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Annals of Mathematics, 140 (1994), 703-722

There are infinitely
many Carmichael numbers

By W.R. ALFORD, ANDREW GRANVILLE and CARL POMERANCE*

Dedicated to Paul Erdés on the
occasion of his 80" birthday

Introduction

On October 18th, 1640, Fermat wrote in a letter to Frenicle, that whenever
p is prime, p divides aP~! — 1 for all integers a not divisible by p, a result now
known as Fermat’s ‘little theorem.” An equivalent formulation is the assertion
that p divides a? — a for all integers a, whenever p is prime. The question
naturally arose as to whether the primes are the only integers exceeding 1
that satisfy this criterion, but Carmichael [Cal] pointed out in 1910 that 561
(=3 x 11 x 17) divides a®®! — a for all integers a. In 1899, Korselt [Ko] had
noted that one could easily test for such integers by using (what we will call)

Korselt’s criterion. n divides a™ — a for all integers a if and only if n is
squarefree and p — 1 divides n — 1 for all primes p dividing n.

In a series of papers around 1910, Carmichael began an in-depth study
of composite numbers with this property, which have become known as
Carmichael numbers. In [Ca2], Carmichael exhibited an algorithm to con-
struct such numbers and stated, perhaps somewhat wishfully, that “this list
(of Carmichael numbers) might be indefinitely extended.” Indeed, until now, no
one has been able to prove that there are infinitely many Carmichael numbers,
though it has long seemed highly likely.

*The idea for this paper came to us after seeing a preprint of Zhang Mingzhi [Zh)] in which a technique
proposed by Erdés is modified to give numerical examples of Carmichael numbers with many prime factors.
We are indebted to Ed Azoff, Roger Baker, Brian Boe, Enrico Bombieri, Paul Erdés, John Friedlander,
Roger Heath-Brown, Sergei Konyagin, Helmut Maier, Greg Martin, Hugh Montgomery, Frangois Morain,
Gary Mullen, Jean-Louis Nicolas, Richard Pinch, John Selfridge, Jeff Shallit, Bob Vaughan and Richard
Warlimont for their comments and advice concerning this paper. The second and third authors wish to
acknowledge support from NSF grant DMS 90-02538. The second author is an Alfred P. Sloan Research
Fellow.
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In 1939 Chernick noted that if p=6m+1,g =12m+1 and r = 18m +1
are all prime then pgr is a Carmichael number. According to Hardy and
Littlewood’s widely believed prime k-tuplets conjecture, these should simulta-
neously be prime infinitely often, which would tell us that there are infinitely
many Carmichael numbers.

Computations by Richard Pinch [Pi] have yielded 8,241 Carmichael num-
bers up to 10'2, 19,279 up to 10'3, 44,706 up to 10'* and 105,212 up to 10%5.
On the other hand, numerous authors have supplied upper bounds for C(x),
the number of Carmichael numbers up to z (see [PSW], and also [Po]), the
best being

C(.’B) < xl—{1+o(1)}logloglogz/logloga:

for £ — co. We believe that this upper bound probably gives the true size of
C(z). Our belief can be justified by the heuristic argument in [Po], which is
based on ideas of Erdés [Er2).

In this paper we show that C(z) > z® for all large = and some positive
constant a. In particular, we may take o = 2/7. A precise upper bound
for allowable values of a in our theorem depends on two other constants that
appear in analytic number theory. We now describe these constants.

Let m(z) be the number of primes p < z, and let 7(z,y) be the number
of these for which p — 1 is free of prime factors exceeding y. Let £ denote
the set of numbers E in the range 0 < E < 1 for which there exist numbers
z1(E), 11(F) > 0 such that

(0.1) m(z,z'7F) >y (E)r(z)

for all z > z1(E). Erdés (see [Erl]) proved that there is a small positive
number in €. Larger values were subsequently found by Wooldridge, Goldfeld,
Pomerance, Fouvry and Grupp, Balog, and Friedlander. Currently the best
result known ([FY]) is that any positive number less than 1 — (24/e)! is in €.
Erdés has conjectured that any positive number less than 1 is in &; that is,
that £ is the open interval (0,1).

We remark that it is easy to see that if E € £, then (0,E] C £ In
addition one can show (using the Brun-Titchmarsh inequality) that if E € £
then E’ € £ for some E' > E. That is, £ is an open interval. We give the
proof in Section 5.

Define 7(x;d,a) to be the number of primes up to z that belong to the
arithmetic progression a mod d. The prime number theorem for arithmetic
progressions states that

(0.2) m(z;d,a) ~ w(z)/p(d) as z — oo,
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provided (a,d) = 1, where ¢ is Euler’s function. An important problem
in analytic number theory is to enquire into the possible dependence on d
and a in this asymptotic relation. For example, may d also tend to infinity
as x does and if so, how fast? It is conjectured that (0.2) holds uniformly
for all coprime integer pairs a,d with 1 < d < z!~¢, for any fixed € > 0.
Assuming the Riemann hypothesis for Dirichlet L-functions this conjecture
can be proved for the more restricted range 1 < d < z1/2-¢. However, the
strongest unconditional such result known is the Siegel-Walfisz theorem, which
asserts that (0.2) holds uniformly for all coprime integer pairs a,d with 1 <
d < (logz)¥, for any fixed k.

