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Few persons can be made to believe that it is not quite an easy thing to invent a method of 
secret writing that shall baffle investigation. Yet it may be roundly asserted that human 

ingenuity cannot concoct a cipher which human ingenuity cannot resolve. 
Edgar Allen Poe [7] 

Cryptography, from the Greek 'kryptos' (hidden) and 'graphein' (to write), is the art 
and science of making communications unintelligible to all except the intended 

recipients. Its existence through the ages was usually confined to diplomatic and 

military circumstances, where it was used for the concealment of information 

communicated over secure and insecure lines. Today, there is an urgent need to 



provide cost-effective, efficient, and secure systems to protect the vast quantity of 

digital data stored and communicated by electronic data-processing systems. With 
the growth in electronic fund transfers, instant electronic mail, point-of-sale termi? 

nals, home banking, and conferencing through computers, the threat of un? 
authorized accessibility to this data becomes a pressing concern of our society. 

The science of reading secret messages and uncovering the cryptographic system 
utilized is called cryptanalysis. This science played a vital role in the conclusion of 
the Second World War. The early breaking of the Purple Code of Japan allowed the 
Allied forces to continually read secret messages pertaining to strategic movements 
in the Pacific; the recovery of an Enigma Machine from a sunken German 
submarine did the same for the Allied command in Europe [9], [11]. 

Edgar Allen Poe fancied himself a skilled cryptanalyst. But there is some doubt 
about the defensability of his quoted dictum. Cryptanalysis reveals deficiencies in 

existing cryptographic systems. Improved cryptographic systems then pose new 

problems for the cryptanalyst. The intent of this survey is to discuss the mutually 
reactive relationship between the two areas, with an emphasis on the underlying 
mathematics. 

Linear Ciphers 

A cipher is a system which transforms plaintext into ciphertext by applying a set of 
transformations to each character (or letter) in the plaintext. The particular transfor? 
mations employed at any time are controlled by a "key" used at that time. Security 
of the ciphertext rests heavily on the secrecy of the key; it is the objective of the 

cryptanalyst to find the key and consequently break the system. 

Caesar Ciphers. One of the earliest known cryptographic systems was used by 
Julius Ceasar and is appropriately referred to as a Caesar Cipher [26]. Around 50 

B.C., Julius Ceasar wrote to Marcus Cicero, using a cipher that shifts the alphabet 
three places to the right and wraps the last three letters X, 7, Z back onto the first 
three letters: 

ABCDEFGHI J KLMNOPQRS TUVWXYZ 

DEFGHI JKLMNOPQRSTUVWXYZABC 

Thus, the plaintext message 

MEET YOU IN ORLANDO 

is transformed into the ciphertext 

PHHW BRX LQ RUODQGR. 

Such a transformation, using modular arithmetic, can also be performed by a 

computer. Any message can be expressed digitally based on the one-to-one corre? 

spondence, 

ABCDEFGHI J KLMNOPQRS TUVWXYZ 

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25. 

To encipher the plaintext message, we use the transformation 

E(M) = (M+ 3) (modulo26), 

where M is the numeric equivalent of a plaintext letter. To decipher, we utilize the 
transformation 

D(C) = (C + 23) (modulo26), 

where C is the numeric equivalent of a ciphertext letter. Hence: 
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O R L AN DO 
14 17 11 00 13 03 14 

E:i D:T 

17 20 14 03 16 06 17 
R U O D Q G R 

It is not known why Ceasar selected 3 as the key to his cipher system; he could 
have chosen any integer value. Since we are operating modulo 26, there are 26 
distinct keys, one of which (the identity) offers no secrecy at all. A message 
enciphered by a Caesar Cipher is extremely insecure since exhaustive cryptanalysis 
using the 25 nontrivial keys is easily performed. 

Decimation and Linear Ciphers. A Decimation Cipher is similar to a Caesar Cipher 
but it uses multiplication, rather than addition, by a number key. In order to assure 
a one-to-one correspondence among the letters of the alphabet, the key number 
must be relatively prime to 26. [For example, the multiplier 2 yields E(A) = E(N) 
= A, since 0 = 2(13) (mod26).] Thus, the enciphering transformation must be 

E(M) = kM(mod26), 

where M is the numeric value of a plaintext letter, and the key number k is an odd 

integer which is not a multiple of 13. If k = 3, for example, the cipher alphabet is 
obtained by starting with A and selecting every third letter that follows in the plain 

alphabet as we cycle through it. The deciphering algorithm is then 

D(C) = 9C(mod 26), 

where C is the numeric equivalent of a ciphertext letter. In general, the deciphering 
key is the multiplicative inverse modulo 26 of the enciphering key k (the inverse 
must exist since k is relatively prime to 26). A decimation cipher offers no more 

security than a Caesar Cipher since there are only twelve distinct keys. 
Decimation and Caesar Ciphers are subcases of a more general class of ciphers 

called linear or affine ciphers. A linear cipher is defined by the enciphering 
transformation 

