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Abstract. In this note we study numerically the combinatorics of curves and geodesics on
the torus with one boundary component. A potential computational difficulty is avoided by
counting inside specific orbits of the mapping class group up to a certain length, either geometric
or combinatorial. Some cases are rigurolosly determined and the Euler totient function emerges.
More complicated orbits are computed to suggest an array of formulae continuing to involve
the Euler totient function. We formulate six precise conjectures. These include a novel study
of an “inverse” function of the Mirzakhani’s asymptotics. The geometric part of our study was
motivated by the rationality aspect of these asymptotics.

1. Introduction

The patterns discovered here are based on computer experiments using algorithms about
curves on surfaces with given intersection properties. Even though the number of classes of
curves up to a certain length has exponential growth, the curves with given self-intersection
properties are much thinner say of polynomial growth. For example, Mirzakhani’s thesis [7]
gives polynomial estimates for embedded curves in general surfaces. We make use here of a use-
ful astuce in that work to consider orbits of the component group M(g, n) of homeomorphisms
of the surface S of genus g and n punctures to overcome the numerical difficulty presented by
the exponential search for thin subsets with fixed intersection number.

Our computations begin with the torus with one boundary component. We try to understand
how many curves there are in one orbit of M(1, 1) with fixed intersection number k, for k =
0, 1, 2, 3 and word length ` (relative to a given set of generators a, b of the fundamental group).
We count unoriented curves to simplify the matter, since all curves oriented counts double the
unoriented counts.

A very elementary observation is that for self-intersection number 0 there is only one inter-
esting orbit α and one has an exact formula 2Φ(`) for the number of elements of word length `
in its orbit, denoted c`(α), where Φ(`) is the number of positive integers less than ` which are
relatively prime to ` (Euler’s totient function). The sum over n up to ` of 2Φ(n) is asymptotic
to 6

π2 `
2 [4], thus the number of elements in the orbit of α up to word length ` is asymptotic to

6
π2 `

2.

In the experimental work we found these patterns hold for more complicated orbits of more
general words. Namely, for k = 1 and partially for k = 2 we can rigorously compute the
cardinality of the orbits of curves of self-intersection k of word length ` in terms of the Euler
totient function Φ evaluated at various points, see Table 1 . This precise result implies that
the limit as ` tends to infinity of the sum up to ` is a certain rational number times 6

π2 as
coefficients of `2 for the asymptotics. See Tables 1, 2, Conjecture 1.

The first steps of these results were presented with related experiments in [1] and later
discussed in a lecture the Sixth Iberoamerican Congress on Geometry, CUNY, May 2015.

Word came from two sources who either heard the CUNY lecture or read the notes [1]
(Erlandsson-Souto [3], Mirzakhani [8]) that the asymptotics cL2, I was alluding to, could be
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2 MOIRA CHAS

rigorously proven in the context of geometric length, instead of our context of word length.
Furthermore, I learned from Mirzakhani, that her constant factored into a piece only depending
on the orbit, a piece only depending on the topology of the surface, and a piece only depending
on the geometry. It was now incumbent to run experiments with geometric length in order to
compare those constants with our findings for word length.

To do this one must compute geometrically. We describe here how to construct explicit
geometries on the torus with one geodesic boundary component and how to compute all the
terms in an orbit up to a specific geometric length. The ensuing computations showed the
Mirzakhani constants depending on α were indeed rational and actually agreed with the rationals
we had found in the combinatorial word length setting.

Finally, we propose that these patterns that intertwine asymptotics of geometry and asymp-
totics of combinatorial group theory with the primes via Euler’s totient function for the torus
with one boundary component extend to general surfaces of genus g and n boundary compo-
nents. All in all the subject, both experimental and theoretical, takes the shape of a kind of
non-Abelian Number theory. This of course fits well with the 70’s discovery of Bill Thurston
that at the level of moduli spaces the integral projective structure on the boundary of the hy-
perbolic plane (tantamount to the p/q linear foliations of the torus) generalizes to a piecewise
integral projective structure on Thurston’s boundary of the higher genus marked moduli space.

Acknowledgements: The geometric construction of the metric on the torus with one
boundary component depended on conversations with Bernard Maskit followed up by a discus-
sion with Feng Luo.

2. Preliminaries

We study unoriented, non-power free homotopy classes of closed curves on the torus with one
puncture or one boundary component. Choose a pair (a, b) of generators of the fundamental
group of the one holed torus. (This choice is equivalent to choosing a pair of disjoint simple
arcs with limiting endpoints at the puncture.)

Denote the inverses of a and b by A and B respectively (see Figure 1).

