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Abstract. Consider an orientable surface ! with negative Euler characteristic,
a minimal set of generators of the fundamental group of !, and a constant curvature
−1 metric on !. Each unbased homotopy class C of closed oriented curves on S
determines three numbers: the word length (that is, the minimal number of letters needed
to express C as a cyclic word in the generators and their inverses), the minimal geometric
self-intersection number, and finally the geometric length. These three numbers can be
explicitly computed (or approximated) using a computer.

We will discuss relations between these numbers and their statistical structure as length
becomes large.
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1. Introduction

The following can be viewed as a kind of experimental non commutative number
theory which is made possible by the advent of computers. Many patterns in curves
on surfaces are observed by computation. The pattern in figure 1 is one of those.

This computation lead to the proof [12] of

Figure 1. Histogram of all (about 175,000,000) non-power, free homotopy classes of word
length L = 20 in the punctured torus, organized by self-intersection number. The mean of the
self-intersection number is 400/9 ∼ 45.

45
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Theorem 1.1. On a surface with non-empty boundary and negative Euler characteristic χ ,
the proportion of words w of word length L such that

a <
SI(w) − κ · L2

σ L3/2 < b

converges as L goes to infinity to 1√
2π

∫ b
a e− x2

2 dx where

κ = χ

3(2χ − 1)
and σ 2 = 2χ(2χ2 − 2χ + 1)

45(2χ − 1)2(χ − 1)
.

In other words, when L is very large, the distribution of self-intersection of all free
homotopy classes of word length L is close to a Gaussian with mean κ · L2 and
standard deviation σ · L3/2.

Remark 1.2. The expected value of intersections of n random chords in a circle is
n(n−1)

6 and the variance is n(n−1)(n+3)
45 , [38, Chapter 6] (Here, a random chord is

determined by two points independently and randomly placed on the circumference,
with uniform distribution). Compare to the following: when the Euler characteristic χ
is very large, the mean of self-intersections of all classes of word length L is close to
L2

6 when L is large and the variance is close to L3

45 .

2. Surfaces: Topology and geometry

2.1 Topology: Surface words

Consider an orientable surface ! with non-empty boundary and negative Euler
characteristic. (We choose to work with surfaces with boundary to simplify the
discussion, but many aspects discussed in this subsection could be repeated for closed
surfaces). Choose a maximal set of disjoint arcs each starting and ending in the
boundary, such that the surface minus the union of the arcs is connected (see figure 2,
left). Note that this connectivity plus maximality implies that no two of the arcs are
homotopic keeping endpoints in the boundary (i.e., rel boundary).

Label one side of each arc with a letter x , and the other side with the letter x̄ .
The choice of arcs determines a minimal set of generators of the fundamental group

Figure 2. Torus “cuts”
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Figure 3. Pairs of pants “cuts”

Figure 4. Two representatives of generators of the fundamental group of the torus with one
boundary component and the corresponding labeled arcs (left) and a representative of the curve
aaaba B B (right)

of !: Choose a basepoint P in the surface in the complement of the chosen arcs.
A representative of the generator labeled by x is a curve that starts at P crosses the
arc labeled x from the side labeled by x to the side labeled by x̄ and goes back to
P without crossing any other arc. (See figure 4, left.) By cutting the surface along
these arcs, a polygon is obtained with four times the number of sides as the number of
generators (see figure 2). Alternating edges are labeled. By reading the labels of the
edges in cyclic order a cyclic word is obtained (cyclic means up to cyclic permutation).
This is called the surface word. In the example of figure 2 the surface word (written
linearly) is ab AB. In the example of figure 3 the surface word (written linearly) is
a AbB.

It is not hard to see that the Euler characteristic of the surface is 1 − n where n is
the number of generators of the fundamental group, or the number of chosen arcs.

Our example of a torus with one boundary component and the pair of pants are
exceptional in the sense that there is (up to obvious isomorphisms) only one surface
word (constructed as above) for each of these surfaces. In general, more than one
surface word can yield the same surface. For instance, ab ABcdC D and abcd ABC D
both yield a genus two surface with one boundary component.

Up to this point, we have not used the fact that one edge is labeled on one side with x
and the other side with x̄ . This will come into play when we discuss curves on surfaces.
We will see then that the surface word not only encodes the topological information of
the surface (genus and number of boundary components) but also encodes implicitly
the structure of intersection of curves on the surface.
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2.2 Geometry: Hyperbolic metrics on surfaces

A hyperbolic metric on a surface is a metric of constant curvature −1. By a hyperbolic
surface we mean a surface with negative Euler characteristic, with a complete (in the
sense that every Cauchy sequence has a limit) hyperbolic metric, such that if the
surface has non-empty boundary, then all boundary components are geodesics (see
Section 3.3 for a definition of geodesic.) We usually assume the surface is compact
but some statements below allow finitely many punctures of such hyperbolic surface.
In this case the hyperbolic metric has to be increased to restore completeness. Each
puncture produces an infinitely long cusp like end.

If the polygon in figure 2 is drawn in the hyperbolic plane with right angles and
with the natural length conditions one can glue up the sides to obtain a torus with one
smooth geodesic boundary, (see also Appendix A). In a similar way, closed surfaces
and other surfaces with boundary with a hyperbolic metric can be obtained, for more
details, see [7, Chapter 3].

3. Growth of the number of closed curves on surfaces: Topology and
geometry

3.1 Free homotopy classes of closed curves on surfaces

We are interested in studying equivalence classes of closed directed curves on the
surface ! up to continuous deformation. Consider two closed oriented curves a and b
on !, that is, two maps a and b from the oriented circle to !. The curves a and b are
said to be freely homotopic if there exists a map from a cylinder C to ! such that the
restriction of this map to one of the (oriented) boundary components of C coincides
with a and the restriction to the other, coincides with b.

The set of equivalence classes under this relation is the set of free homotopy classes
of closed curves on ! and will be denoted by π0.

There is a natural bijection between π0 and the set of components of the space of
maps from the circle to !, with the compact-open topology. This is the reason why
the set of free homotopy classes is denoted by π0. (This bijection holds in spaces more
general than surfaces, namely, path connected spaces).

Figure 5. A (free) homotopy between the curves a and a′
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Here is another interpretation of π0, (see [10]), which holds for path-connected
spaces.

Proposition 3.1. If ! is a connected surface then there is a bijection between the set
of free homotopy classes of closed directed curves on ! and the set of conjugacy
classes of π1(!, x0).

3.2 Topology: Growth of the number of free homotopy classes of curves by word
length

Consider a representative of a free homotopy class of curves that intersects the union
of the arcs in the smallest possible number of points. (Intersections are counted with
multiplicity). The free homotopy class is labeled by a cyclic reduced word obtained
by recording the arcs (and sides) the curve crosses as one traverses the directed curve.
(Cyclic means that words are considered up to cyclic permutation, reduced means
that no letter x and its inverse x̄ appear consecutively in the word, or any cyclic
permutation of the word). In figure 6 an example of a cyclic reduced word is exhibited.

