MAT 364 Extra homework 2

Consider a set I. For each $\mu \in I$, let A_{μ} be a subset of a given set S. We call I an *indexing set* and the collection of subsets of S indexed by the elements of I is called the *indexed family* of subsets of S. We denote this indexed family by $\{A_{\alpha}\}_{\mu \in I}$.

If $\{A_{\alpha}\}_{\alpha \in I}$ is an indexed family, the union $\cup_{\mu \in I} A_{\alpha}$ is the set of all elements $x \in S$ such that for at least one index, $\nu, x \in A_{\nu}$. Similarly, the intersection $\cap_{\alpha \in I} A_{\alpha}$ is the set of all elements $x \in S$ such that $, x \in A_{\nu}$ for all $\nu \in I$. Consider a set S, three subsets of S, A, B and C and an indexed family $\cup_{\alpha \in I} A_{\alpha}$ of subsets of S. Prove the following

- (1) $S \setminus (A \cup B) = (S \setminus A) \cap (S \setminus B).$
- (2) $S \setminus (A \cap B) = (S \setminus A) \cup (S \setminus B).$
- (3) $A \subset B$ if and only if $B = A \cup B$.
- (4) $A \subset B$ if and only if $A = A \cap B$.
- (5) $A \subset S \setminus B$ if and only if $B \subset S \setminus A$.
- (6) If $A \subset B \subset C$ then $C \setminus (B \setminus A) = A \cap (C \setminus B)$.
- (7) $\cap_{\alpha \in I} (A_{\alpha} \cap D) = (\cup_{\alpha \in I} A_{\alpha}) \cap D.$
- (8) $S \setminus (\cap_{\alpha \in I} A_{\alpha}) = \cup_{\alpha \in I} (S \setminus A_{\alpha}).$
- (9) $S \setminus (\cup \alpha \in IA_{\alpha}) = \cap_{\alpha \in I} (S \setminus A_{\alpha}).$
- (10) Let f be a function from a set D to a set E. Let $G \subset D$ and $H \subset G$.
 - (a) Prove that $G \subset f^{-1}(f(G))$.
 - (b) Prove that $f(G \cup H) = f(G) \cup f(H)$.
 - (c) Prove that $f(G \cap H) \subset f(G) \cap f(H)$ and find an example where $f(G \cap H) \neq f(G) \cup f(H)$
 - (d) Prove that $f^{-1}(G \cap H) = f^{-1}(G) \cap f^{-1}(H)$
 - (e) Prove that $f^{-1}(G \cup H) = f^{-1}(G) \cup f^{-1}(H)$

Topology review problems

- (i) Can a set not have limit points? (prove or disprove)
- (ii) Can an infinite set not have limit points?(prove or disprove)
- (iii) Prove or disprove: If U is an open set, then u = Int(Cl(U)).
- (iv) Consider two topological spaces X and Y. Show that the sequence $\{(x_n, y_n\}_{n \in \mathbb{Z}_{\geq 0}} \text{ of elements of } X \times Y \text{ converges to } (x, y) \in X \times Y \text{ if and only if } \{(x_n\}_{n \in \mathbb{Z}_{> 0}} \text{ converges to } x \text{ in } X \text{ and } \{(y_n\}_{n \in \mathbb{Z}_{> 0}} \text{ converges to } y \text{ in } Y.$
- (v) Consider a metric space X and a subset A of X.
 - (a) An *isolated point of* A is a point $a \in A$ which has a neighborhood that does not contains other points of A other than a. Prove that every point of A is either a limit point or an isolated point.
 - (b) Prove that a sequence in X converges to at most one point.