For a free homotopy class α, SIN(α) denotes the self-intersection number (that is, the smallest
number of intersection points of representatives of α counted with multiplicity). The number
of letters of the shortest word representing α in the {a, b, A,B}-alphabet is denoted by WL(α).
One needs to think of these words as cyclically reduced rings of letters, (even though for
typographical reasons they are written as linear words) because we consider free homotopy
classes. (Recall that the fundamental group of the punctured torus is the free group in two
generators, and that free homotopy classes of oriented curves are in bijective correspondence
with conjugacy classes of the fundamental group).

Define

O(α) = {β in the mapping class group orbit of α},

O`(α) = {β in O(α) such that WL(β) = `},

c`(α) = #O`(α) and C`(α) =
∑̀
n=1

cn(α)

Intuitively, O(α) labels the “topological picture” of α on the surface, up to homeomorphism.

We will present representatives of certain orbits to explain and illustrate our results. The
generators we use are depicted in Figure 1. A cyclic word labeling a free homotopy class is
obtained by recording the crossing of the “a” and “b” arcs, with a (resp. b) if the direction of
the arrows is respected and A (resp. B) otherwise.
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Figure 1. Arcs determining generators of the fundamental group of the punc-
tured torus (left) and a representative in red of the class abAB (right)

3. Growth of the number of classes of self-intersection number either zero,
one, two or three as a function of the word length

Consider one of the chosen generators of the fundamental group, say a. Observe that a is
simple (i.e. represented by an embedded closed curve). In order to simplify notation, we will
denote the free homotopy class containing a by a also. Because such simple curves do not
separate, one sees that classes in O`(a) are in one to one correspondence with ordered pairs
of relatively prime integers (j, k) with k ≥ 0 and such that |j| + |k| = `. Thus, we have
the following proposition, where Φ denotes the Euler totient function. (Φ(`) is the number of
positive integers smaller than ` and relatively prime with `. )

Proposition 3.1. The number of elements of word length ` in the orbit of a non-self-intersecting
curve, not parallel to the boundary component is 2Φ(`). Therefore, the number of elements of
word length less than or equal to ` grows like 6

π2 `
2. In symbols,

c`(a) = 2Φ(`) and C`(a) =
∑`

n=1 2Φ(n) which grows like 6
π2 `

2 [4].

There are two orbits of simple curves, the orbit of a and the orbit of abAB, the orbit of the
curve that goes around the punctured (which is fixed by the mapping class group). Now, we
discuss orbits of self-intersection number one, see Figure 2.

Proposition 3.2. (1) The number of elements of word length ` in the orbit of aabAB is
4Φ(`− 4)

(2) The number of elements of word length ` in the orbit of abaB is 2Φ(`/2) if ` is even
and 0 otherwise.

Proof. We define a map f : O`(aabAB) −→ O`−4(a). If α ∈ O`(aabAB), set f(α) as the free
homotopy class obtained by ”cutting off” the loop of α that goes around the boundary compo-
nent. Since α has self-intersection number one, the loop of α around the boundary component
intersects each of the four arcs emanating (these are the arcs associated to the chosen gen-
erators) from the boundary component once. Thus, removing the loop about the boundary
components is the same as removing four letters (abAB or inverse) for the word of α. This
implies that f : O`(aabAB) −→ O`−4(a).

To see that the map f is is two-to-one and surjective, take a simple curve β and represent
it by a closed geodesic g on the flat torus that misses the puncture. Consider a short segment
through the puncture at right angles to the inclination of g, extended both ways to hit g. At
each of these points one can add a loop to g around the puncture to create a self-intersection.

One can study the orbit of abaB in a way similar to the way for the orbit of aabAB: to
obtain a map

g : O`(abaB) −→ {square of simple classes in closed torus}
given by filling in the boundary component. This map is one to one.

�



4 MOIRA CHAS

Figure 2. A representative of each orbit of self-intersection number one

α pα SIN(α) WL c`(α) Special cases

known a 1 0 All 2Φ(`) -

Prop.3.2 aabAB 2 1 All 4Φ(`− 4), if ` ≥ 5 -

Prop.3.2 abaB 1
4

1 Even 2Φ(`/2), if ` ≥ 6 c4(α) = 4

like Prop.3.2 a(abAB)2 2 2 All 4Φ(`− 8), if ` ≥ 10 c9(α) = 4

Unproven aaabb 2 2 All 2Φ(`) + 2Φ(`− 4), if ` ≥ 6 c5(α) = 8

Unproven aabAAB 1
4

2 Even 2Φ(`/2− 2), if ` ≥ 5 -

like Prop.3.2 a2abAB 1
2

2 Even 4Φ(`/2− 2), if ` ≥ 5 -

Unproven abaBabAB 1
2

2 Even 4Φ(`/2− 2), if ` ≥ 9 c8(α) = 8

like Prop.3.2 aabaB 2
9

2 Mult. of 3 4Φ(`/3), if ` ≥ 6 c5(α) = 4

Table 1. The number of elements of word length ` in the orbit of curves of
self-intersection number one and two. If nothing is said about a word length then
the number of elements is zero. For instance, c3(abaB) = 0). The number of
elements up to word length ` in the orbit of α, C`(α) grows like 6