The class of the curve in figure 4, (right) is labeled by the cyclic word aaaba B B.
(Observe that aaaba B B is a curve word as opposed to the surface words such as
ab AB associated with the torus with one boundary component.) By Proposition 3.1,
the cyclic word aaaba B B labels a conjugacy class of the fundamental group of !.
(Recall that the fundamental group of a surface with boundary is a free group.)
So elements in the fundamental group can be thought of as reduced words in the
generators and their inverses, while conjugacy classes can be thought of as reduced
cyclic words.

Hence, once a set of generators of the fundamental group is chosen, each free
homotopy class of curves can be associated with a positive integer: the number of
letters in the shortest word in the conjugacy class.

The next result is not hard to prove.

Proposition 3.2. The total number N(L) of free homotopy classes of word length L is
asymptotic to (2d − 1)L/L, where d is the number of generators of the fundamental

group. Namely, (2d−1)L /L
N(L) → 1 as L → ∞.

Remark 3.3. The case of closed surfaces is more complicated, see [26] and [40]
and [41].

Wroten is working on precise estimates and he reported to us that the total number
of free homotopy classes in the fundamental group of a surface of genus two of word
length L in a set of minimal generators is asymptotic to t L where t is approximately

Figure 6. A cyclic reduced word
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6.98. Note that the growth rate in the case of a surface of genus two and one boundary
component is 7. This shows that the one relator for the closed surface does not affect
the result too much when L is relatively small.

Remark 3.4. In this work, we are mostly concerned with growth rate of the set of
conjugacy classes of the fundamental group of a surface, (which is in natural bijection
with the set of free homotopy classes of closed directed curves). There is an extensive
literature about growth rate in the number of elements in a group, as a function of
the word length. This corresponds to based homotopy classes. Milnor [27] proved
that in compact negative curved manifolds the growth of the number of elements of
the fundamental group is exponential. (The reader could check the result [18] of the
always surprising Gromov.) In our setting, it follows from the work of Cannon [8] and
Floyd and Plotnick [17] (see also [9, Section 7]) that the growth rate of the number of
based homotopy classes of curves in a closed surface of genus two is the largest real

root of the polynomial x4 − 6x3 − 6x2 − 6x + 1, 1
2(

√
(3 +

√
17)2 − 4 +

√
17 + 3)

which is approximately, 6.98.

For compact manifolds Milnor [27] related the growth of the volume of the ball of
radius R to the growth rate of the fundamental group, see Theorem 3.13.

3.3 Geometry: Growth of the number of geodesics by geometric length

In this Subsection, we will assume that ! is an orientable surface, with or without
empty boundary, with negative Euler characteristic.

Recall that a curve is a geodesic if it realizes the shortest path between two close-by
points on the curve.

Since ! has negative Euler characteristic, it can be endowed with a hyperbolic
metric, (recall Subsection 2.2). Hyperbolic metrics produce “optimal” representatives
of free homotopy classes of curves, in the following sense:

Theorem 3.5. Each free homotopy class contains a unique closed geodesic represen-
tative (unless it wraps around a puncture).

Remark 3.6. Theorem 3.5 does not hold for hyperbolic metric with punctures. Indeed,
there is no geodesic in the class of curves that wrap around a puncture.

See [7, Proposition 1.6.6] for a proof of Theorem 3.5. This unique geodesic
representative, the geodesic, plays a role similar to that of a straight line on the
surface: namely, if two points in the geodesic are close enough, the shortest path
among all arcs joining the points is the arc of the geodesic between them.

We can ask what is the growth rate of the cardinality of the set of all closed
geodesics up to geometric length L . Many researchers contributed to the answer
of this problem among them, Huber, Margulis, Randol, Selberg. Denote by C!(L)
the cardinality of the set of closed geodesics on !, which are not proper powers
of other geodesics and of length smaller than or equal to L . (Geodesics which are
not proper powers of other geodesics are often called primitive.) This is a finite set
[7, Theorem 1.6.11]. See [7, Theorem 9.4.14] for a proof of the following result.
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Theorem 3.7. Prime Number Theorem for Hyperbolic Closed Surfaces:

C!(L) ∼ eL

L
.

Here, a(L) ∼ b(L) means limL→∞ a(L)
b(L) = 1.

Remark 3.8. By setting ℓ = eL , Theorem 3.7 translates to C!(ℓ) ∼ ℓ
log(ℓ) . Observe

the analogy with the Prime Number Theorem, which states

Cardinality of {p prime, p ≤ ℓ} ∼ ℓ

log(ℓ)

(non-power geodesics can be thought of as “prime” geodesics.)

For more on this topic, see [7, Section 9.4] and references therein.

Theorem 3.9. Prime Number Theorem for Hyperbolic Surfaces with Geodesic
Boundary:

C!(L) ∼ ehL

hL
.

Here, h is the entropy of the geodesic flow. This entropy equals the Hausdorff
dimension of the Cantor set at infinity which is the closure of the endpoints at infinity
of the lifts of closed geodesics [39]. In the case of closed surfaces, h = 1. See,
for instance, [37] for a precise definition of entropy. A proof of the Prime Number
Theorem for Hyperbolic Surfaces with Boundary can be found in [24], see also [19].
The case of surfaces with punctures is more complicated.

Remark 3.10. For surfaces with boundary, 0 < h < 1. The endpoints of (not
necessarily closed) geodesics on a closed surface can be anywhere on the circle
at infinity of the hyperbolic plane, while in the case of a surface with boundary,
geodesics have endpoints in a Cantor set. Figure 7 illustrates this Cantor set: The
Cantor set is what is left of the circle at infinity when one removes all arcs between
endpoints of lifts of closed geodesics that contain no other endpoints of lifts of
geodesics in between. (To see this observe that lifts of closed geodesics never exit a
translate of the shaded octogon in a translate of the unlabled boundary in figure 7.)

Example 1. To illustrate these ideas, we considered a hyperbolic pair of pants
(2.5, 2.6, 5) as in Definition A.4 and computed the geometric length of all geodesics
shorter than 50 (see Appendix A.1). We computed the length of all geodesics up
to word length 20 (20 is the maximum number of words that our computer could
handle in a reasonable amount of time). By Corollary A.2, this set of geodesics
contains all geodesics up to length 50 (because the constant C of Corollary A.2 is
2.5 = min{2.5, 2.6, 5

2 }).
To estimate h in this case, we solve numerically for h the equation

e50h

50h
= 8, 532, 116.
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Figure 7. Covering space of the pair of pants (image made with Cinderella). A pair of pants is
obtained by gluing pairs of sides of the shaded right angled octogon labeled with the same letter.

Figure 8. Points (L , C!(L)), L ∈ {1, 2, . . . , 50} and the function F(x) = e0.378x

0.378x for pair of

pants (top), and (L , C!(L)), L ∈ {1, 2, . . . , 280} and the function F(x) = e0.0736x

0.0736x for the torus
(bottom)

(8, 532, 116 is the total number of geodesics shorter than 50 in this pair of pants).
We obtained 0.378 as the approximate value of h, which is the Hausdorff dimension
of the limit set. For each integer, L ∈ {1, 2, . . . , 50}, we plotted the point (L , C!(L))
(recall that C!(L) is the total number of geodesics up to length L) together with the
function F(x) = e0.378x

0.378x in figure 8, left.

