MAT 322 Spring 2018 Midterm I Exam
Name:

ID Number:

Problem	1	2	3	4	5	Total
Points	20	20	20	20	20	100
Score						

Directions: Do all of your work on these exam sheets; you may use the backs of pages as needed.
Show all your relevant work: Partial credit will not be given without justification or reasoning of your solutions.

1. Let $U \subset \mathbb{R}^{n}$ and $V \subset \mathbb{R}^{m}$ be connected open domains in $\mathbb{R}^{n}, \mathbb{R}^{m}$ respectively and suppose $F: U \rightarrow V$ is a diffeomorphism, i.e. F is a C^{1} mapping onto V with C^{1} inverse $F^{-1}: V \rightarrow U$. Prove that $m=n$. (This is called invariance of domain for C^{1} mappings).
2. Suppose $f=f(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R}$ is C^{1} and $\partial_{y} f=0$ everywhere. Prove that $f=f(x, y)$ is independent of y. If $\partial_{x} f=\partial_{y} f=0$ everywhere on \mathbb{R}^{2}, prove that f is constant.
(Hint: use the mean value theorem).
Let $A=\left\{(x, y) \in \mathbb{R}^{2}: x<0\right.$ or $x \geq 0$ and $\left.y \neq 0\right\}$. If $f: A \rightarrow \mathbb{R}$ satisfies $D f=0$ prove that f is constant.

Find a C^{1} function $f: A \rightarrow \mathbb{R}$ such that $\partial_{y} f=0$ but f is not independent of y.
3. Let $S y m_{n}$ be the subspace of symmetric matrices in the space $M_{n}(\mathbb{R})$ of $n \times n$ matrices. This is a linear subspace isomorphic to $\mathbb{R}^{n(n+1) / 2} \subset \mathbb{R}^{n^{2}}$. The determinant function

$$
\text { det : Sym } \rightarrow \mathbb{R} \text {, }
$$

is a C^{1} function. Compute the derivative $D_{I} \operatorname{det}$ of the determinant at the identity matrix I.
(You may use the fact that any symmetric matrix is diagonalizable, with eigenvalues on the diagonal).

Extra Credit (10pts). Compute the derivative $D_{I} d e t$, for

$$
\operatorname{det}: M_{n}(\mathbb{R}) \rightarrow \mathbb{R}
$$

4. Let Q be a rectangle in \mathbb{R}^{n} and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a bounded function.
(a) State a necessary and sufficient condition for f to be integrable on Q.
(b) Suppose $f=0$ outside a closed set Z of measure zero in Q. Prove that f is integrable and

$$
\int_{Q} f=0
$$

(c) Show by an example that (b) is false if Z is not closed.
5. Let $Q=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$ and suppose $f: Q \rightarrow \mathbb{R}$ is continuous. Define $F: Q \rightarrow \mathbb{R}$ by

$$
F(x)=\int_{\left[a_{1}, x_{1}\right] \times \cdots \times\left[a_{n}, x_{n}\right]} f .
$$

Determine the partial derivatives $\partial_{i} f(x)$, for x in the interior of Q.

