TORSION ON CERTAIN ELLIPTIC CURVES OVER Q(\/&)

JONATHAN HANKE

1. INTRODUCTION

In this paper, we set out to generalize theorems that classify the () rational
torsion points on two special families of elliptic curves with complex multiplication.
We shall generalize the theorems to a classification of the torsion points on these
kinds of curves over an arbitrary quadratic number field. We denote the quadratic
number field by k& = Q(\/&) and its ring of integers by Of. To achieve this goal, our
strategy will be to consider these elliptic curves over the finite fields O /p, where p is
some prime ideal in Oy, and determine the number of points there. For most prime
ideals p we can define a homomorphism r, : E(k) — Ey(Or/p), which is one-to-one
when restricted to the torsion subgroup E(k)Tors. This will be useful because it
relates E(k)rors to these smaller groups, which we will be able to understand fairly
well. From this relationship we can obtain a strong divisibility condition, and thus
a bound, on the size of E(k)Tors.

We then change our strategy slightly and try to construct all possible torsion
group structures within the previous bound. This gives us a classification of all
possible torsion groups. Then we look at some examples and use this classification
to calculate the torsion for some elliptic curves.

2. BACKGROUND

Here we outline some of the basic definitions and ideas necessary for our discus-
sion. For a more in depth discussion, see [Kn].

First, we define an elliptic curve over a field K to be any nonsingular pro-
jective cubic curve F with coefficients in K which has at least one K rational
point. It turns out that any elliptic curve can be put into the following form by an
appropriate change of variables:

3 where a; € K,

FE: y2w + a1zyw + agyw2 =z + azmzw + a4.'cw2 + agw
the K rational point mapping to the K rational point O on E at infinity (i.e.
w = 0). We say that a cubic of this form is in Weierstrass form.

The point O on a cubic in Weierstrass form is also special in that it is a flex
for this cubic. This will become important later when we consider the group law
on E. Since we will be dealing only with elliptic curves in Weierstrass form, it is
convenient for us to take this as our definition of an elliptic curve from now on.
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It is also natural to examine changes of variables which send Weierstrass curves
into other Weierstrass curves. We call such a change of variables an admissible
change of variables, and is given by

m:uzm'—i—r

Y= usy' +sulz’ +t

for some u, r, s,t € K. If two curves are related by an admissible change of variables,
we say that the two curves are isomorphic.
In the special case where r = s =¢ = 0, our change of variables reduces to

After changing variables and normalizing the 2 and yw? coefficients to 1, we see
that the a; coefficients are each multiplied by a factor of u=%. To describe this
transformation property, we say that a; has weight 3.

These transformations are useful for us in two ways. First, if we are given
as elliptic curve with coefficients in K, we can clear the denominators of all the
coefficients by setting u = product of all denominators of a;. In this way, we obtain
an isomorphic elliptic curve with coefficients in Og. Unless otherwise stated, we
will only consider curves with K integral coeflicients. Also, the two families of
elliptic curves we are considering,

El:y? =23+ Az
E?:.y? = 2%+ B,

the coefficients A and B have weight 4 and 6 respectively. So by choosing an
appropriate value for u, we can transform our ellpitic curve into an isomorphic
elliptic curve where A is 4" power free and B is 6" power free. We will make use of
this fact when we classify the torsion. Our classification will be up to isomorphism,
so we will assume that the coefficients A and B have this form.

The condition that E be nonsingular means that the tangent line to F is
nonzero at every point of E. To determine easily whether an algebraic curve is
nonsingular, we associate to each curve a number Ag in K called the discriminant
of E. The discriminant of E has the property that Ag = 0 if and only if E is
singular. We will always use Ag to test the singularity of E.

Now on this elliptic curve we can define a group law given by a K rational map
in such a way that O is the group identity. Thus, with this addition defined, the
K rational points F(K) on E form a group. The addition law may be defined
by the following geometrical construction. Let P and @ be two points in the set
E(K). We define P + Q by connecting P and @Q by a line, then connecting the
third intersection point of the line through P and @ (with E) to O by a second
line. We then define P + @ as the third intersection point of the second line with
E. Since the point O is an inflection point of E (i.e., its intersection multiplicity is
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3) and its tangent line is the line at infinity, we see by this construction that O is
the identity element for our group operation.

Suppose we are given an elliptic curve EF over number field k£ and we wish to
consider this curve over the finite field Oy /p where p is some prime ideal in O.
Since the reduction map k& — Og/p is only defined on the p-integral elements of
k, we wish to define a reduced elliptic curve E, for a given prime ideal p in
Oy such that ordya; > 0 for all ¢, and ordya; = 0 for at least one 7. To do this
consistently, we consider the following construction due to Silverman. Consider F
over the p-adic integers R, of k. In Ry, the prime ideal p embeds into the unique
maximal ideal of Ry. It turns out that this maximal ideal is principal, generated
by some m € R,. We then use an admissible change of variables in R, to transform
E into a p-reduced curve E, with coeflicients in R,. Since

Ryp/(7) = O/,

we can consider the p-reduced curve E, over Oy/p. (For more details about this
reduction, see [Sil 1].) Then we see that Fy(Or/p) is nonsingular if and only if

With this, we can define a natural group homomorphism r, : E(k) — Ep(Ox/p).
This turns out to be an injective map when restricted to the torsion subgroup
E(k)Tors for most prime ideals p when p { Ag. We state the actual results in
Theorems 3.7 and 3.8 in the next section.

IfK =k = Q(\/&), by clearing denominators, we can arrange that the coefficients
a; are numbers in O. When we are working with an elliptic curve over k in
Weierstrass form, we will always assume that the a;’s are elements of O.

3. UseFUuL RESULTS

Now we shall take a moment to discuss some useful results that form the foun-
dation for much of our work.

Theorem 3.1. Let k be a number field and let E : y> = az® be the singular
elliptic curve with singular point R = (0,0) and o € k. Then there is a one-to-one
correspondence between the k-rational points P # R in E(k) and the points in k,

given by
2 .3

P=(z,y) = (m—m—)

a’ o
where m € k.

Proof. Consider the line L : y = mz with slope m through the singular point R.
If m € k, the line L will intersect F at exactly two distinct points, R and at some
other point P. To find P, substitute L into the equation for E. This gives

2
m
az? — m?z? = az? <2: — —) = 0.
a
Since we are interested in the point P # R, we have
2 .3

PZ(z,y)Z(m—,m—),

27 87
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which, since o € k, is clearly a k rational point on E. Conversely, if P # R is a
rational point on E, then the line L : y = mz through P and R has slope

_— (w) _P2 g O
P1—T D1

Remark. For more details about the chord-secant method see [Sil-Ta].
Theorem 3.2. (Mordell-Weil) The group E(k) is finitely generated.
Proof. See [Sil 1], p189.

Remark. This allows us to write E(k) in the form
E(k) = Zpss X+« X Lpan X L7

where r is called the rank of E(k).

Theorem 3.3. (Quadratic Reciprocity) If p,q > 0 are odd primes, then

() -cre

Theorem 3.4. (Dirichlet’s Theorem) If m and b are relatively prime integers with
m > 0, then there exist infinitely many primes of the form kn+ b with k a positive
integer.

Proof. See [Kn].

Proof. See [H-W].

Theorem 3.5. (Chinese Remainder Theorem) Suppose that m = mimg---my
and that ged(m;,m;) = 1 for i # j. Let by, by, - -, by be integers and consider the
system of congruences:

z = b; mod my, 2 = by mod my,---,z = b; mod m;.

This system always has solutions and any two solutions differ by a multiple of m.
Proof. See [I-R], pp34-6.

