# MAT 322 Final Exam <br> Spring 2022 

May 4, 2022

| Question | Points possible | Score |
| :---: | :---: | :---: |
| $\mathbf{1}$ | 10 |  |
| $\mathbf{2}$ | 7 |  |
| $\mathbf{3}$ | 7 |  |
| $\mathbf{4}$ | 10 |  |
| $\mathbf{5}$ | 10 |  |
| $\mathbf{6}$ | 16 |  |
| Total | 60 |  |

## Instructions

1. You may use your textbook, course notes and homework.
2. Write the solution to each problem neatly on a separate piece of paper or your virtual notebook. You don't have to copy down the problem statement.

## Declaration

Read and sign on your own paper (you do not need to copy the full statement):

1. I understand that I am not allowed to use the internet, computer algebra systems, other people, or any outside resource to take this test.
2. I understand that breaking any of these rules will result in a grade of F for this course, and I will be reported to the SBU Academic Judiciary.

## Exam

1. Let

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3}: z=x^{2}+y^{2}, z \leq 2\right\}
$$

and $\omega=(y-z) d x \wedge d y-y d x \wedge d z+y d y \wedge d z$. Orient $S$ using the upward-pointing unit normal vector.
(a) (4 points) Evaluate $\int_{S} \omega$ directly as a surface integral.
(b) (3 points) Find a 1-form $\eta$ such that $d \eta=\omega$.
(c) (3 points) Evaluate $\int_{S} \omega$ using Stokes' theorem.
2. (7 points) Let $S^{3}=\left\{x \in \mathbb{R}^{4}:\|x\|=1\right\}$ be the unit sphere in $\mathbb{R}^{4}$. Evaluate

$$
\int_{S^{3}} x_{1} d x_{2} \wedge d x_{3} \wedge d x_{4}-x_{2} d x_{1} \wedge d x_{3} \wedge d x_{4}+x_{3} d x_{1} \wedge d x_{2} \wedge d x_{4}-x_{4} d x_{1} \wedge d x_{2} \wedge d x_{3}
$$

3. Define the function $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ by

$$
F(x, y, z, w)=\left(f(x, y, z)+w^{2}, x^{2} y+z^{2}-w^{3}\right)
$$

where $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is some smooth function satisfying $f(1,1,1)=-1$. Let $a=(1,1,1,1) \in \mathbb{R}^{4}$.
(a) (4 points) Give the most general condition on the derivative $D f$ that guarantees that there is a neighborhood $A$ of $a$ in the set $F^{-1}(0,0) \subset \mathbb{R}^{4}$, a neighborhood $B \subset \mathbb{R}^{2}$ and a function $g: B \rightarrow \mathbb{R}^{2}$ such that the map $G: B \rightarrow A$ defined by $G(z, w)=(g(z, w), z, w)$ is a parametrization of $A$.
(b) (3 points) Compute $D g(1,1)$ assuming that $D f(1,1,1)=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$.
4. (10 points) Let $f: \mathbb{R}^{n+k} \rightarrow \mathbb{R}^{n}$ be a function of class $C^{1}$, written in coordinates as $f=\left(f_{1}, \ldots, f_{n}\right)$. Let

$$
N=\left\{x \in \mathbb{R}^{n+k}: f_{1}(x)=\cdots=f_{n-1}(x)=0, f_{n}(x) \geq 0\right\}
$$

and $M=\left\{x \in \mathbb{R}^{n+k}: f(x)=\mathbf{0}\right\}$. Assume that $D f(x)$ has rank $n$ for all $x \in M$ and $D\left(f_{1}, \ldots, f_{n-1}\right)(x)$ has rank $n-1$ for all $x \in N$. Prove that $N$ is a $(k+1)$-dimensional manifold, $M$ is a $k$-dimensional manifold, and $\partial N=M$. (See p. 208 in the textbook.)
5. Recall that $\mathcal{A}^{k}\left(\mathbb{R}^{n}\right)$ is the space of alternating $k$-tensors on $\mathbb{R}^{n}$. Let $v \in \mathbb{R}^{n}$. For all $k \geq 1$, define the $\operatorname{map} \iota_{v}: \mathcal{A}^{k}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{A}^{k-1}\left(\mathbb{R}^{n}\right)$ (interior multiplication by $v$ ) by the formula

$$
\iota_{v}(\omega)\left(x_{1}, \ldots, x_{n-1}\right)=\omega\left(v, x_{1}, \ldots, x_{n-1}\right)
$$

(a) (2 points) Prove that $\iota_{v} \circ \iota_{v}=0$ for all $v \in \mathbb{R}^{n}$.
(b) (8 points) Let $\omega \in \mathcal{A}^{k}\left(\mathbb{R}^{n}\right), \eta \in \mathcal{A}^{l}\left(\mathbb{R}^{n}\right)$ and $v \in \mathbb{R}^{n}$. Show that

$$
\iota_{v}(\omega \wedge \eta)=\left(\iota_{v}(\omega)\right) \wedge \eta+(-1)^{k} \omega \wedge\left(\iota_{v}(\eta)\right)
$$

6. Let $V$ be a finite-dimensional vector space. We say that an alternating 2-tensor $\omega \in \mathcal{A}^{2}(V)$ is symplectic (or non-degenerate) if for all non-zero $x \in V$ there exists $y \in V$ such that $\omega(x, y) \neq 0$.
(a) (3 points) Explain why there is no symplectic tensor on $\mathbb{R}^{1}$. Show that, in contrast, every non-zero alternating tensor $\omega \in \mathcal{A}^{2}\left(\mathbb{R}^{2}\right)$ is symplectic.
(b) (6 points) Prove that there is no symplectic tensor on $\mathbb{R}^{n}$ whenever $n$ is odd.
[Hint: Assume a symplectic tensor exists. Construct inductively a sequence of 2-dimensional subspaces $S_{1}, S_{2}, \ldots, S_{k}$ for all $k \leq n / 2$ such that that each restriction $\left.\omega\right|_{S_{i} \times S_{i}}$ is symplectic, and such that $\omega(x, y)=0$ whenever $x \in S_{i}, y \in S_{j}$ for some $i \neq j$. If $n$ is odd, we have an extra dimension left at the end. Derive a contradiction in this case.]
(c) (4 points) Define the $k$-th wedge product $\omega^{k}$ inductively by $\omega^{1}=\omega$ and $\omega^{k}=\omega^{k-1} \wedge \omega$ for $k \geq 2$. Show that if a 2-tensor $\omega \in \mathcal{A}^{2}\left(\mathbb{R}^{2 k}\right)$ is not symplectic, then $\omega^{k}=0$.
(d) (3 points) Give an example of a symplectic tensor on $\mathbb{R}^{4}$.
[Hint: based on part (c), find a 2-tensor for which $\omega \wedge \omega \neq 0$.]