Remark 3.11. In all these computations since we are only interested in counting,
we consider unoriented geodesics. The number of oriented geodesics is obtained by
doubling the number of unoriented geodesics.

Example 2. We consider the rectangular torus (14, 16) (Definition A.7) and all
geodesics up to length 280, and we proceed as in Example 1. The results are displayed
in figure 8, right. Here our estimation of h is 0.0736. (43, 335, 144 is the total
number of geodesics in this metric of length smaller than 280.) This dimension is so
small because of the length of the geodesic boundary, approximately 57.227, is large
(compared to the length of the generators.)

Remark 3.12. Observe that the growth of the number of geodesics on a closed surface
is independent of the geometry and topology of the surface, while the growth of
the number of geodesics on surfaces with boundary depends on the geometry of the
surface.
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Table 1. Comparison of growth of conjugacy classes and closed geodesics on
surfaces with and without boundary.

Surface Number of closed Number of conjugacy
geodesics w GL(w) ≤ L classes w WL(w) = L

Genus g eL/L aL/L , a < (2g − 1)
empty boundary a is close to 2g − 1

Genus g, ehL/hL (2g + b − 1)L/L
b boundary components

3.4 Topology and Geometry: Quasi-isometry between word metric and hyperbolic
metric

A map f : X −→ Y between metric spaces (X, dX ) and (Y, dY ) is a quasi-isometry if
there exist constants K ≥ 1 and A > 0 such that for each pair x, x ′ in X

1
K

dX (x, x ′) − A ≤ dY ( f (x), f (x ′)) ≤ K dX (x, x ′) + A

and for all y in Y , dY (y, f (X)) ≤ A.
The constant “A” in the definition above is to take care of cases where the distances

involved are small. When these distances are large, one can “pretend” that A = 0.
Fix a set of generators for the fundamental group of !. The fundamental group of

! is a metric space with distance between two words v and w in π1(!) equal to the
word-length of v · w−1. Milnor-Švarc Lemma [6, Proposition 8.19] specialized in our
case says the following:

Theorem 3.13. Fix an element x in the universal cover of !, !̂. The map
q : π1(!) −→ !̂ defined by v *→ v · x is a quasi-isometry (π1(!) has the metric
given by the word length and !̂ has the hyperbolic metric, and v · x is the action of
the fundamental group of ! on the universal cover.)

Fix a set of generators of π1(!) and a hyperbolic metric with geodesic boundary
for !. For each free homotopy class w, write WL(w) for the word-length of w (this
is the shortest word length of a representative of the conjugacy class w) and GL(w)
for the length of the geodesic in the class w. (Of course, these depend on the set
of generators and metric, but for simplicity we do not add them to the notation).
If W ∈ π1(!), the geometric length of W , denoted by GL(W ) is the length of the
shortest curve in W passing through the basepoint of π1(!).

A function f to the real numbers has exponential growth if both limits,
lim supL→∞

log( f (L))
L and lim infL→∞

log( f (L))
L are positive and finite.

Theorem 3.14. Let K and A be the constants given by Theorem 3.13. Then the
following inclusions hold.

{
w ∈ π0 : GL(w) ≤ L − A

K

}
⊂ {w ∈ π0 : WL(w) ≤ L}

⊂ {w ∈ π0 : GL(w) ≤ K · L + A}
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Hence, if the cardinality of the set {w ∈ π0 : WL(w) ≤ L} grows exponentially as
a function of L, that is, as ea·L then the cardinality of the set {w ∈ π0 : GL(w) ≤
K · L + A} also grows exponentially possibly with a different exponential factor.

Proof. Fix an element x in the universal cover of the surface !. Consider an element
in a conjugacy class w ∈ π0 and a representative W ∈ π1(!) of the shortest possible
word length. Recall that the distance between two elements W and V in π1(!)
is WL(W V −1). In particular, the distance between W and the neutral element is
WL(W ). By Theorem 3.13, there exist constants K and A such that

1
K

d(W · x, x) − A ≤ WL(W ) ≤ K d(W · x, x) + A.

Since the projection of the geodesic segment from W · x to x is a closed curve in the
free homotopy class w, and the geodesic is the shortest curve in w, d(W · x, x) ≥
GL(w). Then

1
K

GL(w) − A ≤ WL(W ) = WL(w).

This implies one of the inclusions. The other can be proven similarly using the fact
that, since the surface ! is compact, it can be assumed that the constants K and A of
Theorem 3.13 are independent of the basepoint. Thus, one can assume that the chosen
basepoint x is in the geodesic. ✷

Remark 3.15. It is not hard to see that the type of growth of the number of elements
in a group by word length is a quasi-isometry invariant. On the other hand, the type
of growth of the number of conjugacy classes is not a conjugacy invariant [23].
In our case, we have a special situation, because the distance between the image of an
element W in the fundamental group and the image of neutral element in the universal
cover of the surface defined in the Milnor-Svarc theorem d(W · x, x) is related to the
length of the geodesic labeled by W . Thus we get W on both sides of the inequality.
This does not happen in general for any quasi-isometry.

Remark 3.16. The quasi-isometry between the fundamental group with word-length
metric and the surface with the hyperbolic metric illustrates a fact that we will see
repeated throughout these pages: namely, patterns that occur in the geometric realm,
often have a translation in the combinatorial realm and vice versa. Theorem 3.14 is an
example of this.

4. Self-intersection numbers of closed curves on surfaces

Each class of curves is naturally associated with a non-negative number, the
self-intersection number. This is the smallest number of times any representative of
the class crosses itself. Thus, for instance, the self-intersection number of the curves
in figure 9 is 3. The self-intersection number of a free homotopy class of curves w,
denoted by SI(w) is this minimum of all self-intersection numbers of curves in w.
In figure 9, three representatives of the same free homotopy class are exhibited. The
self-intersection number of the class is 3 (we will give an idea later why 3 is the
answer).
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Figure 9. Three representatives of the free homotopy class in the pair of pants

Recall Theorem 3.5 that each free homotopy class has a unique geodesic
representative.

Theorem 4.1. The self-intersection number of the geodesic representative of a free
homotopy class equals the self-intersection number of the class. In other words,
the self-intersection number of the geodesic is the minimal number possible for any
representative.

Theorem 4.1 was noted by Poincaré in the case of self-intersection zero.
Theorem 4.1 is a consequence of [20, Theorem 2], which states that a curve a

that has larger self-intersection number than the minimal, has a singular bigon or a
singular monogon. A singular bigon consists of a pair of disjoint arcs of the circle
whose endpoints are mapped by a to the same points and its images bound a (not
necessarily embedded) disk in the surface. Now, note that if a curve has a singular
bigon, then there will be two lifts of this curve to the universal cover, that bound a
bigon. But in the universal cover these lifts are straight lines, and there is a unique
line passing through each pair of points. Thus we get a contradiction if the geodesic
representative did not have the minimal number of self-intersections.

Remark 4.2. The fact that a geodesic realizes the minimal intersection number shows
again how intertwined are the combinatorial and geometric universes.