π2pα, where pα
is a rational number that depends on α (second column). The coefficients pα are

obtained using the fact that
∑`

n=1 Φ(n) grows like 3
π2 `

2. The formulae labeled
unproven holds up to very long word length, even for the orbits of self-intersection
three below.

Proposition 3.3. The number of classes of self-intersection number one up to word length `
grows like C`(aabAB) + C`(abaB), (2 + 1

4
) 6
π2 `

2 = 27
2π2 `

2.

From computer experiments we find then a conjecture about the number of elements of a
given word length in each of the orbits of elements of self-intersection one, two, and three.

There are six orbits of curves of self-intersection two [2], see Figure 3. The REU preprint
[6] claims that there are fifteen orbits of curves of self-intersection three, but according to our
computer experiments, confirmed by work of our undergraduate student Joseph Suk, there are
fourteen. (Self-intersection three orbits are not pictured).

Remark 3.4. The proofs of the counting of the number of elements in the orbits of anabAB and
a(abAB)n are very similar to that for aabAB.
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Figure 3. A representative of each orbit of self-intersection number two

α pα. SI WLl of curves c`(α) Special

a(abAB)3 2 3 All 4Φ(`− 12), ` > 12 -

aabAbaBAb 4 3 All 4Φ(`− 4) + 4Φ(`− 8), if ` > 9 c9(α) = 16

aabbAB 4 3 All 8Φ(`− 4), if ` > 6 c6(α) = 4

a2(abAB)2 1/2 3 Even 4Φ(`/2− 4), if ` > 9 -

aabAABabAB 1/2 3 Even 4Φ(`/2− 4), if ` > 9 -

abaBAbaBAbaB 1/2 3 Even 4Φ(`/2− 4), if ` > 9 c12(α) = 8

abaBAbAB 1/4 3 Even 2Φ(`/2− 4), if ` > 13 c8(α) = 4

a4 b2 1 3 Even 4Φ(`/2) + 4Φ(`/2− 2), if ` > 7 c6(α) = 10

a3abAB 2/9 3 ∼= 1 (mod 3) 4Φ((`+ 2)/3− 2) if ` > 6 -

aaabAAB 2/9 3 ∼= 1 (mod 3) 4Φ((`+ 2)/3− 2) if ` > 6 -

aabaBAbaB 2/9 3 ∼= 1 (mod 3) 4Φ((`+ 2)/3− 2) if ` > 9 c9(α) = 4

aabaBabAB 4/9 3 ∼= 1 (mod 3) 8Φ((`+ 2)/3− 2) if ` > 9 c9(α) = 8

aaabaB 1/8 3 Mult. of 4 4Φ(`/4) if ` > 7 c6(α) = 4

aabaaB 1/16 3 Mult. of 4 2Φ(`/4) if ` > 7 c6(α) = 2

Table 2. The number of elements of word length ` in the orbit of curves of
self-intersection number three. If nothing is said about a word length then the
number of elements is zero. The number of elements up to word length ` in the
orbit of α, C`(α) grows like 6

π2pα, where pα is a rational number that depends on
α (second column)
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Figure 4. Metrics. The green, orange and yellow points are the midpoints. The
axes of the generators are colored pink

4. Experimental study of the growth of orbits of free homotopy classes in
terms of geometric length

4.1. The metrics. Construction learned from Feng Luo, based on information of Bernard
Maskit.

Fix a hyperbolic metric X on T1,1, so that the boundary component is a geodesic. We can
parametrize such a metric by three positive real numbers (l1, l2, l3) if there is a hyperbolic
pentagon, with two consecutive sides of length l1 and l2, a side of length l3 opposite to the
angle formed by sides of length l1 and l2 and right angles, except possibly for the angle of the
sides of lengths l1 and l2. The latter angle will be acute here.