Theorem 3.6. Let E be an elliptic curve over k and let m be an integer relatively
prime to char(Og/p) = p. Then there is a well defined reduction homomorphism

rp 2 E(k)[m] — Ep(Ox/p)

which is one-to-one when p { Ag. Here E(k)[m] denotes the group of points with
order m in E(k).

Proof. See [Sil 1], ppl173-6.



TORSION ON CERTAIN ELLIPTIC CURVES OVER Q(vd) 5

Theorem 3.7. (Cassels) Let k be a number field, p be a prime ideal in Oy, K
be the p-adic completion of k. Suppose char(K)=0 and char(Oy/p) = p where p
is prime . Let E be a Weierstrass curve with a; in the integers Rg of K and let
P = (z,y) € E(k)Tors be a point with exact order m > 2.

(a) If m is not a power of p, then z(P) and y(P) € Rk.

(b) If m = p", then

" 5(P), 7*"y(P) € Ry withr = [ﬁ] :
pr—p

where v(p) Is the p-adic valuation on K.

Proof. See [Sil 1], ppl77-8.

Theorem 3.8. Let E be a Weierstrass curve over a number field k with a; € Oy
and let P = (z,y) € E(k)Tors be a point with exact order m > 2.

(a) If m is not a power of p, then z,y € Oy.

(b) If m = p™, then for each non-archimedian absolute value v on k, let

:[ ord, (p) ]

pn _ pn—l

Then
ord,(z) > —2r, and ord,(y) > —3r,.

Proof. See [Sil 1], pp220-1.

Corollary 3.9. Let k is a quadratic number field and let E : y* = 2+ Az + B be
elliptic curve with A,B € k. If P = (z,y) € E(k)rors Is & point with exact order
m > 2, then z,y € Oy unless m = 3 and 3 ramifies or m = 4 and 2 ramifies. In
these cases, we have

— _ 2
m=3and(3)=p {ordp22—2
—

or
m = 4 and (2) = p? ordpy > —3

Proof. To know how big these denominators can be, we use Theorem 3.8 and look
for those values of p and n for which r, > 0. Since k is a quadratic number field,
ordyp = 1 or 2. For all primes p > 5, p™ — p"~! > 2 when n > 0. So for these,
rp, = 0 and z and y are in Oy. For the primes 2 and 3, we summarize our results in
the following table:

P n splits or ramifies Ty m = p" = order of P
2 1 splits 1 2
2 1 ramifies 2 2
3 1 ramifies 1 3
2 2 ramifies 1 4
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If P were a point of order 2 (m = 2), then we know that z € O,. We know this
because P is an order 2 point, the group law implies y = 0. Therefore z is the root
of a monic polynomial, and is in Og. Thus only points of orders 3 and 4 may have
denominators > 1. From Theorem 3.8 we know ordyz,ord,y > 0 unless p | 2 or
p | 3, depending on m. If this happens, Theorem 3.8 gives the desired lower bound
for ordyz,ordyy. O

4. THEOREMS OVER ()

Theorems over ). IfE':y? = 23+ Az and E? : y? = 23 + B are elliptic curves
with A, B € Z such that A is 4*® power free and B is 6 power free, then

ym ifA=4
(1) EYQ)pors = { Zox Zy ifA= -0

Zig otherwise

Ze IfB=1

Zg ifB=—-432, orif B=0Oand B#1
(2) Ez(Q)Tors =

Zg if B= acubeand B#1

0 otherwise

5. COMPLEX MUTIPLICATION

Given an elliptic curve over any number field, we can look at the ring of endo-
morphisms of E, denoted by End E. For most curves, the members of this ring
consist only of the multiplication-by-n endomorphisms sending a point P to nP for
all n € Z. In such a case End E = 7.. However, some elliptic curves have a bigger
endomorphism ring. It can be shown that these other endomorphism rings are al-
ways isomorphic to the ring of integers of some imaginary quadratic number field.
Curves with this larger endomorphism ring are said to have complex multiplica-
tion. The curves E! and E? considered here both have complex multiplication.

E': 4% = 23 4+ Az has complex multiplication by i = 4/—1. The multiplication-
by-i endomorphism looks like

i:(z,y) — (—=z,)
E? : 42 = 2% + B has complex multiplication by w = %

representation for the multiplication-by-w endomorphism as

. Again we have a

w:(z,y) — (we,y)
6. ESTABLISHING A BOUND FOR E(k)Tors
Let us now specialize to study the elliptic curves over k = Q(\/E) given by
El:y? =23+ Az
E?:y? =234+ B,
where A and B are nonzero members of O. We use the complex multiplication

symmetries of these curves to determine exactly the size of E,(Oy/p) for some class
of prime ideals p € Oy.
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Theorem 6.1. If p is a prime ideal in Oy, such that p { Ag: and if N(p) = p for
some rational prime p = 3 mod 4, then |E;(Ok/p)| =p+1.

Proof. The relation N(p) = p means that Ox/p is a field of order p. Hence the
multiplicative group (Op/p)* has order p — 1. Since p = 3mod 4, —1 is not a
square in Og/p.

Now consider pairs {z, —z} for z € (Or/p)*. Suppose z gives a solution (z,y)
to E, with y Z Omodp (i.e. z>+ Az = Omod p). Then —z does not give a
solution to Ej, since z> + Az = (—1)0 mod p and —1 is not a square in Oy/p.
Similarly if z does not generate a solution to E, then z® + Az # O mod p. But
then —z generates a solution to E, since (—z)3 + A(—z) = —1(z3 + Az) = 0. We
know this is congruent to a square because the product of any two non-squares
is again a square and as before, —1 #Z O mod p. Therefore, every pair {z,—z}
with ¢ € (Or/p)™ generates exactly two solutions when the corresponding y is #Z 0
mod p. When the corresponding y is = 0, the pair {z, —z} still generates exactly
two solutions, namely (z,0) and (—z,0). So from all z € (Ox/p)* we have p— 1
solutions. Then we have the two additional solutions (0, 0) and oo, which gives us
a total of p+ 1 solutions. O

Theorem 6.2. If p is a prime ideal in Oy, such that p { Ag= and if N(p) = p for
some rational prime p = 2 mod 3, then |E§(Ok/p)| =p+1.

Proof. The relation N(p) = p means that Og/p is a field of order p. Hence the
multiplicative group (O /p)* has order p— 1. Since 31 p—1, there are no elements
of order 3. This means that the kernel of the map z — z2 is {1}. Therefore the

map z — z° is one-to-one and also onto.

Now consider the expression y2 — B. For each choice of y € O/p there is a
unique z € Ok /p such that y> — B = 3. These solutions (z,y) together with the
solution at oo give us p + 1 solutions. O

The above theorems give us the size of E,(Oy/p) whenever N(p) equals a rational
prime p and p satisfies some additional congruence condition. So now it is natural to
ask: How much does this tell us and how often does this happen? For our purposes,
we are most concerned with finding those rational primes p for which there is some
E,(Or/p) with p+ 1 elements.

From algebraic number theory, we know that the principal ideal (p) generated
by a rational prime p can factor in three ways over O when k = Q(\/&), we say
that (p) can ramify, split, or remain inert. If there is a prime ideal p in Oy such
that the ideal (p) generated by p can be written as (p) = p?, then we say that p
ramifies in Oy. If p is such that the ideal (p) can be written as (p) = pp, we say
that p splits in Og. The third possibility is that the ideal (p) has no nontrivial
factorization, in which case we say that p is inert. Quadratic residues give an easy
way to determine whether a rational prime p ramifies, splits, or remains inert in
Oy, as follows.

Theorem 6.3. Let p be an odd rational prime and Oy be the ring of integers of
a quadratic number field with discriminant A. Then the factorization of the ideal
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(p) generated by p is given in terms of Legendre symbols by

A
(—) = 0 <= p ramifies in Oy
p

A
(—) = 1 <= p splits in Oy
p

A
(—) = —1 <= p remains inert in Oy
p

Proof. See [He], p97.