We see that three numbers can be associated with a free homotopy class of closed
curves w: the self-intersection number SI(w), the word length WL(w) (provided that a
set of generators of the fundamental group of the surface is chosen), and the geometric
length GL(w) (provided that a hyperbolic metric on the surface is chosen).

Remark 4.3. The free homotopy class in figure 9 presents a very interesting feature:
The only “picture” that can be realized by a geodesic representative is the left one.
This was observed by Hass and Scott in [21], where they gave the following proof,
due to Agol. If the curve on the right is the “picture” of a geodesic, then the surface
minus the curve has five connected components: the three “cuffs”, a triangle and a
hexagon. It is not hard to see that sum of the interior angles of the hexagon equals 6π
minus twice the sum of the interior angles of the triangle. Since the sum of the interior
angles of the hexagon is less than 4π , the sum of the interior angles of the triangle is
more than π , a contradiction.

The precise notion of “picture” is given in [21]).

4.1 Computing the self-intersection number from the curve words

Birman and Series [4] found an algorithm to determine whether a free homotopy class
(given as a cyclic reduced word) of curves on a surface with boundary is simple,
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Figure 10. A representative of the class aaaba B B in the torus with a boundary component

Table 2. Linked pairs of the word aaaba B B.
The labels i, i i, . . . , vi correspond to figure 10.

Pair of subwords
i aa, BB
ii aa, BB
iii aab, Baa
iv Baaa, aaab
v aba, aBB
vi aba, BBa

that is, has self-intersection number 0. Cohen and Lustig [15] extended Birman and
Series method to study the intersection number of a class on a surface with boundary.
Lustig [26] with analogous arguments (although more intricate) gave an algorithm to
determine self-intersection numbers on a closed surface.

Remark 4.4. Even though the self-intersection numbers depend only on the topology
of the surface, the proofs of the Cohen-Lustig-Birman-Series algorithm use hyperbolic
geometry.

We will not explain the algorithm here but we give a rough idea of an equivalent
form of the Birman-Series-Cohen-Lustig algorithm that appeared in [11]. The
self-intersection point labeled i in figure 10 is in the intersection of the arc of the
curve that goes from the edge labeled by b to the edge labeled by B, and the arc of
the curve that goes from the edge labeled by A to the edge labeled by a. The first edge
corresponds to the sub-word B B of the cyclic word aaaba B B and the second, to the
second occurrence of the sub-word aa in aaaba B B. Figure 10, right is an illustration
of another kind of pair of subwords implying an intersection.

Note that this intersection point does not depend on the “global” properties
of the word. In fact, any word containing the sub-words B B and aa will have
a self-intersection point in analogous arcs. In general, there is a one-to-one
correspondence between occurrences of certain pairs of sub-words and the self-
intersection points of a representative of a class (that intersects itself in the smallest
possible number of points). The pairs of subwords of aaaba B B corresponding to the
self-intersection points of minimal representatives are listed in Table 2.
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Figure 11. A minimal representative of the class aaaba B B in the pair of pants

Figure 12. Building Thurston’s simple curve

Remark 4.5. The pairs of sub-words that determine the self-intersection number of a
curve-word depend only on the surface word. For instance, the curve word aaaba B B
has self-intersection 7 in the torus with one boundary component associated with the
surface word ab AB (figure 10) and self-intersection 5 in the pair of pants associated
with surface word a AbB.

4.2 The simple curve story

Among all closed curves on a surface, there is a subset that deserves special mention:
the curves with no crossings or simple curves. At the end of the XIX century, 1895
Poincaré published “Analysis situs”, starting topology as a new area of Mathematics
[32, Translator’s Introduction]. Between 1899 and 1904, he published “Compléments
à l’Analysis situs” [32] correcting mistakes and tying up loose ends. In the fifth of
these complements, he discussed the first characterization of simple closed curves,
namely, a curve is simple if an only if all of the lifts to the universal cover are pairwise
disjoint.

Despite its name, a simple curve can be far from simple (if we understand simple as
opposite to complex), see for instance, figure 13. This curve was constructed by Bill
Thurston in 1971. One starts with a flat disk of uncooked dough with three wooden
rods standing in the dough. Label these 1, 2 and 3. Now, make a very thin closed
curve with food coloring that goes tightly around rods 2 and 3. Second, perform the
following two operations over and over a few times to get the curve of figure 13. The
first operation is interchange rods 1 and 2 by moving them halfway around a loop
in the counterclockwise direction. Then interchange 2 and 3 in a circular clockwise
direction.

Here is an excerpt of a story written by Dennis Sullivan about the curve in figure 13:
A couple of days later the Berkeley grad students invited me to join the painting
math frescoes on the corridor wall separating their offices from the elevator foyer.
While milling around before painting a grad student (Thurston) came up to ask “Do
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Figure 13. The painting on the wall the iterations of Thurston simple curve by Thurston and
Sullivan (top) and a picture of further iterations of the Thurston curve by IISER Ph.D. students

you think this is interesting to paint?” It was a complicated smooth one dimensional
object encircling three points in the plane. I asked “What is it?” and was astonished to
hear “It is a simple closed curve”. I said “You bet it’s interesting!”. So we proceeded
to spend several hours painting this curve on the wall. It was a great learning and
bonding experience. For such a curve to look good it has to be drawn in sections of
short parallel slightly curved strands (like the flow boxes of a foliation) which are
subsequently smoothly spliced together. When I asked how he got such curves, he
said by successively applying to a given simple curve a pair of Dehn twists along
intersecting curves. The “wall curve painting”, two meters high and four meters wide,
dated and signed, lasted on that Berkeley wall with periodic restoration for almost
four decades before finally being painted over a few years ago. (See also [30]).

It is not hard to prove that the sphere with three boundary components has only
three classes of undirected simple closed curves (the curves parallel to the boundary
components).

All the free homotopy classes (up to direction) of simple curves on the torus with
one boundary component and word length 12 are aaaaaaaaaaab, aaaaaaaaaaa B,
aababaababab, aa Ba Baa Ba Ba B, abababbababb, abbbbbbbbbbb, aBaBaB Ba
BaB B, aB B B B B B B B B B B. In this surface, a pattern can be guessed (and proved,
see [16]). In other surfaces, the words are much more complicated. In the surface
of genus two with one boundary component, associated with the surface word
ab ABcdC D, there are 8362 free homotopy classes of self-intersection 0 and word
length 12. Here are eight of these classes of simple curves. ab ADC BcdcdC B,
ab ADC B DC DCC B, ab ADCC Accda B, ab ADCC AccdC B, ab ADCCa Ba Ba B,
ab Aca B ABab AC , ababDC BabDC B, abab ADabbcD D.
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Figure 14. In row L , column K , we have P(K , L) the number of (undirected) free homotopy
classes of closed curves in the pair of pants of word length L and self-intersection K

In the surface of genus two with one boundary component, associated to the surface
word abcd ABC D, there are 9112 free homotopy classes of self-intersection 0 and
word length 12. Here are eight of these classes of simple curves. abadCbbDbbCd ,
abadCda Bda Bd , abadCd BadCbb, ab Aba B AbCb AB, ab Aba BcDcDcB, ab
ADcD ABadCd , ab ADcab ADca B, ab Ab Aba BdCd B.