E(M) = (kM+t) (mod 26), (l) 

where k, t are integers and k is relatively prime to 26. There are (12) (26) = 312 

distinct linear ciphers. 
Suppose the following ciphertext was generated using a linear cipher: 

YHTQF SCUFD SBULX IOLBF ALYZT IDSCL YCSDO 

FZYCU FAFMF ODITF YCDKV SBICD XBXCF TX. 

We can compare the frequency distribution of the letters occurring in this ciphertext 

(Table 1) with the expected frequency of occurrence of letters in the English 

Language (Table 2). 

BCDEFGHIJKLMNOPQRSTUVWX Y Z 

47609014014103010543104 5 2 

Table 1. Frequencies of letters in ciphertext. 



Letter 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 

Frequency 
321712 
61472 

122403 
159726 
500334 
92100 
78434 

219481 
290559 

6424 
26972 

165559 
101339 

Probability 
.0804 
.0154 
.0306 
.0399 
.1251 
.0230 
.0196 
.0549 
.0726 
.0016 
.0067 
.0414 
.0253 

Letter 
N 
O 
P 
Q 
R 
S 
T 
U 
V 
w 
X 
Y 
z 

Frequency 
283561 
303844 
79845 
4226 

244867 
261470 
370072 
108516 
39504 
76673 
7779 

69334 
3794 

Probability 
.0709 
.0760 
.0200 
.0011 
.0612 
.0654 
.0925 
.0271 
.0099 
.0192 
.0019 
.0173 
.0009 

Table 2. Individual letter frequencies in 4 million characters of English text [6] (Based on a 

sample of 8000 excerpts of 500 letters taken from the Brown University Corpus of Present-Day 
American English). 

The two letters which occur most frequently in the English Language are E and T, 
in that order. Therefore, it is reasonable to guess that F, which occurs most 

frequently in the ciphertext (see Table 1), corresponds to E, while the second most 

frequent letter C in this ciphertext corresponds to T. Based on the assumption that 

E(4) = 5 and E(19) = 2, we use (1) to generate the linear congruences 

4k + t = 5 (mod 26) 

19k + t = 2 (mod 26). 

The solution to this system is k = 5 and t = 11, obtained via elementary techniques 
described in most number theory texts. Therefore, the conjectured enciphering 
transformation would be 

E(M) = (5M + 11) (mod26). 

Since the multiplicative inverse modulo 26 of 5 is 21, and the additive inverse 
modulo 26 of 11 is 15, the corresponding deciphering transformation would be 

D(C) = 2l(C+15)(mod26). 

Based on this, we would decipher our earlier ciphertext as 

ciphertext ABCDEFGH I JKLMNOPQRSTUVWXYZ 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

3 24 19 14 9 4 25 20 15 10 5 0 21 16 11 6 1 22 17 12 7 2 23 18 13 8 

plaintext DYTOJEZUPKFAVQLGBWRMHCX SN I 

NUMBE 

EINTH 

RTHEO 

EDEVE 

RYHAS 

LOPME 

PLAYE 

NTOFC 

DANIM 

RYPTO 

PORTA 

SYSTE 

NTROL 

MS 

that is, 

NUMBER THEORY HAS PLAYED AN IMPORTANT ROLE 

IN THE DEVELOPMENT OF CRYPTOSYSTEMS. 



Substitution Ciphers 

Ceasar, decimation, and linear ciphers form a small subset of a class of ciphers 
known as substitution ciphers. The key to a substitution cipher is a permutation of 
the twenty-six letters of the alphabet. For example, such a key may be 

ABCDEFGHI JKLMNOPQRSTUVWXYZ 
KYAXJBZ INWCMGHVDTLUSPERFOQ, 

which enciphers MICKEY MOUSE as GNACJO GVPUJ. 
This type of enciphering increases the number of possible keys to 26! (a number 

exceeding 4X1026), and this effectively ehminates exhaustive cryptanalysis. To 

decipher a ciphertext encrypted by a general substitution cipher, one must use the 
statistical frequency distribution of single-letter occurrences in the English Lan? 

guage. If this doesn't suffice, more information can be obtained from language 
patterns [26]. By comparing frequency occurrences for letters, initial letters, final 

letters, digraphs (combinations of two letters), and trigraphs (combinations of three 

letters) of a ciphertext with known characteristic frequencies of the English Lan? 

guage, one can eventually reconstruct the key and decipher the text. 
This technique is especially efficient because each plaintext letter is represented 

always by the same ciphertext letter. Consequently, all the properties of the 

plaintext language are retained in the ciphertext language. These invariant proper? 
ties of substitution ciphers can be utilized to obtain the key and break the cipher. It 
can be shown that an average of twenty-eight letters of ciphertext is needed to 

uniquely solve for the key of a substitution cipher [11]. 