Denote by G the vertex of sides with length l1 and l2. We are going to form a right angled
octagon in the following way: Consider the union of the pentagon and the same pentagon
rotated π about G. Extend the sides consecutive to those of length l3 in both pentagons. Two
other pentagons are determined. (See Figure 4)

Let Y and O denote the midpoints of the sides of the octagons perpendicular to the segments
of sides of lengths l1 and l2 (in yellow and orange in Figure 4). Denote by rY , rO and rG the π
rotation about Y and O and G respectively.

Set a as rGrY and b as rGrO. This determines a representation of our free group with
generators a and b, using the geometry.

How do we know we are counting all geodesics up to a certain length?: The octagon
is made of two pairs of congruent pentagons. The angle at V of the original pentagon pair is
chosen to be smaller than π/2. Hence the angle at V of the other pentagon pair is larger than
π/2. Thus the side opposite to V of the new pentagon is longer than the side opposite to V
of the original pentagon pentagon. This implies that any segment between ”good” sides of the
octagon is longer than c = min(2l1, 2l2, l3). Then for any geodesic w, GL(w) ≥ cWL(w).

This implies the inclusion.

Proposition 4.1. For c = min(2l1, 2l2, l3),

{w free hom. class/ GL(w) ≤ `} ⊂ {w free hom. class / WL(w) ≤ `/c}

where the geometric length GL is the metric of parameters (l1, l2, l3)

4.2. The count of elements in the orbits. By [8] (see also [3]) if γ is a geodesic in T1,1 with
respect to a hyperbolic metric m then there exists a rational constant cγ such that the number
sm(`, γ) of geodesics in their mapping class group orbit of γ, up hyperbolic length ` grows like
µTh(Bm(1))

π2/6
cγ`

2. In symbols,

(1) sm(`, γ) ∼ µTh(Bm(1))

π2/6
cγ`

2
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Table 3. Ratios discuss in Subsection 4.2, (4). Also, in the last row, there is
the growth coefficient of growth by word length comparison.

where Bm(1) is the unit ball in the space of measured geodesic laminations with respect to the
length function at m and µTh is the Thurston’s measure of this ball. Observe that µTh(Bm(1))
is a constant that depends only on the metric m and not on γ.

If a is a simple curve in the punctured torus, not parallel to the boundary component, then
ca = 1

2!
(see [7, page 110, Example 1]). Hence

sm(`, a) ∼ 3

π2
µTh(Bm(1))`2.

On the other hand, recall that by Proposition 3.1, C`(a) grows like (6/π2)`2. The similarity
of the formulae for the geometric and combinatorial case prompted us to study the ratios
sm(`, γ)/sm(`, a) for ` for certain metrics m. In order to study these ratios, we estimated the
coefficients of `2 in Equation (1) in the next Subsection.

4.3. Mirzakhani’s function and its inverse. Using Nielsen’s elementary transformations
[5], we found all the elements of word length at most 170 in the orbit of γ, that is, the set
O170(γ). (There are

∑170
`=1 2φ(`) = 17660 classes in the orbit of the simple curve a. The number

of elements in the orbits we studied, is of that order).

We chose four hyperbolic metrics with geodesic boundary m1,m2,m3,m4. The parameters,
(l1, l2, l3) of each of these four metrics are listed in the first three columns of Table 3.

For each orbit O(γ) of curves of self-intersection number less than or equal to three, and the
four metrics m1,m2,m3,m4, we computed all the mj-lengths of the geodesics in O170(γ) and
selected those smaller than a given upper bound (for each metric, for computational reasons,
we had to choose a different upper bound), as follows,

(1) For each metric mj we determined the constant cj = min(2l1(j), 2l2(j), l3(j)) (so the
inclusion Proposition 4.1 holds) and set `j = 100/cj.

(2) We computed (or estimated)

L(`j, γ) = {mj(α) : α ∈ O`j(γ)},

where mj(α) denotes the mj-length of the α. (Note that repetitions of lengths must be
allowed).

(3) For each γ and mj, we estimated the coefficient of `2, (that is, 3
π2µTh(Bm(1))) in Equa-

tion (1), as

h(γ,mj) =
M − u√

T
,

where M = maxL(`j, γ), u = minL(`j, γ) and T = Cardinality of L(`j, γ).
(4) We estimated the ratios

h(γ,mj)/h(a,mj),

for all γ of self-intersection three or less. (see Table 3)
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We produced the graphs shown Figure 5, explained below.

Denote by min(γ,mj) the length of the shortest (resp. longest) mj-geodesic in the orbit of
γ, that is the minimum of L(γ, `j), and by max(γ,mj) the maximum of L(γ, `j). Note that
max(γ,mj) ≤ 170/cj, (in general, it is quite close).

