
MIDTERM 1 PRACTICE KEY

1. Let iU and iV denote the identity map on U and V , respectively. According to
the Chain Rule, In = DiU = D(F−1) ·DF and Im = DiV = DF ·D(F−1). So DF
has both a left and right inverse, which implies that DF is a square matrix. Thus
m = n.

[Note: Theorem 8.2 in the book includes a similar claim, but it is only assumed
that DF is non-singular rather than the assumption here that F−1 exists and is
C1. See Theorem 2.2 for the claim regarding DF being a square matrix.]

2. For the first part, we want to show that f(x, y1) = f(x, y2) for all x, y1, y2 ∈
R, given that ∂yf = 0 everywhere. We may assume that y1 < y2. Consider
the function φ : [y1, y2] → R defined by φ(t) = f(x, t). Then φ′(t) = ∂y(x, t).
According to the mean value theorem, there exists c ∈ (y1, y2) such that φ′(c) =
(φ(y2) − φ(y1))/(y2 − y1). By assumption φ′(c) = 0, and therefore φ(y1) = φ(y2).
This establishes the first claim.

We now assume that in addition ∂xf = 0. The same argument with the roles
of x and y reversed shows that f(x1, y) = f(x2, y) for all x1, x2, y ∈ R. Then we
have for all x1, y1, x2, y2 ∈ R f(x1, y1) = f(x2, y1) = f(x2, y2). It follows that f is
constant.

For the final part, we may take the function f defined by

f(x, y) =

{
x2 if x > 0 or y > 0
−x2 if x < 0 and y < 0

.

Then ∂yf = 0. Moreover, ∂xf = 2x if x > 0 or y > 0 and ∂xf = −2x if
x < 0 and y < 0. This is continuous on the domain A. Finally, f(−1, 1) = 1
but f(−1,−1) = −1, so f is not independent of x.

3. We identify Rn(n+1)/2 with a symmetric matrix in the natural way. For each
i, j ∈ {1, . . . , n} with i ≤ j, we have corresponding partial derivative Dij det(I).
Together these partial derivatives comprise the derivative D det(I). We claim that
Dij det(I) = 1 if i = j and Dij det(I) = 0 otherwise.

Let Sij denote the symmetric matrix that has (i, j)-th and (j, i)-th entry equal
to 1 and is zero otherwise. Then

Dij det(I) = lim
t→0

det(I + tSij)− det(I)

t
.

Note that det(I) = 1, while det(I+ tSij) = 1+ t if i = j and det(I+ tMij) = 1− t2
if i 6= j. The claim follows.

Bonus: The same conclusion holds, though the argument is slightly different. Here
we take Mij to denote the matrix that has (i, j)-th entry equal to 1 and is zero
otherwise. Note that det(I+ tMij) = 1 if i 6= j, so the difference quotient vanishes.

[Note: I didn’t see any way to use the hint. In principle, it could be helpful since
a diagonalizable matrix A can be written as A = P−1DP , where D is diagonal, so
that det(A) = det(D). But the determinant above already seems straightforward
enough.]
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4. (a) f is integrable if and only if the set D of points in Q on which f is not
continuous has measure zero. This means for all ε > 0 there exists a countable
collection {Q1, Q2, . . .} of rectangles covering D such that

∑∞
i=1 v(Qi) < ε, where

v(Qi) is the n-dimensional volume of Qi.

(b) Let x ∈ Q \ Z. Since Q \ Z is open, there is a neighborhood of x on which f
is identically zero. Thus f is continuous at x. It follows that the set D of points
of discontinuity of f in Q is contained in Z and thus has measure zero. By (a), we
see that f is integrable on Q.

(c) Define f by f(x1, . . . , xn) = 1 if all coordinates xi are rational and f(x1, . . . , xn) =
0 otherwise. Then f = 0 except on a countable set, which necessarily has measure
zero (since a single point has measure zero, and the countable union of sets of mea-
sure zero has measure zero). However, f is not integrable, since f = 1 on a dense set.

5. We claim that
∂if(x) =

∫
Q̂i

f,

where Q̂i = [a1, x1] × · · · × [ai−1, xi−1] × · · · × [ai+1, xi+1] × · · · × [an, xn]. For
notational simplicity, we assume that i = n and write Q̂ = Q̂n. It is enough to
show that the right-hand side equals

lim
t→0

1

t

∫
Q̂×[xn,xn+t]

f.