If one is prepared to disregard multiples of a possible ‘exceptional’ modu-
lus, then one can significantly improve the range in the Siegel-Walfisz theorem.
In fact, if ¥ (z) tends to 0 arbitrarily slowly then (0.2) holds for all coprime
integer pairs a and d with 1 < d < z¥®), except possibly for those d which
are multiples of some integer dj(x), which exceeds a power of logz (see page
55 of [Bo]). If, in addition, one is willing to relax the asymptotic relation in
(0.2) and settle for a lower bound of the correct order of magnitude, then one
can take 1 < d < zB for some small B > 0. One can get larger values of B by
allowing more exceptional moduli. Specifically, let B denote the set of numbers

B in the range 0 < B < 1 for which there is a number z3(B) and a positive
integer Dp such that if z > x2(B), (a,d) =1 and 1 < d < min{z?,y/z1-B}
then

, m(y)

(03) w(yidia) 2 5t
whenever d is not divisible by any member of Dg(x), a set of at most Dp
integers, each of which exceeds logz. In Section 2 we show that the interval
(0,5/12) C B, which follows from a bound for the density of zeros of Dirichlet
L-functions, due to Huxley [Hu] and Jutila [Ju]. Although no result exactly
like Theorem 2.1 has been proved in the literature, it was known to be feasible
by the experts.

Our theorem on Carmichael numbers depends intimately on the sets &
and B.

THEOREM 1. For each E € £ and B € B there is a number o =
zo(E,B) such that C(z) > zFB for all z > x.

Since (0,1 — (2y/e)7!) C £ and (0,5/12) C B, we conclude that C(z) >
xP~¢ for any € > 0 and all large = depending on the choice of &, where

B=(1- (2\/6)-1)% =.290306. .. .

This implies that, as stated above, C(z) > x%7 for all large .
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Our argument is based on Erdés’s original heuristic [Er2], though with
certain modifications. The idea is to construct an integer L for which there are
a very large number of primes p such that p — 1 divides L. Suppose that the
product of some of these primes, say C = p; - - - pg, is congruent to 1 mod L.
Then C is a Carmichael number, since each p; — 1 divides L which divides
C — 1, and we may apply Korselt’s criterion above. Indeed the more such
products we can find, the more Carmichael numbers we will have constructed.
How large a set of such primes p must we have to guarantee the existence of
such products? We may view these primes p as elements of the group (Z/LZ)*
of reduced residues mod L. The following result, due to van Emde Boas and
Kruyswijk (and extending a theorem independently due to Kruyswijk and
Olson), gives a partial answer.

THEOREM 2. If G is a finite abelian group in which the mazimal order
of an element is m, then in any sequence of at least m(1 + log (|G|/m)) (not
necessarily distinct) elements of G, there is a nonempty subsequence whose
product is the identity.

We give a simplified proof of this result in the next section.
So as to be able to apply Theorem 2 to finding Carmichael numbers by
our proposed method, we will need to find an integer L, with at least

A(L) (1 + log —:%) > ML)

primes p for which p — 1 divides L. Here, Carmichael’s lambda function A(L)
(see [Cal]) is the largest order of an element in (Z/LZ)*. However the number
of such primes p cannot exceed 7(L), the number of divisors of L (since each
such p is 1 plus a divisor of L), and usually A(L) is much larger than 7(L) (see
[EPS]). To avoid this problem we will pick our L so that A(L) is surprisingly
small, while, at the same time, there are many primes p for which p—1 divides
L. To do this, we select L to be the product of certain primes ¢ for which the
prime factors of ¢ — 1 are all at most y. This is how a number F € £ enters
into the proof.

Prachar [Pr] (see [APR]) showed that there are infinitely many integers
m with more than 2¢l08™/loglogm {ivisors of the form p — 1, p prime. Here
¢ > 0 is some constant that depends on a number B € B. One cannot do
much better, since 7(m) < 2(1+o(1)) logm/loglogm for 41] m as m — oo. Prachar’s
method is to take a number L which is the product of all of the primes up
to some point and show that there is some integer k with k < L¢ and with
m = kL having many divisors of the form p — 1. For our purposes, we need
A(kL) to be inordinately small in comparison to kL. But the introduction of
the mysterious factor k may ruin things, for there is no reason why A(kL)
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cannot be fairly large, even if we started with an L for which A\(L) is very
small in comparison to L. In Section 3 we will modify Prachar’s method, so
that now, given L, we can find an integer k coprime with L such that there
are many primes p = 1 mod k for which p — 1 divides kL. The advantage
of this over Prachar’s construction is that we may still apply Theorem 2 with
G = (Z/LZ)*, since each of these primes p is in the subgroup of (Z/kLZ)* of
residue classes that are 1 mod k, and this subgroup is isomorphic to (Z/LZ)*.