Polyalphabetic Ciphers 

One way to obtain greater security is to use a cipher which guarantees that a given 
plaintext letter is not always represented by the same ciphertext letter. This can be 
achieved by using a sequence of n different substitution ciphers, in periodic fashion 
with period ?, to encipher a message. The use of such substitution ciphers increases 
the effective number of possible keys from 26! to (26!)w. For n = 3, the magnitude of 
this number is approximately equal to the total number of atoms in the universe! 

A classic polyalphabetic enciphering procedure, devised by the French cryptogra? 
pher Vigenere, utilizes both a keyword and the Caesar cipher transformation. 

Suppose we wish to encipher the plaintext message 

MEET YOU AT SPACE MOUNTAIN, 

using the keyword MATH. To encipher the message, one uses the sequence of four 
different Caesar ciphers, where the key values 12, 0,19, 7 are the respective numeric 

equivalents of M, A, T, H. This sequence is applied consecutively to groups of four 
letters of plaintext, converting each group into ciphertext. For the first group of four 

letters, MEET, we obtain YEXA. Specifically, for Ek{M) denoting (Af+fc) 
(mod 26): 

Plaintext MEET 
12 4 4 19 

Keyword MATH 
12 0 19 7 

E12 1 E0 1 E19 i E7 4 

24 4 23 0 

Ciphertext YEXA 



Proceeding in this manner for each consecutive group of four letters, we obtain the 

ciphertext 

YEXAKONHFSIHOEFVGNMHUNSG. 

Note that the double E in the plaintext MEET no longer appears as a double letter 
in the ciphertext. Furthermore, the two F 's in the ciphertext correspond to different 

plaintext letters. Since plaintext letters are not always represented by the same 

ciphertext letters, the non-uniform frequency distributions of single letters, digraphs, 
trigraphs, etc. in plaintext are smoothed out in the ciphertext. This smoothing out 

improves the security of the system significantly. 

An Unbreakable Cipher. To obtain a truly "unbreakable" system, one can select a 

polyalphabetic cipher whose key, consisting of randomly selected numbers, has the 

length of the plaintext message [13], [25]. This cipher, called a "one-time pad" or 
Vernian cipher, was invented by the U.S. Army Corps in 1917. The one-time pad is 
invincible since it is equiprobable that a plaintext character is represented by any 
ciphertext character, and revealing patterns no longer exist because each choice of 

representation is random. The number of possible keys of length n is (26)w, which 
for large n makes exhaustive cryptanalysis infeasible. Note, for example, that 

(26)56 ? 1079. This cipher is also theoretically unbreakable, as the following example 
illustrates. 

Plaintext SEND MORE MONEY 
18 04 13 03 12 14 17 04 12 14 13 04 24 

Key 09 26 01 07 23 15 21 14 11 11 02 08 09 
01 04 14 10 09 03 12 18 23 25 15 12 07 

Ciphertext BEOK JDMS XZPMH 

Plaintext RUN TO EXERCISE 
17 20 13 19 14 04 23 04 17 02 08 18 04 

Key 10 10 01 17 21 25 15 14 06 23 07 20 03 
01 04 14 10 09 03 12 18 23 25 15 12 07 

Ciphertext BEO KJ DMSXZPMH 

There is no logical basis for determining which of the two plaintext messages above 

corresponds to the ciphertext 

BEOKJDMSXZPMH. 

Using an appropriate sequence of values in the key, any thirteen-letter message can 

be enciphered to yield the same ciphertext. 
The one-time pad is one method of secret radio communication used by the 

U.S.S.R. [10]. It is also employed on the "hot line" between Moscow and Washing? 
ton. Even though this system offers absolute secrecy, it poses key-management 
problems of enormous proportions: both the sender and the receiver of a message 
must have the identical sequence of random numbers in order to communicate via 
such a system. Although a key could be sent in advance each time a message is to be 

communicated, unnoticed interception of the key would jeopardize the secrecy of 
the forthcoming communication. Furthermore, the key can only be used once since 

repeated use would generate recognizable patterns for the cryptanalyst's use. 
The problem of generating, distributing, and cancelling keys is unmanageable in 

a system where there is a high traffic volume. In wartime, millions of key characters 
would be needed daily [10]. Even with today's powerful computers, this system is 

expensive and time consuming. 