Apply Fubini’s theorem to write this as

lim
t→0

1

t

∫
Q̂

∫ xn+t

xn

f

Denote the value on the previous line by L. Let ε > 0. Note that f is uniformly
continuous on Q; therefore there exists δ > 0 such that |f(y, xn + t)− f(y, xn)| < ε

for all y ∈ Q̂, t ∈ (−δ, δ). For fixed y ∈ Q̂i we thus have

t(f(y, xn)− ε) ≤
∫ xi+t

xi

f ≤ t(f(y, xn) + ε)

for all t ∈ (−δ, δ). This implies∫
y∈Q̂

(f(y, xn)− ε) ≤ L ≤
∫
y∈Q̂

(f(y, xn) + ε)

and thus ∫
y∈Q̂

f(y, xn)− εv(Q̂) ≤ L ≤
∫
y∈Q̂

f(y, xn) + εv(Q̂)

Letting ε→ 0 gives L =
∫
Q̂
f as claimed.

HW p. 79 4(c). [Note: I’m doing this from scratch without using the results of
part (b). Take my solution with some caution; there’s a chance of some arithmetic
mistake, and my solution doesn’t agree with any of the answers submitted by the
class. None of the solutions from the class agreed with each other either, with the
exception of two students that obtained −743/72. My work also gives the solution
−743/72 if the “56” below is replaced by “67”, which these students had at the same
step. I haven’t been able to reconcile the difference yet.]

Let H : R3 → R2 denote the function precomposed with F in the definition of G.
We also write w = F (u, v) = G(x, y, z) and (u, v) = H(x, y, z). For conciseness
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and simplicity, we follow “variable notation” even though there is some ambiguity
present. According to the implicit function theorem, we have

Dg = [−(∂zw)−1∂xw − (∂zw)
−1∂yw].

From here, it’s a tedious repeated application of the product rule and chain rule
until we can isolate D2D1g. The product rule gives

D2D1g = ∂y
(
−(∂zw)−1∂xw

)
= −(∂zw)−1∂y∂xw + (∂zw)

−2∂y∂zw · ∂xw.
Next, we have

∂xw =∂uw · ∂xu+ ∂vw · ∂xv
∂yw =∂uw · ∂yu+ ∂vw · ∂yv
∂zw =∂uw · ∂zu+ ∂vw · ∂zv

and then

∂y∂xw =∂y∂uw · ∂xu+ ∂uw · ∂y∂xu+ ∂y∂vw · ∂xv + ∂vw · ∂y∂xv
=(∂u∂uw · ∂yu+ ∂v∂uw · ∂yv) · ∂xu+ ∂uw · ∂y∂xu

+ (∂u∂vw · ∂yu+ ∂v∂vw · ∂yv) · ∂xv + ∂vw · ∂y∂xv
∂y∂zw =∂y∂uw · ∂zu+ ∂uw · ∂y∂zu+ ∂y∂vw · ∂zv + ∂vw · ∂y∂zv

=(∂u∂uw · ∂yu+ ∂v∂uw · ∂yv) · ∂zu+ ∂uw · ∂y∂zu
+ (∂u∂vw · ∂yu+ ∂v∂vw · ∂yv) · ∂zv + ∂vw · ∂y∂zv

Finally, note that

DH =

[
1 2 3

3x2 2y −2z

]
.

At this point, we have the formulas we need on hand. We just need to evaluate
them at the point (x, y, z) = (−2, 3− 1), corresponding to the values (u, v) = (0, 0)
and w = 0.

We have: ∂xu = 1, ∂yu = 2, ∂zu = 3, ∂xv = 12, ∂yv = 6, ∂zv = 2. From the
information in the problem, we have ∂uw = 2, ∂vw = 3, ∂u∂uw = 3, ∂u∂vw = −1,
∂v∂vw = 5. The second partials for u, v are zero except for ∂x∂xv = 6, ∂y∂yv = 2,
∂z∂zv = −2. Thus we have

∂y∂xw =(3 · 2 + (−1) · 6) · 1 + 2 · 0
+ (−1 · 2 + 5 · 6) · 12 + 3 · 0

=336

∂y∂zw =(3 · 2 + (−1) · 6) · 3 + 2 · 0
+ (−1 · 2 + 5 · 6) · 2 + 3 · 0

=56

and

∂xw =2 · 1 + 3 · 12 = 38

∂zw =2 · 3 + 3 · 2 = 12.

Finally, this gives

D2D1g = −12−1 · 336 + 12−2 · 56 · 38 = −119/9