As mentioned above, it has been conjectured that £ = (0,1) and that
(0.2) holds uniformly for all coprime pairs a,d with 1 < d < z'~¢, for any
fixed e > 0 (and so B = (0,1)). Assuming these conjectures, we see that
Theorem 1 implies Erdés’s conjecture that C(x) > z'~¢ for any € > 0 and
all sufficiently large = (depending on the choice of €). Actually, we can show
that one need only assume that B = (0, 1), for in Section 5 we will prove the
following result.

THEOREM 3. For each B € B, (0,B) C €.

We remark that, for the proofs of Theorems 1 and 3, one only needs a
weaker version of the definition of B, where a is restricted to the value 1. In
particular, we record the following result.

THEOREM 4. Let € > 0. Suppose there is a number x. such that

m(z)
m(z;d,1) > ——=
) 2¢(d)
for all positive integers d < x'~¢, once x > z.. Then there is a number z.
such that C(x) > x'~% for all x > x.. In particular, if such an z. ezists for
each € > 0, then C(x) = U for z — co.

Our proof of Theorem 1 is effective in the sense that if numerical val-
ues are given for v1(E), z1(E), and z2(B), then following our arguments, a
numerical value for zo(E, B) can be produced. However, the larger values
of E that we now know to be in £ are proved to be in £ via the ineffective
Bombieri-Vinogradov theorem. It is possible that Friedlander’s theorem that
every positive number E < 1—(2y/€)7! is in € could be proved from a weaker,
but effective version of this theorem, but we do not take up this issue here. It
is interesting to note that Erdés’s original proof that £ contains some positive
number E uses only Brun’s method and is thus effective. Our proof in Sec-
tion 2, that every positive number B < 5/12 is in B, is effective. Further, from
our proof of Theorem 3, we thus have that values for v;(F) and z;(E) are
computable for every positive number E < 5/12. We thus have the following
theorem.
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THEOREM 5. For each number a in the range 0 < o < 25/144, there is
a computable number x(a) such that C(z) > z* for all > z(a).

It may also be of interest to actually compute a numerical value for z(a)
for some specific o > 0, but this may be difficult.

It has long been known how to construct infinitely many pseudoprimes for
any given base a (that is, composite numbers n which divide a™ —a). The best
lower bound in the literature had been [Po] that if E € £, then the number of
base a pseudoprimes up to r is at least

exp ((log x) EiT )

for all large x depending on the choice of E and a. Evidently this result is
majorized by Theorem 1.

Until now Duparc’s problem [Du] as to whether there are infinitely many
numbers that are simultaneously pseudoprime to both bases 2 and 3 was un-
solved, but this follows from Theorem 1.

Our proof shows there are Carmichael numbers with arbitrarily many
prime factors, but we have not been able to show that there are infinitely many
Carmichael numbers with a fixed number of prime factors. We cannot show
that there are infinitely many Carmichael numbers n divisible by some fixed
prime factor, nor even with ¢(n)/n < 1 — ¢ for some fixed € > 0. Our proof
is easily modified to show that there are arbitrarily large sets of Carmichael
numbers such that the product of any subset is itself a Carmichael number. It
seems to be difficult to prove a ‘Bertrand’s postulate for Carmichael numbers,’
that is, that there is always a Carmichael number between z and 2z once z is
sufficiently large.

One can modify our proof to show that for any fixed nonzero integer a,
there are infinitely many squarefree, composite integers n such that p — a
divides » — 1 for all primes p dividing n. However, we have been unable to
prove this for p — a dividing n — b, for b other than 0 or 1. Such questions
have significance for variants of pseudoprime tests, such as the Lucas probable
prime test (see [PSW], [Wi]), strong Fibonacci pseudoprimes (see [LMO]) and
elliptic pseudoprimes (see [GP]).

Our proof can also be modified to show that, for any given finite set
§ of positive integers, there are infinitely many integers n which are strong
pseudoprimes to every base in S, as well as being Carmichael numbers. (We
say a positive odd integer n is a “strong pseudoprime to the base a” if n is
composite and either a* = 1 modn or a®* = —1 mod n for some integer
i < t, where n — 1 = 2'u and u is odd. It is known that if n is odd and
composite, then n fails to be a strong pseudoprime for at least three fourths of
the integers a in {1,2,...,n — 1}.) The primality test programmed into some
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software packages is based on the given integer passing strong pseudoprime
tests to each base in a fixed finite set S. It was widely suspected that no
matter how large the set S is taken, there will always be composite numbers
that are passed off as prime by the test. Our result confirms this view and
in fact we can show that the number of such integers up to z is greater than
x?/7, for large z.

We intend to take up these and other questions in a future paper.

Throughout the paper the letters p and q will always denote primes. The
constants cy, cg, ... are all positive, and will always be assumed to be absolute
(not dependent on any variable), as well as computable. We shall use both
| | and # to denote cardinality of a set, reserving the latter symbol for sets
written with braces.

1. Subsequence products representing the identity
in a group

If G is a group of order m, then any sequence of m elements of the group
contains a subsequence whose product is 1, the identity. For if the sequence
is 91,92, *,9m, then the m +1 products: 1, g1, 9192, -*,9192 - gm cannot
all be distinct (as there are only m distinct group elements) and if none of
the latter m products is 1, we get g;---g; = g1+ g; for some i < j, so that
gi+1- -+ gj = 1. This result cannot be improved for G = Cp,, a cyclic group of
order m, since if g is a generator of Cp, and g1 = g2 = --- = g—1 = g, then
no subproduct is 1.