Public-key Cryptosystems 

In 1975, a significant new type of cipher system, called a public-key cryptosystem, 
was proposed by Whitfield Diffie and Martin Hellman [4]. The security of this new 

system is not measured by the complexity of the enciphering algorithm, nor is it 
measured by statistical uncertainty. Instead, the system's security relies on dis? 
coveries in a young and important branch of computer science called computational 
complexity theory. Complexity theory primarily deals with the analysis and design 
of algorithms, and especially with the number of computational steps needed to 

complete an algorithm. The security of any cipher is now measured by the expected 
amount of time a computer would expend to break the cipher. 

In a "public-key cryptosystem," each user in the communication network places 
an encryption algorithm E and cipher key in a public file (analogous to a telephone 
directory). The corresponding decryption algorithm D of the user is kept secret. 
Each user in the system must select his own encryption-decryption pair so as to 

satisfy the following properties: 

(i) If 9 and #, respectively, represent all feasible plaintext and ciphertext 
messages, then E\ ^-> # and D: <?-*& 

(ii) E and D are inverse transformations; that is, 

E(D(C)) 
= C and D(E(M)) 

= M for all C e V and M e9. 

(iii) The pair (E, D) can be easily found (in the computational sense) by the owner, 
and E and D are easy to compute, 

(iv) It is computationally infeasible for anyone except the owner to determine D, 
even if its inverse E is known. 

Because of conditions (ii) and (iv), we call E a "trapdoor" or "one-way" 
function. It is "one-way" in the sense that for given M it is easy to compute E(M)\ 
but given E(M), it is effectively impossible to compute M unless certain private 
(trapdoor) information is known. According to convention in computational com? 

plexity theory, a function is "easy" to compute if there exists an algorithm which 

computes it using approximately kda computational steps, where k and a are 

constants, and d is the "size" of the input. If no such algorithm exists, it is said to 
be "hard" to compute. 

Let us inspect more closely how the system works. Suppose person A desires to 
send message M to person Z. Person A looks up, in the public directory, the public 
enciphering algorithm Ez of Z and sends the message as EZ(M). (There is 

absolutely no fear of interception?wiretapping and spying?since Z is the only 
individual that has access to the deciphering algorithm, Dz.) Then, Z deciphers the 

message by applying the algorithm Dz to EZ(M). Specifically, DZ(EZ(M)) = M. 
A major advantage of this system is that it avoids the necessity of distributing a 

new key before the message is sent. This is obviously important for the success of 

any electronic mail system. 
The public-key cryptosystem also allows "signatures." A signature is a guarantee 

that the message has been issued by the sender. Signatures are a welcome bonus of 
the system. They are used in many contexts (electronic fund transfers, electronic 

mail, home banking, conferencing through computers, etc.). 
If person A desires to send person Z a message, signed to insure its origin, then 

A can use his private deciphering algorithm DA as a signature. Specifically, A sends 

EZ[DA(M)] to Z, and Z uses EA{DZ(EZ[DA(M)])} 
= M. Note that only Z can read 

the encrypted message EZ[DA(M)] since only Z knows the private deciphering 
algorithm Dz. When Dz is applied, Z is left with the text DA{M\ which is still 

8 



unreadable. But then Z can read this message by applying the public enciphering 
algorithm EA of A. If the message is now meaningful, Z has the assurance that it 
was sent by A, since only A knows the private deciphering algorithm DA. It should 
be noted that condition (ii) of the public-key cryptosystem can be relaxed without 

any great damage. If D(E(M)) = M for all Mg^ and E(D(C)) = C for only a 
fraction of the possible C e #, then signatures can still be obtained [12]. 

The enormous key management problems of the one-time pad system are 

virtually nonexistent in a public-key cryptosystem. Since each user of the system 
generates only one pair of keys, and since there is a public directory for the 

enciphering keys of the users, there are no distribution problems. Theoretically, this 

system overcomes the primary deficiency of the unbreakable one-time pad system, 
while it apparently maintains the same level of security. 

The RSA Public-key Cryptosystem 

In 1977, Ronald L. Rivest, Adi Shamir, and Leonard Adelman, all of MIT, 

developed an elegant way to implement the Diffie-Hellmen system, using only 
elementary ideas from number theory [21], [22]. A little background is necessary to 

completely understand the workings of their system, referred to as the RSA 

cryptosystem. 
In 1640, Pierre Fermat communicated a result to one of his correspondents, 

Frenicle de Bessy, an official at the French mint. Frenicle's unique ability to work 

successfully with large numbers represented a challenge to Fermat, and conse? 

quently, he was sometimes the recipient of Fermat's most guarded results. This 
communication contained what is now known as Fermat's Little Theorem, along 
with the comment "I would sent you the demonstration, if I did not fear it being too 

long." 