For our purposes we will be interested only in those primes p that split in Ok,
since there are only a finite number of primes that ramify, namely those rational
primes dividing A. The following two theorems will tell us which primes we can
use with Theorems 6.1 and 6.2.

Theorem 6.4. For all values of d except d = —1, the rational primes p = 3 mod 4
that split in Oy are given by a nonempty union of congruence conditions p =
a; mod 4d, 1 < i1 <r. When d = —1, there are no rational primes p = 3 mod 4 that
split in Oy.

Proof. From Theorem 6.3, we know that

.. A
(3) p splits in O <= (—) =1,
p

where A is the discriminant of O. Since Q(\/E) is a quadratic number field, we
can calculate its discriminant as

_{d ifd=1mod4

(4) e
4d if d = 2 or 3 mod 4.

To solve the equation on the right side of (3), we write the prime factorization of d
as

(5) d=(—=1)°2p1- Png1- - gm,

where p; = 1 mod 4, ¢; = 3 mod 4, and d is assumed to be square-free. We can
then factor the Legendre symbol (%) as

A d —1\° [2\° , m
o (5)-6)-G) G G)-G)E)-G)-

p p p p p p p p
Since we are considering only primes p = 3 mod 4, we know (_71) = —1. Thus our
equation becomes

1

OO ROOROR
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Now we use Quadratic Reciprocity to simplify (7) further. From this formula, for
each factor we have one of the following:

(8) (E) = (2) since p; =1 mod 4
p pi

(9) (q_f) = _ (2) since g¢; =3 mod 4.
p q;

Putting these into (7), we get

o (R EE)E)-

We also know that for the prime 2, we have

(11) (Z) _ { +1 p==1mod8

P —1 p =43 mod 8,

and the constraint p = 3 mod 4 gives

(12) (2) _ { +1 p=T7mod8

P —1 p=3mod 8.

Thus the value of (%) is not determined by the condition p = 3 mod 4 and may be
either +1 depending on the residue of p mod 8.

To solve (10), we need to consider all possible products (of +1’s) on the left
side of (10) that multiply to (—1)**™. We represent each possible product by an
(¢ +n+m)-tuple t of +1’s and —1’s such that the k*® entry ¢; represents the value
of the k*" Legendre symbol L and

E'+n+m

(13) I te= (-1

k=1

Let T denote the set of all such (¢’ + n + m)-tuples ¢. Under this association, it is
more convenient to write (10) as

e‘+n+m

IT Zite) = (1.

where Ly (p) represents the value of the k*® Legendre symbol evaluated at p and an
empty product is taken to be 1. Thus the complete solution set S to (10) of primes
p = 3 mod 4 that split in Oy is given by

5'+n+m

(14) S=<primesp=3mod4|p¢c U ﬂ {p| Lx(p) = t&}
teT \ k=1
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For each t € T, we solve the equation
(15) Li(p) = te

for all odd primes p. The solutions to (15) can be written as a set of congruence
conditions mod 8, p;, or ¢; depending on the choice of k. By applying the Chinese
Remainder Theorem, we can combine the congruence conditions in (14) and write

S:{primesp | p=ay, - ,a, mod 2° +2p1...pnq1...qm}
:{primesp | p=ai, - ,a mod4d}

for some a;, 1 << r.

Now let us see for which d we have S = 0. Clearly if &’ +n+m > 0, then S # 0.
Looking back at (10) and letting ¢/ = n = m = 0, we obtain (—1)° = 1. This is
true for every p unless e = 1. Thus S = 0 only when d = —1. O
Theorem 6.5. When d # —3, the rational primes p = 2 mod 3 that split in Oy

are given by a nonempty union of congruence conditions p = a; mod kd, 1 <1 < r.
Here kd is defined as

(16) rkd = 2*3 ][ p™%*
p<5
where
1 if24d and €” = ¢+ mmod 2

a=1¢ 2 if2{d ande” Ze+ mmod?2
if2]d.

w

and when the prime factorization of d is written as

(17) d=(-1)°2°3" p1-Png1-" " gm,

where p; = 1 mod 4, g; = 3mod 4, g; # 3, and d is assumed to be square-free.
When d = —3, there are no rational primes p = 2 mod 3 that split in Oy.

Proof. Let p be an odd prime. From Theorem 6.3, we know that

A
(18) p splits in O <= (—) =1
p

where A is the discriminant of O. Since Q(\/E) is a quadratic number field, we
can calculate its discriminant A as
d ifd=1mod4
(19) = .
4d ifd =2 or 3mod 4

To solve the equation on the right side of (18), we use (17) to factor the Legendre
symbol (%) as

e (5)

"

GGYE G 66 -(5)-
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Since we are considering only primes p = 2 mod 3, we know (§) = —1. For

convenience, we shall consider the primes p = 1 mod 4 and p = 3 mod 4 separately.
If p = 1 mod 4, we have (_Tl) = 1 and for the other terms

(21) (&) = (2) since p; = 1 mod 4
p i

(22) (q—]) = <£) since ¢; = 3 mod 4.
P q;

Putting these into (20), we get

@ (O G- @@ e

If p = 3 mod 4, we have (_71) = —1 and for the other terms

(24) (Iﬁ) = (2) since p; =1 mod4
p Di

(25) (q_]) =— (ﬁ) since ¢; =3 mod 4.
p q;

Putting these into (20), we get

e () G)-E6E)-@)

For simplicity, we will rewrite (23) and (26) together as

en () (2)(2)(2)(2) :{ (-1 ifp=1mods
p p1 P/ \@Q1 Im (-1)**™  if p =3 mod 4.

From (12) in the previous proof, we know that the value of (2) is not determined
by the condition p = 1 or 3 mod 4, and may be either +1 depending on the residue
of p mod 8.

To solve (27), we need to consider all possible products (of +1’s) on the left side
of (10) that multiply to either (—1)5” if p=1mod4 or (—1)**™ if p = 3 mod 4.
We represent each possible product by an (¢/ + n + m)-tuple ¢t of +1’s and —1’s
such that the k' entry t; represents the value of the k'" Legendre symbol L; and

- U {0 itz Lo
o1 (=1)*t™  if p = 3 mod 4.

(_1)s+s”+m+s” _ (_1)s+m )

Let T} denote the set of all such (¢/ + n + m)-tuples ¢ when p = 1 mod 4 and let
T> denote the set of all such (¢/ + n + m)-tuples ¢ when p = 3 mod 4. Under this
association, it is more convenient to write (27) as

E‘+ﬁm L (0) (—1)5” if p=1mod 4
kD) = .
byt (=1)**™  if p= 3 mod 4.
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where Ly (p) represents the value of the k*" Legendre symbol evaluated at p and an
empty product is taken to be 1. Thus the complete solution set S to (27) of odd
primes p = 2 mod 3 that split in Oy is given by

2 e'+n+m
(29) S =4 odd primespE2mod3‘pE U U ﬂ {p| Le(p) = tr}
'=1 teTy k=0

where Lo = (_71) and tg = (—1)11_1 to reflect the congruence p = 1 or 3 mod 4.
For each t € Ty, we solve the equation

(30) Li(p) = t&

for all odd primes p. The solutions to (30) can be written as a set of congruence
conditions mod 4, 8, p;, or g; depending on the choice of k. By applying the Chinese
Remainder Theorem, we can combine the congruence conditions in (29) and write
S as

S = primes p|p=ai,---,a mod 2% 3 [] p°%*
p<5

where
1 if24dand€” =¢e+ mmod?2

a=4¢ 2 if2{dande” Ze+ mmod?2
3 if2]d.
Thus by defining & as in the statement of the theorem, we can write S more com-

pactly as
S = {primesp | p=ai, - ,qr modnd}

for some a;, 1 << r.
Now let us see for which d we have S = 0. Clearly if ¢’ + n+m > 0, then S # 0.
Now consider when ¢’ = n = m = 0. In this case
d=(-1)°3".