For a finite group G, let n(G) denote the length of the longest sequence
of (not necessarily distinct) elements of G for which no nonempty subsequence
has product the identity. Kruyswijk [Ba] and Olson [Ol] independently evalu-
ated n(G) when G is a finite abelian p-group. Baker and Schmidt [BS] gave
good upper bounds for n(G) for arbitrary finite abelian groups and for signifi-
cant generalizations of this problem, and van Emde Boas and Kruyswijk [EK]
and Meshulam [Me] each gave the result in Theorem 2. We now restate this
theorem and give a simplified proof based on that in [EK].

THEOREM 1.1. If G is a finite abelian group and m is the mazimal order
of an element in G, then n(G) < m(1 + log (|G|/m)).

Proof. Let g1,9o,...,9n be asequence of elements of G and assume that
n > m(1+ log(|G|/m)). Choose ¢ to be any prime with ¢ = 1 mod m and let
F, denote the field of g elements. If we multiply out the product

(a1 —g1)(a2 = g2) - (an — gn) = D kgg
geqG
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in the group ring Fy[G], where a1,as,...,a, € F;, and suppose that no sub-
sequence of g1, 9s,...,9n has product equal to 1, then k; = ajaz...a,. Thus
if we can find a1, a9,...,a, € F§ such that

(1.1) (a1 —g1)(az — g2) ... (an — gn) =0,

then k; = 0 and we have a contradiction, implying that, in fact, there must
be a subsequence whose product is 1.

Any character x: G — Fy in the character group G, may be extended to a
ring homomorphism x : Fg[G] — Fq by letting x(3-geq k99) = 34 kox(9)-
From the orthogonality relations for group characters, one can show that if
b € F4(G] then b = 0 if and only if x(b) = 0 for all x € G. Thus, since
x(TTx, (aZ =TT (a; — x(g:)), we see that (1.1) holds for a given choice
of aj,as,. ,an 6 Fy if

(1.2) for each x € G there ezists j, 1 < j < n, such that x(9;) = a;.

Therefore it suffices to show that one may select ay,as,...,a, € F; so
that (1.2) holds. To do this, we shall proceed by the “greedy a.lgorlthm” of
picking a; so that x(g1) = a; holds for as many x € G as p0331ble, picking
az so that x(g2) = az holds for as many of the remaining x € G as possible,
and so on. The key observation is that each x(g;) is an m™ root of 1 in
F4, and so can be one of only m different values. Thus if S is any subset
of G and g is any element of G, then there is some a € F; with x(g9) = a
holding for at least |S|/m characters x € S. That is, x(g) = a does not
hold for at most |S|(1 — 1/m) characters x € S. Thus applying the greedy
algorithm sequentially to g1, go, ..., gk, where k = [mlog(|G|/m)] + 1, we may
choose aj,as,...,a;r € F; so that the residual set of characters x € G with
x(g;) # aj, for each j =1,2,...,k, has cardinality at most

IGl(1 —1/m)* = |G|(1 — 1/m)* < |Gle /™ < m.

Call the remaining characters xi,x2,...,Xxr, where 0 < 7 < m — 1. Since
n>k+m-—12>k+r, westill have axy1,0k42,...,a0r4, remaining to be
chosen. We choose them by letting ary; = x;j(gk+;) for j = 1,2,...,r. If
k +r < n, we may choose the remaining a;’s as arbitrary members of Fy.
Thus (1.2) holds and the theorem is proved. O

Remark. It is reported in [Ol] that at the Midwestern Conference on
Group Theory and Number Theory at Ohio State University, April 1966, Dav-
enport asked for the best possible bound in Theorem 1.1, since this gives the
largest number of prime (ideal) divisors that can divide an irreducible integer
in an algebraic number field with class group G. For this and other appli-
cations, it is still of great interest to get the best possible result above. Our
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argument here may be sharpened to give the bound m(y + £ + log(|G|/m))
provided m and |G|/m are each sufficiently large (as a function of ), for any
given € > 0, where v = 0.577215665. .. is the Euler-Mascheroni constant.

The next result allows us to construct many such products.

PROPOSITION 1.2. Let G be a finite abelian group and let r >t > n =
n(G) be integers. Then any sequence of r elements of G contains at least
() / (1) distinct subsequences of length at most t and at least t — n, whose
product is the identity.

Proof. Let R be a sequence of r elements of G. Since r > n there is,
by the definition of n(G), some subsequence of R whose product is 1. Let
S be the longest such subsequence, with cardinality s, say. Then s > r — n,
since otherwise R\ S contains a subsequence whose product is 1, and this
subsequence might be appended to S, increasing its size, which contradicts
the maximality of S.

Let T be any subsequence of S of cardinality t — n. If the product of
the elements of T is g then the product of the elements of S\ T is g1. Let
U be the smallest (possibly empty) subsequence of S\ T' whose product is
g~ L. Evidently U has cardinality at most n else, by hypothesis, there exists a
subsequence of U that has product 1 and this can be removed from U to make
it smaller.

