alpha_0 K_0 \leq \frac{1}{38} \). Now it is easy to prove, by induction over \(k \), that

\[\| x_{k+1} - x_k \| \leq \left(\frac{1}{2} \right)^k \| x_1 - x_0 \| \]

This completes the proof.
REFERENCES