

## A Combinatorial Model of something

In short, mathematics only exists in a living community of mathematicians that spreads understanding and breaths life into ideas both old and new.
The question of who is the first person
to ever set foot on some square meter of land is really secondary.

```
When you understand something
really well, if that something is
unknown is called research, if it is know,
it is called learning.
Dennis Sullivan
```

Revolutionary change does matter, but revolutions are few, and they are not selfsustaining --- they depend very heavily on the community of mathematicians. Bill Thurston

## What is geometry?

What do I mean by geometry?
What do you mean by geometry?

What is "a circle"?
How can you check a curve is a circle?

What is "a straight line"?
How can you check a curve is a straight line?

Properties of straight lines

- "No angle"
- locally minimizes distances
- direction does not change
Can yo find curves with the same properties on a sphere?

Suppose you are a tiny bug walking along a curve. No matter how much you move (forwards or backwards) the curve looks the same curve looks the same.

What is the curve?


Idea (we learned from Thurston): When you are trying to understand
a space, put yourself as a point in this

You are on a circle, made of a magic stretching rubber band material.
Describe how the circle looks like as the center moves (on a straight line) further and further away from you?

Idea (we learned from Thurston) When you are trying to understand a space, put yourself as a point in this space

You are on a circle on a sphere (of radius 1). The circle is made of a magic stretching rubber band material (and does not leave the sphere).
Describe the circle as the center moves further and further away from you?

Idea (we learned from Thurston): When you are trying to understand a space, put yourself as a point in this space


Can you cut the surface in such a way that you can lay it flat on the floor?


There are three kinds of geometry which possess a notion of distance and which look the same from any viewpoint with your head turned in any orientation. W. Thurston

Curvature in a two dimensional space (where we can measure length of curves)

- Consider a two dimensional space $X$ and a point p in X .
- Let $C(p, r)$ be the length of a circle of radius $r$ centered at p in X .


## onger, shorter

equal to $2 \pi r$ ?


Define the curvature
$\boldsymbol{K}(\boldsymbol{p})$ at p , as

$$
K(p):=3\left(\lim _{r \rightarrow 0^{+}} \frac{2 \pi r-C(r, p)}{\pi r^{3}}\right)
$$

What is the shortest path from the point $p$ to the point $q$ ? ( $p$ and $q$ are not far from each other)


In this sense, this path is straight. It is part of a geodesic.


Some Models of the hyperbolic plane


Geodesics("straigth lines") in different Models of the hyperbolic plane


Some models of the hyperbolic plane
$H$, the Half-space model.
$I$, the Interior of the disk model.
$J$, the Jemisphere model (pronounce the J as in Spanish).
$K$, the Klein model.
$L$, the 'Loid model (short for hyperboloid).
From
http://library.msri.org/books/Book31/files/cannon.pdf

$\operatorname{dist}(P, Q)=\min \{l e n g t h(\gamma)$,
$\gamma$ path from P to Q$\}$

Recall that geodesics are curves ocally realizing shortest distance

regular octogon in the
Poincarè disk with interior angle 135


$$
\begin{gathered}
D \text { is the open unit disk in } R^{2} . \\
\text { For each path } \\
\gamma:[0,1] \longrightarrow D, \gamma(t)=\left(\gamma_{1}(t), \gamma_{2}(t)\right) \\
\operatorname{length}(\gamma)=\int_{0}^{1} \frac{2 \sqrt{\gamma_{1}^{\prime}(t)^{2}+\gamma_{2}^{\prime}(t)^{2}} d t}{1-\gamma_{1}(t)^{2}-\gamma_{2}(t)^{2}}
\end{gathered}
$$

The distance between two points $p$ and $q$ in $D$ is the infimum of $I(A)$ over all paths $A$ from $p$ to $q$.


The end


Rowland, Todd. "Universal Cover." From MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein. http://mathworld.wolfram.com/UniversalCover.html

The torus with pac-person metric


Unrolling the pair of pants. Endow it with the pac-person metric


In surfaces of constant negative curvature, every deformation class of curves contains a unique shortest curve. This shortest curve is called geodesic.


One can associate a real number to each deformation class of closed curves: the length of the shortest curve in the class.