So V =TUU is a subsequence of S (and thus R), in which the product
of the elements is 1, and which has size at most (¢ —n) +n =t and at least
t—n.

The number of ways of choosing such a pair of sequences (T, U) is at least
the number of ways of choosing T and is thus at least (t_“’n) The maximum
possible number of different sequences T which give rise to the same sequence
V =TUU is at most (JYL) < (;%,) = (%) Therefore the number of different
subsequences V' that we have created is at least

o EDQ=EEN/G-0/C)

This completes the proof of Proposition 1.2. O

2. Primes in arithmetic progressions

For each Dirichlet character x and real numbers o, T in the ranges 1/2 <
0 <1,T >0,let N(o,T, x) be the number of zeros s = 3+~ of the Dirichlet
L-function L(s, x) inside the box 0 < 8 <1 and |y| < T. Let A be the set of
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real numbers A > 2 for which there exists a number y2(A) > 1, such that for
alco>1-1/A and T > 1,

(2.1) N(o,T,d):= Y N(o,T,x) < 72(A)(Td)*"~,
xmodd

for all positive integers d. One form of the ‘density hypothesis for Dirichlet L-
functions’ asserts that every number A > 2 is in .A. The best that is currently
known unconditionally is that every A > 12/5 is in A; this may be deduced
by combining the ‘log-free’ bound of Jutila [Ju] with a result of Huxley [Hul].
In principle these proofs are ‘effective,’” so that one can compute a value for
v2(A) for each A > 12/5. Note that (2.1) cannot hold for any A < 2 (with
o = 1/2), since the number of zeros of L(s,x) up to height T in the critical
strip is of order of magnitude T log(T'd)—see [Da], Chapter 16. In particular,
there is a computable constant ¢; > 1 such that

(2.2) N(1/2,T,d) < ¢;Tdlog(Td)

for each integer d > 1 and number T > 1. Note that (2.2) gives a better result
than (2.1) for fixed o in the range 1/2 <o <1—1/A.

One may easily deduce, from the following result, that if A € A then
B € B for all B satisfying 0 < B < 1/A. In particular, since (12/5,00) C A,
we have (0,5/12) C B.

THEOREM 2.1. For any given A € A and €,6 > 0, there exist numbers
Nes > 0, Tes, Des such that whenever x > x.5 there is a set D, s(x), of at
most De s integers, for which

Yy Yy
- ol e 2
’ ,,ES; e(d)| ~ »(d)
p=a modd
whenever d is not divisible by any element of D, s(x) with (a,d) =1, and d
in the range 1 < d < min{xl/ A-b ,y/xl‘l/ A+8) " Furthermore, every number in
D, s(x) exceeds logz, and all, but at most one, exceeds x"s.

Proof. We shall only prove the result when ¢ and é are extremely small
(depending on the choice of A), since the result then immediately follows for
all larger values of € and §. When 1 < d < logy our result is a consequence
of the prime number theorem for arithmetic progressions (see [Dal, p. 123,
eq. (9) and the following display). From this and the hypothesis, we note that
we need only consider values of z,y and d in the ranges
(2.3)

logy < d < min{z,y} 4% and log*°z < z/2 < dg'~/AH0 <y < &,
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From Chapters 16, 19 and 20 in [Da] we can deduce the following explicit
formula for prime numbers in an arithmetic progression. For integers a, d with
(a,d) =1, d > 1 and numbers y > 2, T > 2, one has

y 1 _ yﬁ+i’Y
> logp=—5———= > x(a) > -
p<y o(d)  (d) xmodd L(B+iv,x)=0 oy

p=amodd B>1/2, |Iv|I<T
2
T
+0 <y1/2 log?(Td) + y_l(_)g_qw_)) .

The double summation may be bounded by noting that each |x(a)] = 1,
[yt = 8 and |B+iy| > V1/4+72 > (1 +[y])/3. Welet T = z3 so
that, using the hypothesis, y > dz!~ 4+ > g2z~ —2/A+28 > 22 1og* 1, and
thus y'/2log?(Td) = O(y/dz®). Also T > 234 > 283 whereas log(Tdy) =
O(log y) = O(d) by (2.3), and thus ylog?(Tdy)/T = O(y/dx®). Therefore

> ogp- < Sy Hoeo().

p<y xmodd L(B+i, x)-O
p=amodd B>1/2, |y|<®

(2.4)

Write o for a sum over all zeros ﬂ+i'y of L(s,x) and over all characters
x mod d, where 0 < 8 < a and |y| < #®. (Each B+ iy is counted with
multiplicity equal to the number of these L-functlons for which it is a zero.)
To estimate the double sum on the right side of (2.4), we use the upper bounds
y? < y'"YA for B <1-1/A; and y? <yfor Tt <B<1,where T =1-p/logz
and p = (1/6)log(1/€6). In the range 1 —1/A < B < 7 we use the identity
yP =y VAL logy flﬂ_l/A y’do. Thus the double sum on the right side of (2.4)
is at most

T yl 1/A | Z - Z
+ogy / y’do +
1/2 11/A1+|’Y| 11/A 1+|’Y|
2.5 < yl-1/4 / d
(25). <y 12/;41+| +logy (Zl+| |) 7 y21+|7|