Looking back at (27) when ¢ = n = m = 0, we obtain

_ (—1)5” ifp=1mod4

(-1)° if p= 3 mod4.
If p= 1 mod 4, then (27) admits no solutions if and only if d = +3. If p = 3 mod 4,
then (27) admits no solutions if and only if d = —1 or —3. Combining these two

cases, we see that the only value of d that gives no solutions to (27) for any odd
primepisd=—-3. O

Now that we have a union of congruence classes (mod 4d or kd) of rational
primes p for which we know |E,(Ox/p)| = p+ 1, we can use the one-to-one group
homomorphism

(31) E(k)Tors — Ep(ok/p) when p J(AE

to obtain a bound for |E(k)Tors|.
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Theorem 6.6. When d # —1, |E*(k)1ors| divides 4d.

Proof. Let ¢ = |E(k)Tors| and let ¢’ be some odd prime divisor of |E(k)rors|-
Suppose that ¢’ 1 4d. Then, using the Chinese Remainder Theorem and Dirichlet’s
Theorem, we can choose a prime p > Ag:,q such that

p=1modgq
p = a; mod 4d,

for some a; as in Theorem 6.4. Since gcd(|E*(k)Tors|,p)=1 and p { Ag, by Theorem
3.6, the group homomorphism

7o+ B*(k)ors — Ex(Oy/p)

is one-to-one. Hence the image of E*(k)Tors is a subgroup of both E’;(Ok/p) whose
order is known from Theorem 6.1 as p + 1. Since the order of a subgroup divides
the order of the group, we have

¢ |(p+1)
But we know the congruence class of p mod ¢’; so this reduces to
q|2

which is nonsense since ¢’ was assumes to be odd. Therefore ¢’ | 4d. Because this
is true for every odd prime divisor ¢’ of |E'(k)Tors| and 2 divides 4d, we know that
ged(a;, 4dg’)=gcd(a;,4d) = 1.

Since gcd(a;,4dq’)=1 for each odd prime divisor of g, we know that
ged(a;, 4dg)=1. Therefore we can use Dirichlet’s Theorem to choose two primes
p1,P2 > Ag1,q such that

p1 = a; mod 4dq
p2 = a; + 4d mod 4dgq.
for some a; as in Theorem 6.4, 1 < 7 < r. Since p; and p; are both > Apga,q, the
group homomorphisms

Tp, : El(k)Tors — Egl(ok/pl)
Tp, - El(k)Tors — E;2(Ok/p2)’

are one-to-one. Hence the image of E'(k)Tors is a subgroup of both E;l(Ok/pl)
and E,%E(Ok/pz) whose orders are p; + 1 and p; + 1 respectively (from Theorem
6.1). Since they are subgroups and since the order of a subgroup divides the order
of the group, we have

q|(p1+1)
q|(p2+1).
But we know the congruence classes of p; and p; mod g; so these reduce to
q|(a:i+1)
q|(a; +4d+1).
Therefore, g | 4d. O
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Theorem 6.7. When d # —3, |E*(k)Tors| divides kd, where k is as in Theorem
6.5.

Proof. The proof is exactly as for Theorem 6.6 if we replace E! with E? and 4d
with kd. O

Theorem 6.8. When d # —1,
12 ifd=3
(32) |E® (k) Tors| divides { 8 ifd=2

4  otherwise.

Proof. Let ¢ = |E(k)Tors|- From Theorem 6.6, we know g | 4d. By Dirichlet’s
Theorem choose a set of primes p; > ¢, Ag: such that p; = a; mod 4d for each
1 < ¢ < r. Since ged(pi, g)=1, we use our one-to-one group homomorphism from
Theorem 0.5 to see that g | (p; + 1). Hence g | (a; + 1) since g | 4d. Therefore,

(33) a; = —1 mod g,

for all 1 < i < r. Certainly 4 | g since our primes p; are chosen a priori = 3 mod 4.
Suppose g > 4. Then either 8 | ¢ or p’ | ¢ where p’ is some odd prime dividing

4d. Thus either a; = —1 mod 8 or a; = —1 mod p’. In either case, we obtain a
single congruence condition that all odd primes p = 3 mod 4 which split in Oy
must satisfy. Therefore, in (10), the corresponding Legendre symbol ( (;"—,) or (}%)

respectively) must assume only one value for all such primes p. This occurs only
when there is exactly one Legendre symbol on the left side of (10). Moreover, since
(33) is a single congruence, there must be exactly one residue (or non-residue) that
corresponds to each value of the Legendre symbol.

If 8 | g, then 2 must be the only prime dividing 4d. Therefore ¢’ = 1,m = 0, and

(10) reduces to
(2) =t =y

From (12), p = —1 implies that (12—’) = 1. Thus € = 0 and, using (5), we see d = 2.
If p’ | g, then p’ must be the only prime dividing d. Therefore ¢/ = 0 and (10)
reduces to

(39 (Z) = v

Since (33) requires that the solution to (34) is a single congruence condition mod
p', there must be exactly one residue (and one non-residue) mod p’. The number

1

of residues mod p’ = ”Tl =1, so p’ = 3. With this, (34) becomes

(==

which implies € = 0. Thus from (5), we see d =3. O
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Theorem 6.9. When d # —3,

12 ifd=3
6  otherwise.

(35) |E2(k)Tors| divides {

Proof. Let ¢ = |E?(k)Tors|- From Theorem 6.7, we know g | xd. By Dirichlet’s
Theorem choose a set of primes p; > ¢, Ag2 such that p; = a; mod 4d for each
1 < 2 < r. Using our one-to-one group homomorphism as in the last proof, we see
that ¢ | (p; + 1) and so q | (a; + 1) since g | kd. Therefore,

(36) a; = —1 mod g,

for all 1 < i < r. Certainly 6 | g since our primes p; are chosen a priori = 5 mod 6.
Suppose g > 6. Then either 8 | ¢ or p’ | ¢ where p’ is some odd prime dividing

4d. Thus either a; = —1 mod 8 or a; = —1 mod p’. In either case, (36) requires
that all odd primes p = 2 mod 3 which split in O must satisfy a single congruence
condition. Therefore, in (27), the corresponding Legendre symbol ( (12—’) or (1%)

respectively) must assume only one value for all such primes p. This occurs only
when there is exactly one Legendre symbol on the left side of (27). Moreover, since
(36) is a single congruence, there must be exactly one residue (or non-residue) that
corresponds to each value of the Legendre symbol.

If 8 | g, then 2 must be the only prime dividing xd. Therefore ¢ = 1,6 = m = 0,
and (27) reduces to

(g) _ Lyt { (-1 =1 if p = 1 mod 4

p (-1)*t™ = (-1)° if p=3 mod 4.

However, from (11), the p = 3 mod 4 condition above will always have a solution,
giving either p =1 or 5 mod 8. Since this contradicts (36), we know 81 g.

If ¥’ | g, then p’ must be the only prime dividing xd. Therefore ¢/ = 0 and (27)
reduces to

(37) (2/) :{ (1" ifp=1mod4

p (—1)E+m if p =3 mod 4.

Since (36) requires that the solution to (37) is a single congruence condition mod
p', there must be exactly one residue (and one non-residue) mod p’. The number
of residues modp’ = ’% =1, so p’ = 3. With this, we know that £’1, m = 0, and
(36) requires p = —1 mod 3. Therefore (37) becomes

(g):{(—l)f”:l iprlmod4}:_1
3 (-1)*t™ = (1) if p=3 mod 4 '
which admits a solution only when p = 3 mod 4 and € = 0. Thus, from (17), we see

that d = 3 and from above we see that p = —1 mod 12. So when d = 3, we have
g=12. O
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7. THE GROUP STRUCTURE OF E(k)rTors

Now that we have a reasonable bound for the size of the torsion subgroup, we
will examine the conditions for points of certain orders to exist. By combining these
conditions, we determine the group structure of the torsion subgroup.