Fermat's Little Theorem. If p is a prime and a is a positive integer not divisible by 
/?, then ap~l = 1 (mod p). 

(Euler published the first proof of this theorem in 1763, although Leibniz had 
written an identical argument in an unpublished manuscript before 1683.) 

Armed with Fermat's Little Theorem, we can now design our public-key crypto? 
system. To generate the keys, each user in the system must select two large distinct 

prime numbers p and q, each about 100 digits long. (As we shall discuss later, there 
exist efficient algorithms that can generate a one-hundred digit prime on a high 
speed computer in less than two minutes.) Now let n=pq and choose an integer e 
between 3 and n such that e is relatively prime to <j>(n) = (p 

- 
l)(q 

- 
1). (Note that 

any prime number e satisfying max{ /?, q] < e < n will suffice.) Since (e, <j>(n)) = 1, 
we know that e has a multiplicative inverse modulo <f>(n); call it d. Thus, ed= 1 

(mod <j>(n)). Moreover, the Euclidean Algorithm can be used efficiently to find both 
this positive integer d and a corresponding negative integer /? such that ed+ fi<t>(n) 
= 1. The user then submits e and n to the public directory, and keeps d, p and q 
private. 

Suppose we desire to encipher a plaintext message. Using the mapping A <-> 00, 
B <-> 01,..., Z <-> 25, convert the message of / letters to an integer M consisting of It 

digits. Partition the consecutive digits of M into blocks Mt of equal length so that 
each block represents a number less than n = pq. The enciphering transformation is 

given by 

E(Mt) = Mf (mod n) with 0 < E(Mt) < n. 



To decipher the numeric ciphertext C generated by enciphered cipher blocks Ci9 use 
the transformation 

D(Q) = Cf (mod n) with Q<D(Ct)<n 

on each cipher block Ct. 
As an example of an RSA encryption-decryption pair, consider the following 

small, but illustrative, example. Let p = 41 and q = 61 be the two selected primes. 
Then n=pq = 2867, and $(n) = (p- l)(q 

- 
1) = (46)(60) = 2760. Selecting e = 49, 

we use the Euclidean Algorithm to verify that it is relatively prime to <j>(n): 

<j>(n) = 56(49) + 16 

49= 3(16)+ 1 

16 = 16(1)+ 0. 

The last nonzero remainder 1 is the greatest common divisor of <t>(n) and e. Since 

<t>(n) and e are relatively prime, e = 49 has a multiplicative inverse modulo </>(?); 
call it d. Using the equalities above in reverse, it is easy to find d: 

1 = 49 - 
3(16) 

1 = 49 - 
3[4>(/i) 

- 
56(49)] 

= 
169(49) + (-3)(2760). 

Consequently, 169(49) = l(mod 2760). Therefore, d= 169. 
The resulting encryption algorithm is 

?(M)=M49(mod2867), 

and the decryption algorithm is 

Z)(C) = C169(mod2867), 

where M and C are numeric blocks less than 2867. To encipher the plaintext 
message 

EPCOT CENTER IS SPECTACULAR 

translate first into numeric form 

04 15 02 14 19 02 04 13 19 04 17 08 18 18 15 04 02 19 00 02 20 11 00 17 

and partition into blocks of digit-length 4. Then encrypt and decrypt each block by 
the functions E and Z>, as defined above. The result is: 

Original Block Mt Encryption E(Mt) Decryption D[E(Mj)] 

0415 2261 0415 
0214 2536 0214 
1902 2329 1902 
0413 2243 0413 
1904 1416 1904 
1708 1464 1708 
1818 2688 1818 
1504 1504 1504 
0219 1544 0219 
0002 2264 0002 
2011 0786 2011 
0017 2328 0017 

Translating the right-hand column reveals the correct message. 
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In general, do E and D satisfy the four conditions of a public-key cryptosystem? 
If we define _^= _? to be the set of all nonnegative integers less than n, then 
condition (i) is satisfied. To verify condition (ii), E(D(C)) = Cde= C (mod n) and 

D(E(M)) = Med = M (mod n) for C e _? and M e _P, it suffices to prove 

M^ = M (mod ?) for all nonnegative integers M <n=pq. (2) 

If p doesn't divide M9 

Mp-l = l(modp) 

by Fermat's Little Theorem. Now recall that /?<0 and ed + fi<l>(n) = I. Since 

(p 
? 

1) divides </>(?), 

M-P+W = l(modp) 

and it follows that 

M-^n)+1 = M(modp). 

