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THE MATHEMATICAL GAZaI'IE 

Notes 

78.1 A (very) short proof of Fermat's little theorem 

Fermat's little theorem states that if a and p are positive integers, p a 
prime which does not divide a, then aP-1 - 1 (mod p). The standard 
textbook proofs rely on complicated divisibility results or ring theory. A 
little combinatorics makes the proof very simple, and emphasises the 
hypotheses. The key is the following lemma, whose straightforward 
proof is left to the reader. 

Lemma. If w is a string of arbitrary symbols of length p, a prime, and w 
is not a single symbol repeated p times, then the cyclic permutations of p 
are distinct. 

For example, if w is the string abbab, then w and its cyclic 
permutations bbaba, babab, ababb, and babba are distinct. On the other 
hand, the string abab and its cyclic permutations baba, abab, and baba 
are not distinct. All strings with non-distinct cyclic permutations are of 
this form - the concatenation of some number of copies of a shorter 
substring. Notice that the length of the repeated substring must then 
divide the length of the original string. 
Theorem. If a and p are positive integers and p is prime, then p divides 
aP -a. 

Let A = {xI, x2, x3 ...xa } be a set of arbitrary symbols. Form all 
possible strings of length p of elements of A, with repetition allowed. 
There are aP such strings. Some of them are special - the strings which 
consist of a single symbol repeated p times, e.g. xI xx1 ... x1. There are a 
such trivial strings, and, hence, aP-a other strings. Each of these non- 
trivial strings has length p, a prime, and therefore has p distinct cyclic 
permutations. Partition the set of non-trivial strings into cyclic 
permutation classes. each class contains p elements, and each element is 
in a unique class. Therefore, p must divide aP-a. 

Fermat's little theorem follows by dividing both sides of the 
congruence aP - a (mod p), by a. It is a pleasure to acknowledge helpful 
conversations with Matthew Stafford on this topic. 

STEPHEN P. KENNEDY 

Department of Mathematics, Saint Olaf College, Northfield, MN 55057 
USA. 
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