Lemma 7.1. (Doubling Formula) Suppose P = (z,y) is a point in E'(k), then
the z coordinate of 2P is given by

Proof. See [Kn], p76.

Theorem 7.2.
(1) Za2 C E'(k)
(2) Zz X Zz g El(k) <— A=-0
(3) ZzC EYk) < A= (3 + 2\/5) 1* for some l € Oy,

Proof. (1). We have

P is a point of order 2 <= P =—P,P # c©
< (z,y) = (z,—y)
<~ y=0.

Therefore (0,0) is a point on y? = z2 + Az of order 2. So Z; C E'(k).
(2). We have

Zg x 7y C E'(k) <= There are 4 points of order 2
<= 2%+ Az has 3 roots in Oy.

By the factorization
B+ Az ==z (m— \/—A) (z:—}—\/—A) =0

we see that these 3 roots are in Oy if and only if A = — in Oy.
(3). Suppose there is a point P of order 3. Then 3P = 0 or alternatively

2P = —P. From this we can again use the doubling formula to obtain the relation
2 A 2
z(2P) = u =z
4(z3 4+ Az)

After some algebra, we have
—A? + 64z% + 32* = 0.

Since this is a homogeneous polynomialin A and 22, it is convenient to rewrite this

as 9
A A _
2 +6 22 +3=0.
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Using the quadratic formula, we obtain

% = (3£ 2v3)

and thus

(38) A= (3£2v3) 0%

Putting this result back into the equation for the elliptic curve E!, we get
v =2+ Az = 2% + (3:&2\/5) z®

and therefore

(39) y? =2 (24 v3) 2

What we have done is taken our point P = (z,y) of order 3 on E! and shown that
it must also be a (rational) point on the singular cubic curve E : y? = 2(2 ++/3)z>.
Theorem 3.1 gives us the general form of a rational point on F as

o y):( (2% V3)m? (2% V3)m? )
D\ e (123 G ) (12 B)

(40)

B ( m2 m3 )
A\ (1++/3)27 (1++/3)2
where we substituted the factorization 2 = (2 F \/5) (1 + \/5)2 Among these, we
look for points whose (coordinate) denominators are consistent with the bounds
given by Corollary 3.9. Since we are dealing with points of order 3 and (3) =
(+/3)? = p? in Z[+/3], Corollary 3.9 states that
ordﬁm > -2
ordﬁy > —3.
This allows only ord ,m > —1. Since N(1+ V3)=—-2and N(2—-+/3) =1, we

can write m in the form m = KL\/\?)—Z for some I in Oy. Putting this back into (40),
we get

2 (1+£/3)8
(41) (z, ): ( 27 3 ) .
NVORY:

Using (38), we solve for A as

(42) A= (3+2V3)z?
12 ’
= (3£ 2V3) =] -
(v3)
But we also require that A € Oy, so | = 4/3l’. Therefore
A= (3+2V3).

O
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Theorem 7.3. Suppose E'(k) contains a point Q of order 4, then Q must double
to a point P of order 2. We classify the points of order 4 according to the order 2
points to which they double.

(1) Q € Z4 C E'(k) is an order 4 point which doubles to P = (0, 0) iff

{ 4]*  if 2 splits or is inert in Oy for some l € Oy
% if (2) = p? for somel € p
(2) @ € Z4 C E(k) is an order 4 point which doubles to P # (0,0) iff

k= Q(\/i) and A = —1%, for some l € O.

Proof. (1). Suppose there is a point @ of order 4 and only one point of order 2
(namely P = (0,0)). For E'(k) to contain a Z4 structure, @ must double to P. By
the Doubling Formula, we have

(z? — 4)
2
2(20) 4(z% + Az)
Therefore,
(43) A=z?
(44) y? =23 + Az = 223,

What we have done is taken our point @ = (z,y) of order 4 on E! and shown
that it must also be a (rational) point on the singular cubic curve E : y? = 2z3.
Theorem 3.1 gives us the general form of a rational point on F as

(49 e = (5%

Among these, we look for points whose (coordinate) denominators are consistent
with the bounds given by Corollary 3.9. Since we are dealing with points of or-
der 4 over an arbitrary quadratic number field k, there are two cases to consider
depending on the factorization of 2 in Oy.

(1a) 2 does not ramify. Corollary 3.9 tells us that z,y € Or. Therefore 2 | m
and so (45) can be written as

(46) (z,y) = (21%,4P°)

where m = 21, I € O;. Using (43) to calculate 4, we get A = z? = (212)? = 4/%.
(1b) 2 ramifies. We write (2) = p2. Corollary 3.9 tells us that ordyz > —2 and
ordpy > —3. This allows only ordym > 0, so m € Oy. Using (43) to calculate A4,

we see that 4 = mT4. However this value of A4 is only in Oy if m € p.
(2). Suppose @ doubles to a point P = (z1,y1) # (0,0) of order 2. Then by the
Doubling Formula, we have

(47) 2(2P)
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Clearing denominators and collecting terms, we obtain
(48) z* — 42,2 — 242% — 4Az,z + A% — 0.

Since P is a point of order 2 different from O = (0,0), we know from the proof
of part 2 of Theorem 7.2 that A = —z2. This allows us to simplify (48) into the
homogeneous polynomial

(49) z‘% + 41:51”:0 + 22%32 —4zq22 + 2zt = 0.

By changing variables, letting ' = %, we can write (49) as

(50) a4z 422 — 4+ 1=(" +22' - 1)’ =0
with roots
(51) =22 = 11402

T

With this, we find A to be

(52) A=—z?=(-3+2v2)z%
Putting this value of A back into equation for E!, we get
(53) y2 = 2(—1+2)z%.

What we have done is taken our point P = (z,y) of order 4 on E! and shown that
it must also be a (rational) point on the singular cubic curve E : y? = 2(—1++/2)z>.
Theorem 3.1 gives us the general form of a rational point on F as

(2,4) = <(1:|:\/§)m2 (1:|:\/§)m3>
’ V2" V2

where we substituted the factorization 2 = (\/5)2 and (1 + \/5) =(-1+ \/5)_1.
Among these, we look for points whose (coordinate) denominators are consistent
with the bounds given by Corollary 3.9. Since we are dealing with points of order
4 and (2) = (v/2)? = p? in Oy, = Z[v/2], Corollary 3.9 states that

(54)

ordﬁm > -2
ordﬁy > —3.

This allows only m such that ordﬁm > 0, thus m € Og. Using (52), we can solve
for A as

(55) A= (=1)(-1+2v?2)%?

(“1)(-1 £ V) <m)
(v2)

vz

If we then require that A € O, then we have A = —I* for some l € O,. O
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Corollary 7.4. Suppose that k = Q(\/E) is a UFD and that E'(k) contains a
point @ of order 4 that doubles to P = (0,0). If 2 = wu where 7 is a prime and u
is a unit, then

A=u?*
for some | € Oy.

Proof. The factorization 2 = 72u tells us that 2 splits and that the prime ideal p
which divides 2 is just the principal ideal (7). From Theorem 7.3, we know 4 = %
for some ! € p. Thus we can write [ = 7m for some m € Oy. This gives us
4 4 4
_m o, g m
A= T am™ T

Since u is a unit, we can make the change of variables ' = um. This gives

A=u?m™
|
Theorem 7.5. When d # —1, 2, 3, and A is 4'" power free, then
ym when 2 either splits or is inert in O and A = 4
B (k) 1ors = Zg when (2) = p? and A = % for somel € p
7o X Zy when A = -0
Zig otherwise.

