MAT 364 Extra homework 2

Consider a set I. For each $\mu \in I$, let A_μ be a subset of a given set S. We call I an indexing set and the collection of subsets of S indexed by the elements of I is called the indexed family of subsets of S. We denote this indexed family by $\{A_\mu\}_{\mu \in I}$.

If $\{A_\mu\}_{\alpha \in I}$ is an indexed family, the union $\cup_{\mu \in I} A_\mu$ is the set of all elements $x \in S$ such that for at least one index, $\nu, x \in A_\nu$. Similarly, the intersection $\cap_{\alpha \in I} A_\alpha$ is the set of all elements $x \in S$ such that , $x \in A_\nu$ for all $\nu \in I$.

Consider a set S, three subsets of S, A, B and C and an indexed family $\cup_{\alpha \in I} A_\alpha$ of subsets of S. Prove the following

1. $S \setminus (A \cup B) = (S \setminus A) \cap (S \setminus B)$.
2. $S \setminus (A \cap B) = (S \setminus A) \cup (S \setminus B)$.
3. $A \subseteq B$ if and only if $B = A \cup B$.
4. $A \subseteq B$ if and only if $A = A \cap B$.
5. $A \subseteq S \setminus B$ if and only if $B \subseteq S \setminus A$.
6. If $A \subseteq B \subseteq C$ then $C \setminus (B \setminus A) = A \cap (C \setminus B)$.
7. $\cap_{\alpha \in I} (A_\alpha \cap D) = (\cup_{\alpha \in I} A_\alpha) \cap D$.
8. $S \setminus (\cap_{\alpha \in I} A_\alpha) = \cup_{\alpha \in I} (S \setminus A_\alpha)$.
9. $S \setminus (\cup_{\alpha \in I} A_\alpha) = \cap_{\alpha \in I} (S \setminus A_\alpha)$.

10. Let f be a function from a set D to a set E. Let $G \subseteq D$ and $H \subseteq G$.

 a. Prove that $G \subseteq f^{-1}(f(G))$.
 b. Prove that $f(G \cup H) = f(G) \cup f(H)$.
 c. Prove that $f(G \cap H) \subseteq f(G) \cap f(H)$ and find an example where $f(G \cap H) \neq f(G) \cap f(H)$
 d. Prove that $f^{-1}(G \cap H) = f^{-1}(G) \cap f^{-1}(H)$
 e. Prove that $f^{-1}(G \cup H) = f^{-1}(G) \cup f^{-1}(H)$

Topology review problems

(i) Can a set not have limit points? (prove or disprove)

(ii) Can an infinite set not have limit points? (prove or disprove)

(iii) Prove or disprove: If U is an open set, then $u = \text{Int}(\text{Cl}(U))$.

(iv) Consider two topological spaces X and Y. Show that the sequence $\{(x_n, y_n)_{n \in \mathbb{Z}_{\geq 0}}\}$ of elements of $X \times Y$ converges to $(x, y) \in X \times Y$ if and only if $\{x_n\}_{n \in \mathbb{Z}_{\geq 0}}$ converges to x in X and $\{y_n\}_{n \in \mathbb{Z}_{\geq 0}}$ converges to y in Y.

(v) Consider a metric space X and a subset A of X.

 a. An isolated point of A is a point $a \in A$ which has a neighborhood that does not contains other points of A other than a. Prove that every point of A is either a limit point or an isolated point.
 b. Prove that a sequence in X converges to at most one point.