Clearly, here, patterns are much harder to find than in the punctured torus case.

5. Relations between word-length and self-intersection number

The Birman-Series-Cohen-Lustig, or the equivalent form [11] algorithm can be
programmed. We did so and found the following tables, organizing cyclic words by
word length and self-intersection. More precisely, denote by P(K , L) the number of
undirected, non-power free homotopy classes of curves in the pair of pants of word
length L and self-intersection number K . (Note that there are exactly twice as many
directed curves as undirected).

For instance, in the pair of pants with surface word a AbB, there are exactly two
undirected, non-power, free homotopy classes of word length one and self-intersection
zero, namely, a, b. Thus, P(0, 1) = 2. Similarly, there is only one undirected,
non-power free homotopy class of word length 2 and self-intersection 1, the “figure
eight”, aB. So P(1, 2) = 1.

These two tables, Tables 14 and 15 exhibit many patterns. In this Subsection, as
well as in Subsection 8.1 we will discuss some of the patterns we proved jointly with
other authors, and point out the ones we see and are still unproven.

5.1 Maximal self-intersection for a given word length

The next result is proven in [14, Theorem 1.7].

Theorem 5.1. For each free homotopy class of curves w in the pair of pants, SI(w) ≥⌊WL(w)−2
2

⌋
, where ⌊x⌋ denotes the largest integer smaller than or equal to x. This

bound is sharp.
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Figure 15. In row L , column K there are the number of (undirected) free homotopy classes of
closed curves in the punctured torus of word length L and self-intersection K

The following fact is a direct consequence of Theorem 5.1, [14, Corollary 1.8].

Theorem 5.2. The pair of pants is the only surface with negative Euler characteristic
that has only finitely many free homotopy classes of curves with a given self-intersection.

Theorem 5.3. The maximal self-intersection number of a free homotopy class
(possibly a power) in the pair of pants of word length L is bounded above by
L2

4 + L
2 − 1. If L is even this bound is sharp.

The maximal self-intersection of a non-power free homotopy class in the punctured
torus of word-length L is ⌊ L2−2

4 ⌋. This bound is sharp.

5.2 Conjectures

Table 14 lead us to the following:

Conjecture 1. In the pair of pants there is an increasing sequence, starting with

2, 6, 12, 20, 32, 52, 92, 156, 244, 360, 524 . . .

such that for each L in {K + 3, K + 4, . . . , 2K + 1}, P(K , L) is the (2K + 2 − L)-th
term of the sequence.

We observed the following patterns in the entries P(K , L) of these tables, and
analogous tables we computed for other surfaces with boundary.

Conjecture 2. For all surfaces with boundary

(1) If two cells in the same row have a positive entry, all the cells in between in that
same row also have positive entries.

(2) The sequence {aK } defined by

aK = min{WL(w) : SI(w) = K }

is increasing.
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Figure 16. On the left: in row L , column K there are the number of free homotopy classes of
closed curves in punctured torus of word length equal to L and self-intersection K , all divided
by L2. On the right: The function K *→ P(K , 21) for K ∈ {0, 1, . . . , 15}

(3) Denote by g and b the genus and the number of boundary components of a surface
with negative Euler characteristic. For each K , the sequence P(K , L)/L6g+2b−6

converges to a positive number cK as L goes to infinity. The sequence {cK } is
exponentially increasing. (see figure 16).

It is not hard to see that (1) implies (2) in Conjecture 2. Compare Conjecture 2(3)
with [29].

We have also computed word-length/self-intersection tables for other surfaces with
boundary. These experiments did not suggest precise polynomials as in Theorem 5.3,
but they lead to the following conjecture (see [14, Conjecture 1.10]).

Conjecture 3. Consider a surface ! with boundary and negative Euler characteristic χ .
Denote by SImax(L) the maximum self-intersection number for all free homotopy
classes of closed curves on ! of word length at most L. Then

lim
L→∞

SImax(L)

L2 = χ

2χ − 1
.

Remark 5.4. Consider a representative of a class of word length L that can be
decomposed as a union of L straight segments in the polygon obtained by removing
from the surface the arc chosen in Subsection 2.1. Since lines intersect in at most
one point, the maximal number of self-intersection points is less than or equal to(L

2

)
= L(L−1)

2 . On the other hand, when the Euler characteristic goes to infinity,
limL→∞ SImax(L)

L2 = χ
2χ−1 in Conjecture 3 goes to 1

2 . This is a consistency check.

6. Growth of the number of geodesics with given self-intersection

We know, by Theorem 3.7 that the growth of the number of geodesics up to length
L is exponential on L . In this section we partition these into those with given
self-intersection number.

6.1 Growth of the number of simple geodesics

For each non-negative integer K , denote by C!(L , K ) the cardinal of the set of
geodesics in ! of self-intersection number K and geometric length at most L .
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For a long time, many researchers tried to determine the growth of C!(L , 0).
In 1985, Birman and Series [5] proved that the union of all closed geodesics covers a
very “thin” set.

Theorem 6.1. For each non-negative integer k, the set Sk of points on a hyperbolic
surface which lie on a complete geodesic of self-intersection number at most k is
nowhere dense and has Hausdorff dimension one.

For simple curves Theorem 6.1 was observed first by Bill Thurston in the mid
seventies.

Birman and Series stated that the number of simple geodesics of length at most L
is bounded by a polynomial of degree 6g + 2b − 6, where g and b are the genus and
number of boundary components of the surface respectively.

In 2001, Rivin [33] proved the following:

Theorem 6.2. Let ! be a hyperbolic surface of genus g, b boundary components and
c cusps. Then there exist constants c(!) and d(!) such that

c(!) · L6g+2b+2c−6 ≤ C!(L , 0) ≤ d(!) · L6g+2b+2c−6 .

In her Ph.D. Thesis [28], (see also [29]) Mirzakhani proved the following

Theorem 6.3. Let Mg,n be the moduli space of complete hyperbolic Riemann
surfaces of genus g with n cusps. Then

C!(L , 0) ∼ c(!)L6g+2n−6

where c : Mg,n −→ R is a continuous proper function. (Recall that ∼ means
asymptotic).

Mirzakhani also computes the leading coefficient.
Theorem 6.3 is a part of Mirzakhani’s Field’s medal work. Another concerns

flows in Teichmuller spaces of all hyperbolic surfaces with a fixed topology, see for
example [1].

Example 3. We illustrate Theorem 6.3 as follows. In the rectangular torus (14, 16)
described in Appendix A.2 we considered the set of all geodesics of geometric length
up to 280 as in Example 1. From this set, we selected, using algorithm described in
Subsection 4.1, all simple closed geodesics and computed the geometric length of
each of them. In this metric, there are 225 simple geodesics up to length 280. We order
the lengths of these 225 geodesics from smaller to larger: {l1, l2, . . . , l225}.