Proof. From Theorem 6.8, we have a divisibility condition on the size of El(k)Tors.
So when d # —1, we have

12 ifd=3
|E1(k)Tors| divides ¢ 8 ifd=2
4  otherwise.

So ifd # —1,2, or 3, we know that | E*(k)Tors| divides 4. The result follows directly
from Theorems 7.2 and 7.3 by requiring that A be 4" power free. [

Theorem 7.6. When d = 3 and A is 4™ power free, we have

L3 when A = (3 + 2/3)

B Q(VE)tors = when A = (2+ V3)” = (13 + 4v/3)
Zg X Za when A= -0
Ly otherwise.

Remark. (2 ++/3) is the fundamental unit in Z[+/3].

Proof. Z[\/g] is a UFD. The Zs, Z4 X Z3, and Z3 classifications follow directly from
Theorem 7.2, where A is 4" power free. Given the factorization of 2 in Z[v/3] as

2=(2+v3)(1 - v3)%,

the result follows directly from Corollary 7.4, by requiring that A is 4" power
free. O
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Theorem 7.7. When d = 2 and A is 4'® power free, we have

ZigX Zg4 when A =—1

ym when A =1
E? 2)) Tors =2
(Q(V2)r Zax 7y when A= —0# 1
Zig otherwise.

Proof. From Theorem 1.8, we know |E(k)Tors| divides 8. All possibilities for the
group structure except Zg X Zg4, Zg X Zg X Z4 and Zg follow directly from Theorems
7.2 and 7.3, by requiring that A be 4" power free.

To see the Zg x 74 structure, we look at part 2 of the proof of Theorem 7.3.
There we have

—mt

)4
(14 \/i)mf‘)
(v2)’

A=

(
(Ve
9 < (v2)’

35

bl

which, since Z[\/ﬁ]x > Zg x Z, admits two possibilities for m for any given A,
namely m and —m. Therefore we have four points @ = (z,y) of order 4, three
order 2 points, and the point at co. So El(Z[\/i])Tors >~ 7.y X Z4. By taking 4 to
be 4" power free, we get A = —1.

For a Z.g X Zi3 X Zg structure, there would have to be 7 points of order 2 in E'l(k)
However, points P = (&, y) of order 2 must lie on the z axis (y = 0), so z must be a
root of 2+ Az = 0. However, there can be at most 3 distinct roots to 3+ Az = 0.

For a Zg structure to exist, we need both points of order 4 (in the Z4 subgroup)
to be doubles. We know that in Z[v2], 2 = (v/2)%. Therefore, by Corollary 7.4,
the only possibility for A (which is 4*™® power free) is A = 1. From the proof of
Theorem 7.3, we can construct the points of order 4 for A = 1. They are (1, :I:\/E)
Now let P = (z,y) be a point of order 8. Using the Doubling Formula, we see that

_ (224 (-1
=(2P) = 4(z3+ Az)  4(z3+z) L.

After a little algebra, we find this is equivalent to
gt —42® - 227 —4z+1=0.
Luckily, this factors as
(22— (2+vV2)z+ 1) (22— (2-v2)z+1)=0

which, by calculating discriminants, we can see has no roots in Z[v2]. O
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8. THE GROUP STRUCTURE OF E?(k)rors

Using the bound obtained on Theorem 6.9, we now proceed to classify the pos-
sible group structures for E%(k)r,.s when d # —3.

Lemma 8.1. (Doubling Formula) Suppose P = (z,y) is a point in E*(k), then
the z coordinate of 2P is given by

z* — 8Bz
2(2P) = 45 1aB"

Proof. See [Kn], p76.

Theorem 8.2.
(1) Zy C E*(k) <= d # —3 and B = I® for some | € Oy
(2) Zax ZyC E*(k) <= d = —3 and B = I3 for somel € Oy
(3) Z3C E*(k) <—

2 for some |l € Oy
B =1{ —2%32%] if 3 splits or is inert in Oy, for some l € O
_;gls if (3) = p? for somel € p

(4) Z4 C E*(k) <= B = —(3 + 2v/3)3I° for some | € Oy.

Proof. (1) and (2). We have

P is a point of order 2 <—= P =—P,P # x©

— (:l:,y) = (z: _y)
<~ y=0.

Putting y = 0 into the equation for E?, we obtain
2®+ B = (z+ VB)(z +wVB)(z +w?VB) =0

This has no roots if B # I3, one root if B = I®> and w € Oy, and three roots if
B =B and w € Ok. Thus E?(k) contains at most one point of order 2, and exactly
one point of order 2 only when B # I3,

(3). Suppose there is a point P of order 3. Then 3P = 0 and so 2P = —P. By
applying the Doubling Formula, we have

z* — 8Bz

T 4z +t4B  °

(56) z(2P)
which is equivalent to

(57) z*+ 4Bz = 0.
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Since d # —3, the two roots of (57) are z = 0 and z = v/—4B. If z = 0, then E?
becomes y* = B. If 2 # 0, then

(58) B=—.

Substituting this expression for B into the equation for E?, we see

3
2 _ 9 3
y—43

What we have done is taken our point P = (z,y) of order 3 on E? and shown
that it must also be a (rational) point on the singular cubic curve E : y? = %:153.
Theorem 3.1 gives us the general form of a rational point on F as

(59 G = (550

Among these, we look for points whose (coordinate) denominators are consistent
with the bounds given by Corollary 3.9. Since we are dealing with points of or-
der 3 over an arbitrary quadratic number field k, there are two cases to consider
depending on the factorization of 3 in Oy.

(3a) 3 does not ramify. Corollary 3.9 tells us that z,y € Or. Therefore 2 | m
and so (59) can be written as
(60) (z,y) = (121%,360°)

_ : _o—z® _ —(121%)®*
where m = 2I, | € Og. Using (58) to calculate B, we get B = =- = =7~ =
—2432%[8,

(3b) 3 ramifies. We write (3) = p2. Corollary 3.9 tells us that ordyz > —2 and
ordpy > —3. This allows only ordym > 0, so m € O. Using (58) to calculate B,
m? 3
we see that B = _Tma == 44T) = —162”716
ifmep.
(4). Let P; = (z1,y1) be the unique point of order 2 on EZ2. Since P; is a point
of order 2, from part (1) of this proof we know

. However this value of B is only in Oy

(61) —B = :z:i’

Then if P = (z,y) is a point of order 4, then P must double to P;. Thus by the
Doubling Formula, we have

z* — 8Bz
62 2P) = ———— = 24.
(62) 2QP)= s =™

By multiplying out (62) and substituting z3 for —B, we obtain the homogeneous
polynomial

(63) z* —42,2° + 823z + 42} = 0.
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To solve (63), we change variables by letting z' = 2. Since E? is non-singular,

T
z1 # 0 and so we can rewrite (63) as
(64) 4z +82° —42'+1=0
which factors as

(65) %(22' —(-14+v3))%2z' — (-1 -v3))?=0.

Clearly the roots of (65) are 2’ = %ﬁ and so z; = %ﬁm Substituting this
back into the equation for E2, we see

] $3_<(—1ix/§)z>3:3(3¢x/§)m3

66 223+ B=z%- =
(66) y z° 4+ z z3 5 1

What we have done is taken our point P = (z,y) of order 4 on E? and shown that
it must also be a (rational) point on the singular cubic curve E : y? = ﬂ?’i—ﬁlms.
Theorem 3.1 gives us the general form of a rational point on F as

4m?

4m3
((\/5)3 (F1+V3) (V3 (F1+ \/§)> .