Thus, M^ = M (mod /?) whenever p is not a factor of M. But clearly this also holds 
when p does divide M. In a similar manner, 

Med=M(modq). 

Since /? and q are relatively prime, (2) holds for all M g _?. 

Note that our enciphering transformation was defined only on nonnegative integers 
less than n in order to guarantee that it is one-to-one. 

To verify condition (iii), we must first show that the pair (E, D) can be easily 
found from a computational point of view. The algorithm for determining this pair 
begins with finding two distinct one-hundred digit primes. There are several 

primality tests available?as, for example, Rabin's test [18] and the Solovay- 
Strassen test [27]. The former uses a test due to G.L. Miller: 

Let m be a positive integer with m ? 1 = 2st, where _ is a nonnegative 
integer and / is an odd positive integer. The integer m is said to pass 
Miller'_ test for the base b if either bf = 1 (mod m) or bVt = ? 1 (mod m) 
for some integer j e [0, _ ? 

1]. 

To test a number m for primality using Rabin's test, perform Miller's test for k 
bases each less than m. If the integer m passes all k tests, the probability that it is 
not prime is (1/4)*. For k = 100, this probability is (1/4)100 ? 10"60. Although this 
test is not deterministic in nature, it gives a high degree of certainty. 

Recently, a deterministic primality algorithm was announced that has "nearly" 
polynomial run time [2], [16]. The algorithm is quite complicated, both in theory and 
in practice, since many different cases are covered in computer program implemen? 
tation. Motivated by this test, there have appeared other algorithms dependent on 
the work of H. Cohen and H. W. Lenstra. One algorithm with particularly 
impressive run times was implemented on a CDC Cyber 170-175 computer and can 
test a 100-digit number in about 30 seconds, a 200-digit number in 8 minutes, and a 

1000-digit number in a week [5], [19]. 
How many 100-digit numbers must be tested before we find one which passes 

Rabin's test and is (most likely) a prime? In 1793, Gauss conjectured that if ir(x) 
represents the number of primes not exceeding x9 then ir(x) ~ x/ln x for large x. 
This was proved independently by Hadamard and de la Vallee Poussin (1896), and 
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is referred to as the Prime Number Theorem. The probability that a randomly 
selected odd integer in the interval from 10^ to 10x is prime is approximately 

number of primes 77(10*) 
- 

tt(IO') 2 / 10*-' 1 

number of odd integers (10* 
- 

10>)/2 10*-' - 1 \ x ln 10 y ln 10 

Consequently, the probability that a 100-digit number is prime is approximately 

2/10 1 

On the average, 

9\1001nl0 991nl0 

1 

* .008676. 

*115 
.008676 

odd 100-digit numbers would be tested before a prime is found. The entire 

procedure outlined above requires only a few minutes of computer time to find a 

100-digit prime. Although this may seem to be complicated, keep in mind that each 
user needs to complete this procedure only twice. Once /?, q are obtained, one can 
find positive integers d and e, as described earlier. Thus, the pair (?, D) can be 

"easily" found by the owner. Moreover, E and D are "easy" to compute using 
modular exponentiation [17]. A 200-digit message can be encrypted or decrypted in 
a few seconds on a high speed computer. 

To complete the verification that the RSA cryptosystem is a public-key crypto? 
system, it suffices to show that E is a trapdoor function. Recall that the public-key 
information is e and ?, whereas d, /?, and q are kept private. If d is known, any 
ciphertext C = E(M) can be read. But how "difficult" is it to find dl By definition, 
d satisfies ed= 1 (mod </>(?)). So if <f>(n) can be found, then d can be found as 
shown in an earlier example. Suppose <t>(n) is known. Then, since n is public 
information, it is easy to find 

p + q=pq-(p-i)(q-i) + l=n-4>(n) + l 

p-q=[(p + q)2-*pq]1/2=[(p + q)2-*n]1/\ 

and, therefore, 

P = 
j 

KP + 9) + (P 
~ 

9)] and 9 = 
j 

[(P + 9) 
~ 

(P 
~ 

?)] ? 

Suppose, conversely, that d is known. Then a multiple of </>(?), namely ed? 1, can 
be found. Given a multiple of <f>(n), it is possible to factor n=pq (see [14]). Thus, 

finding <t>(n) or d is computationally no easier than factoring n. The fastest 

factoring algorithm known [15] uses approximately exp(/(ln N) ln (ln N)) bit oper? 
ations to factor an integer N. Assuming that each bit operation takes one microsec? 
ond (10~6 seconds), we obtain the following factorization times: 

Integer N Number of Bit Operations Time 

1050 1.4 X1010 3.9 hours 
1075 9.0 X1012 104 days 
10100 2.3 X1015 74 years 
10200 1.2 X 1023 3.8 X 109 years 
10300 1.5 X 1029 4.9 X 1015 years 

Since the integer n=pq has approximately 200 digits, it appears that it is computa- 
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tionally infeasible to find D9 based only on knowing E. Thus, ? is a one-way 
function and the trapdoor information is the prime factorization pq of n. 