In figure 17 we plotted the points of the form (i, li ) for each i in {1, 2, . . . , 225}.
Define a function F(L) = C!(L , 0), that is F(L) is the number of simple

geodesics in our hyperbolic torus of length at most L . By Mirzakhani’s Theorem 6.3,
this function is asymptotic to c(!)L2. If we “pretend” that F(L) = c(!)L2, then
F−1(i) = li , since i is the number of simple geodesics of length at most li . Thus the
set of points of the form (i, li ) {l1, l2, . . . , l225} can be approximated by a function
g(x) = d · √

x for some constant d . By least squares, we approximated this constant,
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obtaining 18.53. The function g(x) = 18.53
√

x together with the points is plotted in
figure 17.

Observe that Mirzakhani’s result is asymptotic, thus it is not a “given” that one can
get a nice approximation as the one displayed in figure 17.

Remark 6.4. The pair of pants has finitely many geodesics of each self-intersection.
Therefore, an analysis similar to that of Example 3 will not give any interesting
output.

6.2 Growth of the number of geodesics with self-intersection larger than zero

Using Mirzakhani’s approach, Rivin [34] proved:

Theorem 6.5. There exists a constant c(!), depending on the hyperbolic structure on
! such that:

C!(L , 1) ∼ c(!)L6g+2n−6

Example 4. We repeated the computations we made in Example 3 but now considering
geodesics of self-intersection one. There are 329 geodesics of self-intersection one
and length smaller than 280, see figure 17.

We also repeated the computations we made in Example 3 considering geodesics
of self-intersection number 10, 20, 30, 40, 50, 60 and 70. The results are displayed
in figure 18. Observe that in that figure, the scale of the x-axis varies considerably,
since the number of geodesics of fixed self-intersection number up to a certain length,
also varies considerably (compare to Subsection 8.2). Moreover, by Theorem 7.5, a
geodesic with “large” self-intersection number, say 70, has to be “long enough”. In our
example, there are about 600 closed geodesics of self-intersection number 70 and
geometric length at most 280. The shortest one has length approximately 279.227.

The previous results, as well as computer experiments, suggest that the growth of
the number of geodesics of a given self-intersection is the same as the growth of simple
geodesics (with a different leading coefficient).

Fix a hyperbolic surface ! and denote by G(K , L) the number of closed geodesics
of self-intersection number K and geometric length at most L .

Conjecture 4. For each hyperbolic surface of genus g, b geodesic boundary
components and p punctures and for each K , the sequence G(K , L)/L6g+2b+2p−6

converges to a positive number dK as L goes to infinity. The sequence {dK } is
exponentially increasing.

For information about this conjecture see the preprints [36] and [35] by Sapir,
a former student of Mirzakhani.

Remark 6.6. Assuming the graphs of figure 18 have the form y = c
√

x +d , then c can
be estimated as 2

√
x0 where x0 is the x-coordinate where the slope changes from +∞

to 0, (say equals 1). After x0 the graph looks like a horizontal line in this re-scaling.
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Figure 17. Top left: The points of the form (i, li ) from Example 3 and the graph of the
function g(x) = 18.53

√
x . Top right: The points of the form (n, C!(n, 0) and the function

f (x) = 0.0028x2. Bottom left: The points of the form (i, li ) from Example 4 and the graph of
the function g(x) = 46.4852 + 12.687

√
x . Bottom right: The points of the form (n, C!(n, 1)

and the function f (x) = 20.6717 − 0.683102x + 0.00652234x2.

7. Relations between geometric length and self-intersection number

Recall that by Theorems 3.7 and 3.9, the growth of the number of closed geodesics
in a hyperbolic surface up to geometric length L is exponential in L . On the other
hand, the growth of the number of simple geodesics in hyperbolic surfaces up to
length L is polynomial in L by Theorem 6.3. In the pair of pants there are only
three unoriented simple geodesics (the corresponding polynomial has degree zero).
For all the rest of the hyperbolic surfaces the polynomial has positive degree. Thus,
in these cases, there is no upper bound on the length of simple geodesics. Conjecture 4
states that an analogous result holds for geodesics of a fixed self-intersection number.
In this section, we will explore lower bounds on the geometric length of geodesics
of a given self-intersection. Roughly speaking, a geodesic has to be “long” to have a
large number of self-intersections. Moreover Basmajian [3] proved that the number
of self-intersections of a closed geodesic is bounded by a constant times the square of
the hyperbolic length. Compare to Theorem 5.3 and Conjecture 3.

Theorem 7.1. If ! is a hyperbolic surface with (possibly empty) geodesic boundary
then there exists a constant d(!) depending on the hyperbolic metric on ! such that
SI(w) ≤ d(!) WL(w)2 where d(!) is a continuous function of !.

Example 5. To illustrate Theorem 7.1, we computed the tables displayed in figure 19,
where for some geometric lengths L , we computed the maximum of SI(w)/ GL(w)2
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Figure 18. For each s ∈ {0, 10, . . . 70}, we order (from smallest to largest) the lengths of the
n(s) geodesics of self-intersection s and geometric length at most 280, {l1, l2, . . . , ln(s)} and plot
points of the form (i, li )

for all w such that GL(w) < L . If ! is the hyperbolic pair of pants (2.5, 2.6, 5) as
in Definition A.4 then d(!) is approximately 0.025 and in the case of the rectangular
torus (14, 16) (Definition A.7), the constant seems to be approximately 0.0009.
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Figure 19. Estimation of the constant d(!) of Theorem 7.1

7.1 Lower bounds for the length of the shortest geodesic of a given self-intersection

A geodesic (in any hyperbolic surface, possibly with puntures and geodesic
boundadry) shorter than 4 log(1 +

√
2) is simple, [22,31,42,43]. In [2] and [3]

Basmajian proved the following generalization:

Theorem 7.2. For all compact hyperbolic surfaces with geodesic boundary and
finitely many cusps, there exists a sequence of constants {Mk} going to infinity with k
such that if a geodesic in w has geometric length smaller than Mk then SI(w) < k.

Basmajian extended these results in [3], showing that these constants are sharp, in the
following sense:

Theorem 7.3. For each k ∈ N, there exists a hyperbolic surface and a geodesic on
that surface with self-intersection number k and geometric length Mk. Moreover,

log(2k)

4
≤ Mk ≤ 2 cosh−1(2k + 1).

As a corollary Basmajian stated,

Theorem 7.4. If w is a closed geodesic on a hyperbolic surface (possibly with
punctures and geodesic boundary) satisfying GL(w) ≤ log(2k)

4 then the self-intersection
number of w is at most k − 1.

Basmajian asked if the following were true.

Conjecture 5. The sequence {Mk} is increasing.

Observe that the constants Mk are universal in the sense that they hold for any
hyperbolic surface (possibly with punctures and geodesic boundary). One can ask
similar questions for a fixed hyperbolic surface: Consider the sequence {sk}k≥0, where
sk is the geometric length of the shortest geodesic of self-intersection number k. It is
not hard to prove that s0 < sk for all k > 0. Buser [7, Theorem 4.2.4] proved that in a
closed hyperbolic surface, s1 < sk for all k > 2.

Basmajian proved.
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Theorem 7.5. Let ! be a hyperbolic surface.