Among these, we look for points whose (coordinate) denominators are consistent
with the bounds given by Corollary 3.9. Since we are dealing with points of order
4and (2) = (2t \/E)(l F \/5)2 =p?in Z[\/g], Corollary 3.9 states that

(67) (2,9) =

Since ord1 sE=3+2 ord, v and ord, vl = 3+3 ord1 = the above condi-
tions allow only those m € Oy such that ordwﬁm > —2. Since N(F1+ \/_) =
and N(—4) = 16, we rewrite (67) so the factorization and divisibility of the coefﬁ—

cients are clear. Doing this we see

(68)

4m3
¢1+f) (ﬁ)3(¢1+\/§)>

»9-(7
[Fm @)

F(2£V31LFVIH) M F(2£VI(1F V3P m
E )

(v3)* (1 £ 3) ’ (v3)’ (15 3)
:F2i\/§)2(1$\/_) m? F(2+/3)? (1:F\/§)3m3>

bl

(v3)° (v3)°
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Thus we may write m in the form m = 371 = %2;—\/;))2—1 for some ! in Of. Putting
this back into (68), we get

(2,5) = F(V3)P F(3v3)(2 FV3)P
R CEIVO RN CEVE O A

Using (66) and (69), we solve for B as

1:|:\/_)m>

(69)

(70)

3

( 11\/— (1:F\?}_l)2)
:F

()

However, we also require that B be an element of Of. Therefore we again change
variables as | = (1 F \/§)(2 + \/§)l' to eliminate the denominator. This gives

B- (:F(\/E) (Va2 ﬁ)l’)2>3

2
= (F(v3)(2+ \/5))3 e
- (3 + 2\/5)3 e

O

Theorem 8.3. Suppose that k = Q(v/d) is a UFD and that E*(k) contains a point
P of order 3. If 3 = n?u where 7 is a prime and u is a unit, then

B = —16u°%°

for some |l € Oy.

Proof. The factorization 3 = w2u tells us that 3 splits and that the prime ideal p
which divides 3 is just the principal ideal (7). From part 3 of Theorem 8.2, we

know B = _;gzs for some I € p. Thus we can write I = am for some m € Oy. This
gives us
B —161° —167°m®  —16m°
21 wdws T B

Since u is a unit, we can make the change of variables m’' = um. This gives

B = —16u®m/®.
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Theorem 8.4. Ifd # +3 and B is 6" power free, we have

Zg when B = 12 = I’ for some Ll €Oy
12 £ cube for somel € Oy
if 3 splits or is inert in Oy

_ ) _o4q256
E?(k)Tors = { Zs  when B = 237 and for some l € Oy
%?le if (3) = p? for somel € p

Zig when B = I3 # O for some [ € Oy
{0} otherwise.

Also, when d = 3 we have

76 when B =1

Za when B = —(3 + 2\/5)3

—16

12 £ cube for somel € Oy
Zig when B = I3 # O for some | € Oy

{0} otherwise.

E*(E)ors = { Z3z  when B = {

Proof. From Theorem 6.9, we know that when d # —3,
12 ifd=3

71 E*(k divid
(71) | B (k) Tors | divides { 6  otherwise.

Almost all of the conditions above follow directly from Theorem 8.2 to all possible
group structures satisfying (71). Those possibilities which do not folllow directly
from Theorem 8.2 are proved below.

We now examine under what conditions Z3 and Z; (or Z4) are compatible.

Suppose B = [2 = I3, then we find a Zg structure. For example, B = 1 always
gives a Zg.

Suppose B = —2%32[% for some ! € O;. Then if B = [ for some I; € O,
N(B) = 283%'2 —cube. Since N(B) is not a cube, this is not possible.

Suppose B = _2—}7616 for some | € Oy. Then if B = I3 for some l; € Ok,
N(B) = g_illz =cube. Since N(B) is not a cube, this is not possible.

When d = 3, we can refine condition (3) of Theorem 8.2 slightly. We can write
the factorization of 2 as

2=(1++3)%2++3) where 2 + v/3 is the fundamental unit.
Thus the condition 4B = (1 ++/3)%(2 + v/3)?B = ¥ is equivalent to saying

ord1+\/§B:2or5
ordz_l_\/gB =1lor4

under the condition that B is 6" power free. Therefore, without loss of generality,
we write

B=(1+v3)?22+ V3’ ="

for some I' € O,. O
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9. TORSION OVER Z[i] AND Z[w]

Up to now, we have been fortunate enough to have, for each choice of d, at
least one congruence class of primes p which split in O. This allowed us to look
at the group E,(Og/p) where p divides p for such primes. Since O/p is a field
with p elements, we were able to use the complex multiplication symmetries of
these elliptic curves to determine the size of Ey(Og/p) to be exactly p+ 1 elements.
However, his approach does not work for the two special number fields Z[i] with
E! and Z[w] with E2. To continue in this way, we must either know the size of
E;(Og/p) for some other congruence class of primes or know the size of E,(Og/p)
when p is inert. As it happens, there is a powerful theorem from the theory of
L-functions which will tell us the size of E,(IF,2) where [y is the finite field with
p" elements.

Theorem 9.1. Let E be an elliptic curve. Then there exist complex numbers

a, B € C such that
(72) |Ep(Fpn)| = p" +1—a™ - "
for allm > 1. Also a and (3 satisfy
la|=18l=+P and oaf=p.

Proof. See [Sil 1], p136 top.
Corollary 9.2. Ifeither E = E',d = -1, and p=3mod4 or E = E?, d = -3,
and p = 2 mod 3, then

|Ep(Or/p)| = [Ep(Fp2)| = (p + 1)2

Proof. Since p is inert over k and k is a quadratic number field, O /p = I,2. From
Theorems 6.1 and 6.2, we know |E,(F,)| =p+1,s0 a +8 = 0. Since af = p, we
must have o, 8 = +i,/p. Now letting n = 2 and using (72), we obtain

|Ep(Fp2)| =P +1+p+p=(p+1)".
O
Lemma 9.3. If k = Q(+/=3), then E?(k) has no points of order 5.

Proof. Suppose there is a point P = (z,y) on E?(k) with order 5. Then 4P =
2 2P = —P. Using the Doubling Formula, we see that
(z*—8Bz)* B(z*-8Bz)
(423+4B)* = 423+4B
(z*—8Bz)3
(422 +4B)3
After considerable manipulation, we can rewrite (73) as

1 (172 + 11222 B + 9728 z° B2 + 9728 z® B® + 11776 23 B*)
(74) — =0

16 (2°+ B)(2'2 +402° B + 38426 B2 — 32023 B3 + 64 B* )
Since the numerator of (74) is irreducible over k = Q(4/—3), there are no points of
order 5 in E%(k). O

(73) z(4P) =
+48B
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Theorem 9.4. When d = —1, |E*(k)ors| divides 16.

Proof. Let ¢ = |E*(k)Tors|- From Theorem 7.2, 3 { ¢ so we may choose a prime
p > Apg1, g such that p = 3 mod 4q. Since p{ Ag:, the reduction homomorphism r,
is one-to-one when restriced to | E*(k)Tors|- So ¢ | (p+1)? and because p = 3 mod 4g,
g|(3+1)2=16. O

Theorem 9.5. When d = —3, |E?(k)1ors| divides 36.

Proof. Let ¢ = |E?(k)Tors|- From Lemma 9.3 we know that 5 { ¢ and we can
choose a prime p > Agaz,q such that p = 5 mod 3q. Since p { Ags, the reduction

homomorphism r, is one-to-one when restriced to |E?(k)Tors|- So ¢ | (p + 1)? and
because p=5mod 3q,q | (5+ 1) =36. O

Now that we have a good bound for E(k)Tors, we will attempt to construct all
possible group structure within that bound.

Theorem 9.6. When d = —1 and A is 4" power free,

Z4XZz ifA=-1
EYE)Tors = ZaxZg ifA=0#—1

Zig otherwise.