Fix a curve γ of self-intersection number three or less, and one of the metrics mj. To make the
notation lighter, in the following lines, set M = max(γ,mj), u = min(γ,mj), T = smj

(`j, γ).

For each of the metrics m1,m2,m3,m4, and each orbit of γ of self-intersection number three
or less, we produced the following graphics. In cases (i) and (ii) we study the actual graph and
our estimation of this graph.

(i) The graph of Mirzakhani function from the reals to the integers, ` 7→ sm(`, γ), and the
graph of the function from the reals to the reals ` 7→ d(`− u)2, where d = T/(M − u)2 is

found by solving the equation T = d(̇M − u)2.
(ii) The graph of the function from the positive integers to the reals, k 7→ length(mj, γ) where

length(mj, γ)) is the length k-th mj-geodesic, ordered by geometric length. (“inverse”

of (1), and the graph of the function from the reals to the reals k 7→ b
√
k + u, where

b = (M − u)/
√
T .

(iii) The graph of the function k 7→ 1√
k
(−u+ length of the k-th geodesic in O(γ)).

Some examples of these graphics are displayed in Figures 5 and 6. The even rows show the
graphics up to the largest domain we could, and the odd rows show the graphics for small initial
segment of this domain.

5. Conjectures

5.1. Geometric conjectures. All our computations (for all classes of curves of self intersection
number at most 3) suggest the following conjecture:

Conjecture 1. pα = 2cα, where cα is the ”Mirzakhani” geometric length coefficient and pα is
the word length growth coefficient. Thus,

sm(`, γ) ∼ 3

2π2
µTh(Bm(1))pγ`

2

Conjecture 2. For each orbit O(α) and each hyperbolic metric there exist coefficients u, v

such that the difference (u
√
k + v)− length of the k-th geodesic in the orbit of α is bounded by

a constant that depends on α and the metric.

The pictures suggest:

Conjecture 3. For each orbit O(α) and each hyperbolic metric there exist a quadratic polyno-
mial pα(`) = w(`−min(α,m))2, (where min(α,m) is the length of the shortest geodesic on the
orbit ) such that for all ` the difference between pα(`) and the number of elements in the orbit
of α of word length up to ` is bounded.

5.2. Topological-combinatorial conjectures.

Conjecture 4. For each free homotopy class α there exist integers j1, . . . , jn, and positive
integers k1, . . . , kn, such that the number of elements of word length ` in the orbit of α is

2
(

Φ
(
`+j1
k1

)
+ Φ

(
`+j2
k2

)
+ · · ·+ Φ

(
`+jn
kn

))
. In symbols,

c`(α) = 2

(
Φ

(
`+ j1
k1

)
+ Φ

(
`+ j2
k2

)
+ · · ·+ Φ

(
`+ jn
kn

))
.

Hence the number of elements of word length less than or equal to ` in the orbit of α is asymptotic

to d · `2, where d = 6
π2

(
1
k21

+ 1
k22

+ · · ·+ 1
k2n

)
=
(

1
k21

+ 1
k22

+ · · ·+ 1
k2n

)
/
(

1
12

+ 1
22

+ · · ·+ 1
n2 · · ·

)
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Figure 5. Study of the orbits of the curves a, abaB and aabAAB for the metric
(l1, l2, l3) = (0.89, 0.889, 0.2149)
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Figure 6. Study of the orbits of the curves a, abaB and aabAAB for the metric
(l1, l2, l3) = (1, 1.2, 1.012)
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SI 0 1 2 3

p 1 9
4

197
36

2059
144

p Approx. 1 2.25 5.47222 14.2986

Number of orbits 1 2 6 14

Table 4. The growth of all classes of self-intersection number 0, 1, 2, 3 is p 6
π2 `

2

Remark 5.1. Conjecture 4 implies that the number of elements up to word length ` in an orbit
is asymptotic to 6

π2p`
2 where p is a rational number that depends on the orbit.

In the cases of self-intersection number 0, 1, 2, and 3 the number of orbits is smaller than or
equal to the sum of the growth coefficients of all orbits and surprisingly close to the sum of
these growth coefficients (see Table 4). This motivates the following:

Conjecture 5. For each k ≥ 0, the sum of all coefficients pα over all orbits of curves of self-
intersection number k is within one of the total number of orbits of self-intersection number
k.

Conjecture 6. (1) The number of elements of word length ` in each of the six orbits of
curves of self-intersection number two is listed in Table 1.

(2) The number of elements of word length ` in each of the fourteen orbits of curves of
self-intersection number three is listed in Table 2.

Conjectures 1, 2, 3, 4 and 5 can of course be generalized to all negatively curved surfaces.
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