Is it possible to decipher a ciphertext message without finding the deciphering 
algorithm D, and hence avoiding the factorization of n=pql In 1977, G. L. 
Simmons and M. J. Norris proposed a method of cryptanalyzing the RSA crypto? 
system by using successive encryptions by E. They generated a sequence Cl9 
C2,...by defining Cx = E(M) and CJ+l 

= 
E(Cj)9 where M is the plaintext message. 

The sequence is terminated when an integer / is reached such that Ct 
= Cv Then 

Ct_l = M9 since E(M) = E(Ct_x). However, it has been shown [20] that the 

probability of this attack being successful is extremely low if the chosen primes p9 q 
differ in length by only a few digits, (p 

? 
l9q 

? 
l) is small, and both p 

? 1 and 

q 
? 1 have large prime factors. Other cryptanalytic approaches to the RSA crypto? 

system have been suggested, many of which have been quickly followed by counter? 

arguments. 
Since the announcement of the RSA cryptosystem, no generally effective attacks 

have surfaced to threaten its security. Ironically, the research activity stimulated by 
this system has enhanced its security. In order to protect an RSA encryption cipher 
from attack, certain conditions must be satisfied: 

(i) p and q should each be at least 100 digits 
(ii) p and q should differ in length by a few digits 

(iii) (p 
- 1, q 

- 
1) should be large 

(iv) Each of the integers p ? 1, q ? 1 should have at least one large prime factor. 

Property (i) ensures that n is extremely time consuming to factor by trial or by the 
Monte Carlo method. Properties (ii)-(iv), in conjunction with (i), guarantee that no 

special factorization techniques (such as the difference of squares, and the p + 1 or 

p 
? 1 method) or special decryption methods (such as successive encryption) can be 

effectively used. Since it is possible to construct a modulus satisfying all four 
conditions [28], we can build a secure RSA cryptosystem today. 

It has not been proven that the problem of breaking the RSA cryptosystem is 

equivalent in difficulty to factoring the modulus n = pq. There could be a method 
that would decipher messages without identifying the trapdoor information. This 

appears unlikely however, since all known deciphering methods that work in the 

general case are equivalent to factoring n. Factorization is a computationally " hard" problem; that is, there is no general-purpose prime factorization algorithm 
that computes the factors of n in a number of steps bounded by a polynomial in n. 
As long as prime factorization continues to be a "hard" problem and no new 

cryptanalytic techniques develop, the RSA system appears secure; it will always be 
"easier" to find large primes than it will be to factor numbers of the same 

magnitude. It certainly is exciting that a conjecture by Fermat in 1640 plays such a 

pivotal role in cryptology today. 

Trapdoor Knapsacks 

In 1977, a public-key cipher was proposed, with its security depending on the 

difficulty of solving the classic knapsack problem [12]: 

Given positive integers al9 a29...9an and a sum S9 solve 

S = alx1 + a2x2 + ? ? ? 
+anxn 

for the xt9s (1 <i <n)9 where each x,. = 0 or 1. 

This is a notoriously "hard" problem [8]. An exhaustive search requires a check of 
the 2n possibilities for (xl9 x2,...,x?). The best known method for finding a 
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solution of the knapsack problem requires approximately 2n/1 computational steps. 
So for n = 100, a reliable computer solution is infeasible. However, for certain 

sequences al9 a2,...,an, the solution of the knapsack problem is quite "easy." 
A sequence {av a2, fl3,..., an} is said to be superincreasing if it satisfies 

y-i 

? ax < a} for each j = 2, 3,..., n. 
/=i 

Assume we have such a sequence, and that the preselected sum S can be attained 

using some subset of the sequence. To solve S = 
E"=1#,;<:,, we proceed as follows: let 

xn = 1 if S > an, and xn 
= 0 if S < an. Then find xn_l9 xn_2, ? ? ? > xv *n succession, 

using / n 

1, if S- ? xfii>ctj 

n 

0, if S- J2 xtai<aj 

H 
X: = 

for j = w ? 1, w ? 2,..., 2, 1. This can be solved rapidly on a computer, even for 

large n. 
To build a public-key cryptosystem, assume that each user in the system selects a 

superincreasing sequence {av a2,--.9an}9 an integer m>2an, and an integer w 

which is relatively prime to m. Let w represent the multiplicative inverse modulo m 

of w (this can be easily found using the Euclidean Algorithm). Now form the not 

necessarily superincreasing sequence {bv b2,...,bn) by 

bt = wa;(mod m) 

with 0 < b{ < m for / = 1, 2,..., n. 
The public-key information is the sequence {bl9 b2,...,bn}9 while the trapdoor 

information is m and w. Suppose someone wants to send this user a message M. 