Proof. (1). Since O = (0, 0) is always a point of order 2 on E*, we have Zy C E*(k).
(2). If EY(k)Tors has a Zy x Z3 subgroup, then there must be three points of
order 2. So 23+ Az = 0 must have exactly three roots in Oy, namely z = 0, +iv/A.
Thus A = [.
(3). Suppose there were a point P of order 4. We know that in Z[z], the factor-

ization of 2 can be written as 2 = —4(1 + ¢)2. Then from Lemma 2 and Corollary
3, we know that A = —I* for some I € O. However since we require that A be 4!
power free, we have 4 = —1.

(4). Suppose there is a point P’ = (z',y’) of order 8. Then P’ must double to a
point P = (z,y) of order 4. From the preceding paragraph, we know that z = 4l?
for some ! € O. Thus the Doubling Formula gives

(75) 2(2P') = G S Gl

= = =z =il
4z’ + 44z’ 4y'?

Clearing denominators, we have

(76) (2'* — 4)? = 4il?y® = i(2ly')?

which is nonsense since 7 is not a square in Z[i]. Therefore there are no points of
order 8. OO

Theorem 9.7. When d = —3, and B is 6" power free,

7o X Zg when B=1

16

12 £ cube for somel € Oy
Zg x Zy when B =12 # 0 and for some | € Oy,
{0} otherwise.

73 when B = {
Ez(k)Tors =
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Proof. (1). The above classification follows directly from Theorems 8.2 and 8.3.
From the group law, every point of order 3 must also be a flex. Since there are at
most 3 flexes on a cubic, there can be at most 3 points of order 3.

(2). Suppose there is a point P of order 9. From the group law formulas in [Kn],
pp75-6, we can calculate the tripling formula for a point P as

z° — 962%B + 4823B? + 6483
z(SP) = .
9z%(z3 + 4B)?

Thus a point of order 9 must satisfy (6 P) = —z(3P), which after much algebra,
is equivalent to

(X®-96 X% +48 X +64)(+5 X 4356 X®+68976 X" —5260800 X 42753280 X°
— 5575680 X* — 26148864 X> — 15630336 X2 4 2949120 X 4 1310720) = 0

where X = %3. Since this has no roots on Z[w], there are no points of order 9. O

10. GLOSSARY OF SYMBOLS

d square-free integer
Z integers
rational numbers
k= Q(Vd) quadratic number field
Oy ring of integers in k
P prime ideal in Oy
E elliptic curve
B! elliptic curve with affine form y? = 2% + Az
E? elliptic curve with affine form y2 = 23 + B
E, p-reduced elliptic curve
E(k), E(Or/p) the group of points (z,y) on E with both coordi-

nates z,y € k or Og/p, respectively, together with
the point at oco.

E(k)Tors, E(Or/P)Tors the subgroup of points on E in E(k), E(Or/p),
respectively, with finite order.
Ag the discriminant of E.

11. SUMMARY AND EXAMPLES OF SPEcCIAL CURVES

In this section, we summarize our results about E(k)Tors where k = Q(+/d)
and give examples of those new group structures which appear when we consider
k = Q(+/d) in place of k = Q. Then, when d > 0, we plot the points of E(k)rors on
the graph of E(R).



30 JONATHAN HANKE

Theorem. Consider the elliptic curves E' : y? = 23 + Az over the quadratic
number field k = Q(\/&), where A is in the ring of integers Oy of k and A is 4t}

power free. Then ifd # —1, 2,3, we have

74 when 2 either splits or is inert in Oy and A = 4
) ) Za when (2) = p? and A = Y for some | € p
E (k)Tors —
Zig X Zg when A = -0
g otherwise.
For the special cases d = —1, 2, 3, we have
Zs when A = (3 + 2\/5)
Z when A = (2+ v/3)? = (13 + 43
El(@(\/g))Tors =4 4 ( ) ( )
Zig X Zig when A= -0
Zig otherwise.
Zig X 7.4 when A= —1
m when A =1
EY Q2 =
(Q(v2))rors = 4 Zax 7y when A= —0O%#—1
Zig otherwise.

Z4><Zz ifA=-1
EY Q) Tors = ZaxZy ifA=0#—1

Zig otherwise.

Theorem. Consider the elliptic curves E? : y*> = 3+ B over the quadratic number
field k = Q(\/&), where B is in the ring of integers Oy, of k and B is 6! power free.
Then if d # +3, we have

Zg when B = 12 = I’® for some Ll eOy
1? # cube for somel € Oy
if 3 splits or is inert in Oy

949276
Ez(k)Tors >~ ! Zs when B = 2 :: : and for some | € Oy
% if (3) = p? for somel € p

Zig when B = I3 # O for some [ € Oy
\ {0} otherwise.
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For the special cases d = +£3, we have

Ze when B=1
Zag when B = —(3+ 2\/5)3
—16
E*(Q(V3))Tors = { Zz when B = { P cube for some I € O
Zig when B = [® # O for some | € Oy
{0} otherwise
Zig X Ze when B=1
16
12 £ cube for somel € Oy
Zy x Zz when B = I® # 0 and for some [ € Oy
{0} otherwise.

Ez(Q(\/—_S))Tors ~ 73 when B = {

Some Special E! Elliptic Curves.

E':y? =234+ (3-2V3)z EY(Q(V3)) = Zs

00
1o Pp=(1,1-+/3)
2 Py=(1,-1++3)

E':y?=2%—2 EY(Q(v3)) = Zy x Zg
(0,0) = O (0,1) & P, =(-1,0)
(1,0) & Q1= (1—v2,2—v2) (L) o Qa=(1+v2,-2-2)
(2,0) & P3 =(1,0) (2,1) & P, =(0,0)
(3,0) > Q2 =(1-v2,-24+v2) (3,1) = Qa=(1+v2,2+?2)
E':y =22 EY Q)= Z2 x Za
(0,0) < O (0,1) & P, = (—1,0)
(1,0) & Q1= (3,1 — 1) (L,LDeQ=()
(2,0) & Py = (1,0) (2,1) & Ps = (1,0)
(3,0) & Q3 = (3, —1+1) 3, 1)—Q=1(,)
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Remark. Here, the complex multiplication symmetry of E' can be clearly seen
since the multiplication-by-i map is closed in Oy = Z[i]. Moreover, since the
multiplication-by-i map is a unit (invertible) in End E = Z[i], this map induces an
automorphism on E*(Q(%))Tors-

Some Special E? Elliptic Curves.

E?:y? =2 — (3—2V3)® EX(Q(V3)) = Zy

00

1o Q= (9—5V3,36 — 21V/3)
2 & P =(3-2V3,0)

3 Q2 = (9 —5v3,-36 + 21V/3)

E?: =22 +1 Ez((@(\/—_B))EzzxZG
(0,0) = O (0,1) & P, = (—w,0)
(1,0) ==(,) (1,1) ==()

(2,0) & Q1= (1,0) (2,1) o=()
(3,0) & Py = (—1,0)  (3,1) & P53 = (—w?,0)
(4,0) « Q2= (1,0) (4,1) «=()
(5,0) ==(,) (5,1) «=()

Remark. Here, the complex multiplication symmetry of E* can be clearly seen
since the multiplication-by-i map is closed in Oy = Z[w]. Moreover, since the
multiplication-by-w map is a unit (invertible) in End E = Z[w], this map induces
an automorphism on E%(Q(v/~=3))Tors-
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2l

Ficure 1. El:y? =23+ (3 - 2\/§):1: over Q(\/g)

1.

A

FiGURE 2. E':y? = 2% — z over Q(+/2).

5



34

JONATHAN HANKE

Ficure 3. E?:y? =23 - (3 - 2\/5)3 over Q(\/g)
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