For any o > 1/2 we can use partial summation to get

1 3
1 N(o, z3,d) ¥ N(o,t,d)
(2.6) E 1+| | < N(o, 1, d)+_—:t:-3—+/1 Tdt

For any ¢ in the range 1 < t < x3, (2.2) implies that N(1/2,t,d)/t < 4cidlogz.
By inserting this estimate into (2.6), we deduce an upper bound for the first
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sum in (2.5):
1 1-1/A 23
y 1-1/4 / d¢ 1-5 Yy
2.7 Y < 4cd logz {2+ < 16¢ loglz < 24—
(2.7) 12/21+|7| Y g ( T 1y log Tog s

for z > x4, since d < y/4~% and y® > log*z by (2.3).

If 6 > 1-1/A then A(1—0) < 1, so that for any ¢ in the range 1 < t < 3,
(2.1) implies that N(o,t,d)/t < v2(A)d4(1-9). By inserting this estimate into
(2.6), we deduce that

1

1 T
— < p(A)dA1-9) [ 2 4 /
;1+|’Y| < m(4) 1

If 6 > 1—1/2A then A(1—-0) < 1/2, so that for any ¢ in the range 1 < t < 23,
(2.1) implies that N(o,t,d) < y2(A)dA(1-9)¢1/2, By inserting this estimate into
(2.6), we deduce that

3

%) < 475(A)dA0 =) log 2.

3

L1 2 4t
—— < 7y(A)dA1-9) | 2 / — | < 4y9(A)dA1-9),
;1 ¥ |’Y| = 72( ) + ) t3/2 = 72( )

Using the two bounds immediately above, we deduce that the middle term in
(2.5) is

1-1/24

T o
< 4v5(A)dA 1o lo :1:/ A ada+/ A do
<amtayttiogy fuosa [ (B 0o [ ()

lo ~1/24 ~(1-7)
a_logy y f(ry Y
S dn(A)d oAy 4 {(dA) log+ (75 }

472(4) -6/2 —6Ap/2 €
. _ < -
(28) < 5A y{y logz +e }_gy

for > x4, since y/d4 > y?4 > z%4/2 and 4 > log*z by (2.3).

Define D, 5(z) to be the set of integers d’ in the range 1 < d' < /49
for which there is a primitive character x mod d’ with a zero 8+ iy of L(s, x)
satisfying 8 > 7 and |y| < v = e*4?/e%. Since d is not divisible by any
element of D, s(x) (by hypothesis), the final sum of (2.5) only involves zeros
from the region 8 > 7, v < |y| < 3. Thus, by (2.1), the third sum in (2.5) is

1 N(r, 23, d)
< A
yZHM_y 2 < (A=

for z > x4, since d < = by (2.3). We use this, together with (2.7) and

(2.8), to bound (2.5); which we then insert into (2.4) to obtain the estimate
of Theorem 2.1.

4A(1 -7) e4Ap €
= 72(A)ym < gv
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Theorem 14 of [Bo] states that there exist computable constants cz,c3 > 0

for which

> Y N@,T,x) < T,

d<T xmodd

X primitive
for all T > 2, o > 1/2. The set D, s(x) has cardinality no bigger than the left
side of this equation with T = z1/4-% and o = 7, which is < coePs/A = Ds.
The lemma of Landau and Page (see page 39 of [Bo] or pages 95 and 96

of [Da]) asserts that there is a computable constant ¢4 > 0 such that for all
T > 2, there is at most one primitive character x; with modulus d; < T for
which L(s, x1) has a zero f; + iv; satisfying 1 > 1 —c4/logT and |y | <T.
Moreover, if such a zero exists, it satisfies 77 =0 and 8; < 1—c¢5/ (di/ 2 log2 d1),
where ¢ > 0 is some computable constant. We apply this result with 7" = 2"
where 1 = 7.5 := c4/p, so that 1 — c4/log(z") = 7. Thus D,s(x) contains
at most one number that is < z". If this number exists, call it d;, so that
7<l-¢;5/ (di/ 2 log? d;), and thus d; > logz since & > .4, which completes
our proof of Theorem 2.1. O

Remark. It is possible, in principle, to compute a value for y2(A) from
the work of [Hu] and [Ju}, for any A > 12/5. One may then compute the value
of all of the constants in the above proof, starting by ensuring that € and é
are “sufficiently small,” and eventually obtaining values for z. s, D, s and 7.

3. Prachar’s theorem revisited

Since the probability that a randomly chosen, positive integer below z
is prime is about 1/logz, one might expect that for all integers L > 1 and
numbers = > 2,

#{d|L: d<z, d+1isprime}2@#{d[L: 1<d<z},

for some absolute constant ¢ > 0. This cannot be precisely true in general:
for example, when L is odd. Nevertheless, we can actually prove a statement
similar to this.