(1) Let ! be a compact surface with (possibly empty) geodesic boundary. Denote by
L(!) the length of the shortest geodesic with one self-intersection on !. Then
there exists a constant c(!) so that,

c(!)
√

k ≤ sk ≤ 3L(!)(
√

k + 1),

Moreover, the constant d(!) of Theorem 7.1 satisfies d(!) = 1/c(!)2.
(2) If ! has at least one cusp and is not the punctured disc, then for k = 2, 3, . . .

1
2

log
(

k
2

)
≤ sk(!) ≤ 2 sinh−1(k) + d(!) + 1

where d(!) is the shortest orthogonal distance from the length one boundary of a
cusp in ! to itself.

Conjecture 6. The sequence {sk} is increasing. Moreover, for each hyperbolic surface
! of genus g and b (geodesic) boundary components there exists a constant u(!)
(depending on the metric) such that the sequence {sk − u(!)

√
k} is bounded.

Moreover, in the case of the pair of pants the sequence {sk − u(!)
√

k} approaches
zero when k goes to infinity, and in the other hyperbolic surfaces, the sequence
approaches a positive constant.

Observe that Conjecture 2(1) is the combinatorial version of Conjecture 6.
Our computer evidence supports Conjecture 6. We tested many different metrics

in the pair of pants and many metrics in the rectangular torus with one boundary
component described in Subsection A.2.

Example 6. The length of the shortest geodesic with one-self-intersection in the
rectangular torus (14, 16) (Definition A.7), L(!), is approximately 57.2274.
In Example 5 we estimated that constant d(!) is approximately 0.0009.
By Theorem 7.5, c(!) is approximately 33.33.

33.33
√

k ≤ sk ≤ 171.6822(
√

k + 1)

In the pair of pants (2.5, 2.6, 5), d(!) is approximately 0.025. Thus, c(!) is about
6.32. The length L(!) of the shortest geodesic with one self-intersection is 6.6.

6.32
√

k ≤ sk ≤ 19.8(
√

k + 1)

8. Statistics relating geometric length, word length and self-intersection

8.1 Self-intersection sampling by word-length

Figure 21 shows the histogram of all non-power, free homotopy classes in the
punctured torus of word length 4, 6, 8, . . . , 20, organized by self-intersection.
The histograms are depicted up to scale. They suggest that the distribution of
self-intersection sampling by word-length (appropriately normalized) converges to a
Gaussian when the word length goes to infinity. We proved this result jointly with
Steve Lalley [12]:
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Figure 20. Two graphs of the sequence {sk} of Conjecture 6 (as a function of k) for the pair of
pants (2.5, 2.6, 5) (left) and on the right, a rectangular torus (14, 16)

Figure 21. Histograms of free homotopy classes of closed curves in the punctured torus,
organized by word length

Theorem A. On a surface with non-empty boundary and negative Euler characteristic χ ,
the proportion of words w of word length L such that

a <
SI(w) − κ · L2

σ L3/2 < b

converges as L goes to infinity to 1√
2π

∫ b
a e− x2

2 dx where

κ = χ

3(2χ − 1)
and σ 2 = 2χ(2χ2 − 2χ + 1)

45(2χ − 1)2(χ − 1)
.

In other words, when L is very large, the distribution of self-intersection of all free
homotopy classes of word length L is close to a Gaussian with mean κ · L2 and
standard deviation σ · L3/2.

Remark 8.1. Observe that with word length as small as 20 we obtain a strongly
Gaussian-like histogram. Of course, the population in this case is extremely large).

Remark 8.2. The expected value of intersections of n random chords in a circle is
n(n−1)

6 and the variance is n(n−1)(n+3)
45 , [38, Chapter 6] (Here, a random chord is
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determined by two points independently and randomly placed on the circumference,
with uniform distribution). Compare to the above: when the Euler characteristic χ is
very large, the mean of self-intersections of all classes of word length L is close to L2

6

when L is large and the variance is close to L3

45 .

Remark 8.3. In the case of the pair of pants and torus with one boundary component,
the mean of self-intersection of all classes of word length L is approximately L2

9 for

large L , while the maximal self-intersection is about L2

4 .

8.2 Self intersection sampling by geometric length

Lalley [24] and [25] proved.

Theorem 8.4.

(1) If ! is a closed surface of genus g ≥ 2 and constant negative curvature c,
then for L large, “most” closed geodesics of geometric length at most L have
self-intersection close to c

2π(g−1) L2.
(2) Let ! be a closed hyperbolic surface. Denote by wL a random closed geodesic

chosen among all geodesics of geometric length at most L, then for some
probability distribution ', and some constant κ = κ(!), SI(wL )−κL2

L converges in
distribution to '.

(3) If ! is a closed surface with variable negative curvature, then for some constants
κ ′ = κ ′(!) and σ , SI(wL )−κL2

σ L3/2 converges in distribution to the standard unit
Gaussian distribution.

Our experiments indicate that for surfaces with geodesic boundary, a result
analogous to Theorem 1.1 (sampling by word length) and Lalley’s theorem 8.4 for
variable curvature (sampling by geometric length) holds, figure 22 depicts the output
of some of our experiments.

Conjecture 7. For a hyperbolic surface with geodesic boundary the distribution of
self-intersection sampling by geometric length (appropriately normalized) converges
(in distribution) to a Gaussian, when the geometric length goes to infinity.

8.3 Geometric length sampling by word length

In [13] we conjectured that the geometric length, sampling by word length approaches
a Gaussian when the word length goes to infinity, see figure 23. Conversely,
computations also suggest that the distribution of word length sampling by geometric
length tends to a Gaussian when the geometric length goes to infinity.
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Figure 22. Histogram of the self-intersection number of all geodesics up to length 38 in the
hyperbolic pair of pants of (2.5, 2.6, 5) on the left. On the right histogram of the intersection of
all geodesics up to geometric length 280 in the rectangular torus h (14, 16)

Figure 23. Histograms of the geometric length of a sample of 100,000 words of word length
100 in different hyperbolic pair of pants. The parameters (A, B, C) of the length of the boundary
components are indicated in each graph

A. How we sample by geometric length

A.1 The pair of pants

By [7, Theorem 2.4.2], given three positive real numbers α, β and γ , there exists a
unique triple of numbers u, v and w and a unique, convex, right angled hyperbolic
hexagon with side lengths α, u, β, v, γ , w taken in cyclic order.

Given three positive real numbers la, lb and lc, set α = la/2, β = lb/2 and
γ = lc/2, consider two congruent hexagons of alternating side lengths α, β and γ ,
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Figure 24. The octogon obtained “cutting up” a hyperbolic pair of pants on the left and a
representative of the curve aa Bab on the right

glue the obvious sides to obtain a hyperbolic pair of pants of geodesic with boundary
components of lengths la, lb and lc, figure 24.

Proposition A.1. Let C = min{la, lb, lc/2}. For each geodesic w in the pair of pants
with boundary components of length la, lb, lc,

GL(w) ≥ C · WL(w),

where the word length is computed in the a, b-alphabet.