THEOREM 3.1. Suppose that B is in the set B defined in the introduc-
tion. There exists a number z3(B) such that if z > z3(B) and L is a
squarefree integer not divisible by any prime exceeding \'=B)/2 and for which
> primeqz 1/a < (1 — B)/32, then there is a positive integer k < z'B with
(k,L) = 1, such that

—Dp-2

#{d|L: dk+1<z, dk+uspm‘me}22 #{d|L: 1<d<2B}.

logx
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Proof. Let z3(B) = max{xy(B),170-®7"}. For each d € Dp(x) which
divides L, we divide some prime factor of d out from L, so as to obtain a
number L’ which is not divisible by any number in Dg(z). Thus w(L') >
w(L) — Dp, where w(m) is the number of distinct prime factors of m, and

(3.1) #{d|L:1<d<y}>2P#{d|L: 1<d<y}

for any y > 1. To see this, think of a divisor d’ of L’ as corresponding to a
divisor d of L if and only if &’ divides d and d/d’ divides L/L’. So if d < y then
the corresponding d’ is < y. Moreover, for any divisor d’ of L/, the number
of divisors d of L which correspond to d’ is at most the number of divisors of
L/L', which is < 2Ds,

From (0.3) we see that, for each divisor d of L' with 1 < d < z5B,

7(dz'~B) dx'~8 > dz'-B
2p(d) ~ 2¢p(d)log(dz'~B) = 2¢p(d)logz’

(3.2) n(dz'=8;d,1) >

since m(y) > y/logy for all y > 17 (see [RS]). Furthermore, since any prime
factor ¢ of L is at most £(1=5)/2 (by hypothesis), we can use Montgomery and
Vaughan’s explicit version of the Brun-Titchmarsh theorem [MV], to get

2dz'~B
¢(dg) log(z'~5/q)
4 dz'-B
<
¢(q)(1 — B) ¢(d) logz
< 8 dz'-B
~ q(1 - B) p(d)logz’
Therefore, by (3.2), the number of primes p < dz!~8 with p =1 mod d
and ((p—1)/d,L) =1 is at least

w(dz'B;d,1) — Z ﬁ(dxl_B;dq,l)

m(dz'5;dg,1) <

primeg|L ‘
, 1-B 1-B
Z(%_1815’ 2 1) d;1 24361 ‘
—B e p(d)logx ogx
Thus we have at least
r1-B

#{d|L': 1<d< 2B}

4logx

pairs (p,d) where p < dz'~8 is prime, p = 1 mod d, ((p — 1)/d,L) = 1,
d| L' and 1 < d < zB. Each such pair (p,d) corresponds to. an integer
(p —1)/d < z'~B that is coprime to L, and so there is at least one integer
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k < z1~B with (k,L) = 1 such that k has at least

/! < < B
4logx#{d|L 1 <d<2P)

representations as (p — 1)/d with (p,d) as above. Thus for this integer k we
have

#{d|L: dk+1 <z, dk+1 is prime} >

:ISdeB}

and the theorem now follows from (3.1). O

4. Carmichael numbers

In this section we shall prove the following theorem.

THEOREM 4.1. For each E € £, B € B and € > 0, there is a number
z4(E,Bg), such that whenever z > x4(E,B,e), we have C(z) > zFB~¢.

This result appears to be slightly weaker than Theorem 1. However, as
we shall see in the next section, £ is an open set. Thus if E € £, there is some
E' > E with E' € £, so that letting ¢ = (E' — E)B, we may take zo(F, B)
in Theorem 1 to be z4(E’, B e) That is, Theorem 4.1 and Proposition 5.1
imply Theorem 1.

Proof of Theorem 4.1. Let E € £, B € B, € > 0. Clearly we may
assume € < EB. Let § = (1— E)~! and let y > 2 be a parameter. Denote by
Q the set of primes ¢ € (y?/logy,y?] for which ¢ — 1 is free of prime factors
exceeding y. By (0.1),

o
(4.1) Q] > 2’71( )i

log(y")
for all sufficiently large y. Let L be the product of the primes g € Q; then
T (42) log L < |Q| log(y?) < n(y”) log(y’) < 2¢°,

for all large y. Now A(L) is the least common multiple of the numbers ¢ — 1
for those primes g that divide L. Since each such ¢ —1 is free of prime factors
exceeding y, we know that if the prime power p® divides A(L) then p < y and
p® < yP. Thus if we let p% be the largest power of p with p% < 17, then

(4.3) ML) < ] < J[o =@ <&
P<y P<y

for all large y.
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Let G be the group (Z/LZ)* and recall the number n(G) defined in
Section 1. We conclude from Theorem 1.1, (4.2) and (4.3) that

(4.4) n(G) < A(L) (1 + log ‘QL;) <ML)(1+1logL) < %%

for all large y.
Let 6§ =€6/(4B) and let ¢ = eym. Since

Z l< Z < loglogy<1—B
primeg|L 7 ¥/ logy<q<y9 flogy 32

for sufficiently large y, we may apply Theorem 3.1 with B, z, L. Thus for all
sufficiently large values of y, there is an integer k coprime to L, for which the
set P of primes p < z with p=dk + 1 for some divisor d of L, satisfies

2—D -2

(45) PI> 2

_ [log(z®) _ [Blogz

~ llog(y*) ] | Glogy
distinct prime factors of L, is a divisor d of L with d < zB. We deduce from
(4.1) that

#{d|L: 1<d<zB}> ("’g’)) > (M)u

u
> (1B _ (n(B) 515"
~ \2Blogzr 2B )
Thus, by (4.5) and the identity (6 — 1 — §)B/8 = EB — ¢/4,

for all sufficiently large values of y. Now take P’ = P\ Q. Since Q] <4, we
have by (4.6) that

(4.7) [P’} > BB/

for all sufficiently large values of y.

We may view P’ as a subset of the group G = (Z/LZ)* by considering
the residue class of each p € P’ modulo L. If S is a subset of P’ that contains
more than one element and if

I(S) := Hp =1modL,
PES

—#{d| L: 1<d<zP}.

The product of any
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then II(S) is a Carmichael number. Indeed, every member of P’ is 1 mod & so
that II(S) = 1 mod k, and thus II(S) = 1 mod kL, since (k,L) = 1. However
if p € P’ then p € P so that p— 1 divides kL. Thus II(S) satisfies Korselt’s
criterion.

Let t = e . Then, by Proposition 1.2, we see that the number of
Carmichael numbers of the form II(S), where S C P’ and |S| < t, is at least

(T/(3)> ()’ s oy ns

for all sufficiently large values of y, using (4.4) and (4.7). But each such
Carmichael number II(S) so formed is such that II(S) < z*. Thus for X = z*
we have C(X) > XZB~¢ for all sufficiently large y. But X = exp(y!*?
exp(y1*t%/2)), so that C(X) > XEB—¢ for all sufficiently large values of X.
Since y can be uniquely determined from X, this completes the proof of The-
orem 4.1. a

1+6/2

5. The sets £ and B

In this section we prove Theorem 3 and show that £ is an open interval.
The second result is particularly easy, being an almost immediate consequence
of the Brun-Titchmarsh inequality.

PROPOSITION 5.1. There is some number Eg with 0 < Eg <1 such that
= (O,EO)

Proof. Since Erdés has shown that £ contains numbers E > 0 and since
we evidently have (0, E] C € for any E € &, it suffices to show that for any
E € & there is some E' > E with ' € £&. Let E € £ and let E’' be any
number with E < E’ < 1. By the Brun-Titchmarsh inequality (see [MV]), we
get for z > z1(E) that

w(z,xl_y) > w(z,z' %) - z w(z;p, 1)
z1-F' <p<at-F
2z
S P DI )7

Now using wn(z) > z/logz for all z > 17 (see [RS]), we have for z >
z1(E),z > 17 that
w(z, 2 F) > n(Ele Z 2

logz 1B o E(p—1)logz

Io;c(”‘( B-p 3 ,,%1)

zl—E’ SKII—E
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By Mertens’ theorem, we have
1 1-F 1
S el Eio( A )
— 1-F 1-F
B pel-E p—1 (1-FE)logzx

for £ > 1. Thus if E’ is taken so close to F that

2 1-E 1
71(E)——10g1 Fo 571(1*7),

say, then

n(z, i~ E') > '71( )logx

for all large . We conclude from the prime number theorem that E' € &,
completing the proof of Proposition 5.1. O

We now give the proof of Theorem 3.

Proof of Theorem 3. Assume that B € B and that z > z3(B). Choose
a number § in the range 0 < § < B and let ¢ = §?/(20B). For each number d
in Dp(x), select some prime factor pg of d. Let P be the set of primes in the
interval [2%/2, 29/2+¢] not equal to any py,d € Dp(z). Since P contains all but
at most Dp of the primes in this interval, Mertens’ theorem implies that

31~ log(1 + 6/(10B)) + 0(1/(610g ).
pE'Pp

We deduce that
(5.1) o>
peP

for all sufficiently large x.

We shall give a lower bound for 7(z,z!~B+®) by counting pairs (g, d),
where ¢ < z is a prime in the congruence class 1 mod d, and d is an integer
in the range 289 < d < zB, whose every prime factor lies in P. Evidently
any such prime ¢ must be counted in m(z,z'~B+?%), but will not be involved in
more than 22/% such pairs (g, d) (since ¢— 1 cannot have more than 2/8 prime
factors from P). Thus from (0.3) we have

(5.2) w(z,z "B >27%0 N a(md,1) 22700 N (z)

d
zB-0<d<aB 2B-0<d<eB v(d)
pld=peP pld=peP

for all > z5(B). Let u denote the least integer with u > (B — 6)/(6/2) so
that

6

20B’

"SI'—‘

B-s<us/2 and u(é/2+e)< (2B/6-1)(¢/2+€) =B+ —2-c<B.
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Therefore any product, d, of u not necessarily distinct primes from P satisfies

xB—(s S xu6/2 S d S xu(6/2+€) S m.B’

and so, by (5.1),

1 1 1\ 1 6 \*
Z EZJ(Z§> Zm<20—3) = v3(B, 6),

2B-0<d<gB

say. Since 1/p(d) > 1/d we can insert this estimate into (5.2) to deduce
that (0.1) holds for E = B — § with some number +,(E) satisfying ~;(E) >
271-2/543(B, 6). This completes the proof of Theorem 3. O
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