Proof. A closed geodesic w can be decomposed as the union of geodesic segments
with endpoints in the edges labeled a, A, b and B.

We claim that each of these segments is longer than C . Thus, the result follows.
We will prove this claim in the case of the geodesic aa Bab depicted in figure 24.
Consider the segment from the B-edge, to the a-edge. This segment is the top side

of a quadrilateral with two right angles at the base. Thus it is longer than the base,
which has length lc/2.

Now, let’s consider the segment from the A-edge to the B-edge. This segment is
the union of the segment x1 from the A-edge to the segment from la to lb (in red in
figure 24) and x2 from the segment from la to lb to the B-edge.

Analogously as before, x1 is longer than la/2 and x2 is longer than lb/2. The proof
of the claim for the other segments, and for the general case can be completed with
the same ideas. ✷

Corollary A.2. In the pair of pants with boundary components of length la, lb, lc,

{w ∈ π0 : GL(w) ≤ L} ⊂ {w ∈ π0 : WL(w) ≤ C · L},

where C = min{la, lb, lc/2} and the word length is computed in the a, b-alphabet.

Remark A.3. The constant min{la, lb, lc/2} is sharp since GL(a) = la, GL(b) = lb
and GL(ab) = lc.

Definition A.4. A pair of pants (la, lb, lc) is a pair of pants with a hyperbolic metric
and geodesic boundary components of length la, lb and lc.

We will now describe the metric of the particular pair of pants we discussed in this
work. For details see [13].
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Set

α =
(

cosh
( la

2

)
cosh

( la
2

)
− 1

cosh
( la

2

) + 1 1

)

and β =
(

cosh
( lb

2

)
+

sinh2 ( lb
2

)
/+ cosh

( lb
2

)

)

where + = −
cosh

(
la
2

)
·cosh

(
lb
2

)
+cosh

(
lc
2

)
+

√√√√
1
2
(
4 cosh

( la
2

)
cosh

( lb
2

)
cosh

( lc
2

)

+ cosh(la) + cosh(lb) + cosh(lc) + 1
)

cosh
( la

2
)
+ 1

.

The matrices α and β generate a discrete, cocompact subgroup G of P SL(2, R).
Recall that a matrix

(
a b
c d

)
in P SL(2, R) acts on the upper half plane H by z *→ a·z+b

c·z+d .
The quotient of H by G is our pair of pants. The right angled hyperbolic octogon of
figure 24 is a fundamental domain of the action of G on H. The quotient map H −→
H/G is a covering map and the action of G on H is given by the deck transformations.

Given a cyclic reduced word w in the generators a, b of the fundamental group
of the pair of pants (and their inverses), if one replaces each occurrence of a by the
matrix α, a−1 by the matrix α−1 and similarly with b and β, one obtains a matrix g.
The length of the closed geodesic in w satisfies:

cosh
(

GL(w)

2

)
= |tr(g)|

2
.

Thus, one can program the computer to find the length of all closed geodesics using
the matrices α and β. In the example of the pair of pants (2.5, 2.6, 5) the matrices are
(approximately)

α =
(

1.888 0.888
2.888 1.888

)
and β =

(
1.970 −6.690

−0.431 1.970

)

In order to study all geodesics up to geometric length 50 in the pair of pants
(2.5, 2.6, 5), we have our program compute the geometric length of all cyclic reduced
words up to word length 20, and choose from this set those with geometric length at
most 50. By Corollary A.2, this is enough.

Observe that Theorem 3.14 would not have sufficed: Theorem 3.14 implies that
there exists a constant C such that the inclusion of Corollary A.2 holds, but does not
say explicitly what the constant is.

A.2 The torus with one boundary component

In this Subsection we describe a metric on the torus with one geodesic boundary
component due to Bernard Maskit, which satisfies a statement similar to
Proposition A.1. This will allow us to study all geodesics up to a given length.

Fix two positive numbers la and lb such that sinh la · sinh lb > 1. Consider two
perpendicular geodesic segments with length la/2 and lb/2. Drop perpendiculars to
each of these segments from the endpoint the segments do not have in common.
By [7, Lemma 2.3.5], these two lines are disjoint, and moreover, have a common
perpendicular. Hence, a right-angled pentagon as in figure 25 (right) is obtained.
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Figure 25. Left: Arcs of geodesics in a “rectangular torus”. Right: One of the four right angled
pentagons that form a rectangular torus

By gluing the appropriate pairs of congruent edges of four of these pentagons we
obtain a hyperbolic torus with geodesic boundary.

Using the same type of ideas of the proof of Proposition 24, and the fact
[7, Lemma 2.3.5] that the length of the side of the right angle pentagon is
arccosh(sinh la sinh lb) one can prove:

Proposition A.5. For each geodesic w in Maskit’s torus with one boundary
component and length of generators la, lb,

GL(w) ≥ C · WL(w),

where C = min{la, lb, lc} and cosh lc = sinh la sinh lb. The word length is computed
in the a, b-alphabet. Therefore,

{w ∈ π0 : GL(w) ≤ L} ⊂ {w ∈ π0 : WL(w) ≤ C · L},

Proof. A geodesic of word length L can be decomposed in N segments that either run
“parallel” to one of the generators or parallel to one fourth of the boundary component.
Thus, each is at least min{la, lb, bd/4}, where la and lb denote the length of the two
generators and bd the length of the boundary component. ✷

Remark A.6. The constant min{la, lb, bd/4} is sharp since GL(a) = la, GL(b) = lb
and GL(ab AB) = lc.

Definition A.7. A rectangular torus (la, lb) is a torus with a hyperbolic metric and
generators of length la and lb, constructed gluing the appropriate pairs of edges of
four copies of a right angled pentagon as in figure 25.

Consider the matrices

α =
(

ela 0
0 e−la

)
and β =

(
cosh(lb) − sinh(lb)

− sinh(lb) cosh(lb)

)
.

We compute lengths of geodesics in the rectangular torus (14, 16) using the
matrices α, β above with la = 7 and lb = 8 in a similar way that we did in the pair
of pants.
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Word Length, Hyperbolic Length and Self-Intersection Number 75

[19] Laurent Guillopé, Sur la distribution des longueurs des g’eod’esiques fermées d’une
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[32] Henri Poincaré, Papers on topology: Analysis situs and its five supplements, American

Mathematical Soc., vol. 37, (2010).
[33] Igor Rivin, Simple curves on surfaces, Geometriae Dedicata, 87 (2001) no. 1, 345–360.
[34] Igor Rivin, Geodesics with one self-intersection, and other stories, Advances in

Mathematics (2012).
[35] Jenya Sapir, Bounds on the number of non-simple geodesics on a surface.
[36] Lower bound for the number of closed geodesics on pairs of pants (and arbitrary surfaces).
[37] Richard Sharp, Periodic orbits of hyperbolic flows, On Some Aspects of the Theory

of Anosov Systems, Springer Monographs in Mathematics, Springer Berlin Heidelberg,
(2004) 73–138.

[38] Herbert Solomon, Geometric probability, SIAM, vol. 28, (1978).
[39] Dennis Sullivan, The density at infinity of a discrete group of hyperbolic motions,
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