The message is first translated into a string of 0's and l's, using the binary 

equivalent to letters: 

Letter Binary Equivalent 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 

00000 
00001 
00010 
00011 
00100 
00101 
00110 
00111 
01000 
01001 
01010 
01011 
01100 

Letter Binary Equivalent 

N 01101 
O OHIO 
P 01111 

Q 10000 
R 10001 
S 10010 
T 10011 
U 10100 
V 10101 
W 10110 
X 10111 
Y 11000 
Z 11001 

This string of 0's and l's is then split into blocks of length n (if the length 5 \M\ of a 

string is not divisible by ?, fill in the last block with l's). Each plaintext block 

Xi = 
{ xil9 xi29..., xin } (i = 1, 2,..., k) is enciphered as 

S,= tbjx.j. 
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[Note that St can be interpreted as the dot product b ? 
Xt for b = 

{bl9 bl9...9bn}.] 
The sums {Sl9 S29...9Sk} corresponding to these enciphered blocks form the 

ciphertext message. There is no concern about interception of the ciphertext since 

deciphering the text requires solving a group of "hard" knapsack problems of the 
form S^Yi^ib-Xj: However, when m and w are known (the private trapdoor 
information held by the user), these "hard" knapsack problems can be transformed 
into "easy" knapsack problems without changing the solution sets. We illustrate this 
for a single block. The transformation is as follows. For St 

= 
Ej=1_yx;/7-: 

wSi = ? wbjXfj 
= I ? ajXfj Hmod m). 

7=1 ly-i / 

Note that m>2an (by definition) and 2?-?>Ej=1tf/ (since {al9 al9...9an) is 

superincreasing) yields T/lj=1ajxij<m. If St = wSt{mod m) with 0<St<m9 then 

SJ. = 
EJ=10/x/7. Solving these easy knapsack problems, Si = 

Yflj=1ajxij9 yields solu? 
tions to the hard knapsack problems Si, 

= 
Ey_sl6/-xI-y, and consequently, the original 

plaintext message M. 

Example of a knapsack cipher. Suppose your private-key is the superincreasing 
sequence {11, 15, 30, 60} and you've selected numbers m = 150 and w = 77. Then 

your public-key sequence, defined by 

bj^llaj (mod 150) (j= 1,2,3,4), 

is {97, 105, 60, 120}. To encipher the message 

DONALD DUCK 

first translate each letter into its binary equivalents 

DONALDDUCK, 
00011 OHIO 01101 00000 01011 00011 00011 10100 00010 01010 

and then partition this sequence of 0's and l's into blocks of length four: 

0001 1011 1001 1010 0000 0101 1000 1100 0111 0100 0001 0010 1011. 

For each block Xi9 form the corresponding dot product sum St = b- Xt using 

?={97, 105, 60, 120}: 

Sx = 
0(97) + 0(105) + 0(60) + 1(120) = 120 

52 = 
1(97) + 0(105) + 1(60) + 1(120) = 277 

53 
= 1(97) + 0(105) + 0(60) + 1(120) 

= 217 

54 = 1(97) + 0(105) + 1(60) + 0(120) = 157 

55 
= 

0(97) + 0(105) + 0(60) + 0(120) = 0 

S13 = 1(97) + 0(105) + 1(60) + 1(120) 
= 277. 

The ciphertext is then 120, 277, 217,157, 0,..., 277. To decipher, find the multiplica? 
tive inverse (modulo 150) of w = 11. Solving 77w = l(mod 150) yields w = 113. Then 

multiply each St by w. Thus, for example, S1 = 120 is deciphered to 60 since 

113(120) = 60 (mod 150). 

The remaining sums become 101, 71, 41, 0,...,101, respectively. Each of these 
transformed sums St corresponds to an "easy" knapsack problem relative to the 
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superincreasing sequence {11, 15, 30, 60}. Solving the knapsack problems 

St 
= 

11*! + 15x2 + 30*3 + 60x4 

for each sum yields 

0001,1011,1001,1010, 0000,..., 1011. 

Partitioning the string 00011011100110100000... 1011 into blocks of length five 
identifies the message: 

ooon oino oiioi ooooo ... 01010 . 
D O N A ... K 

A cryptosystem based on the public-key knapsack cipher does not satisfy the four 
conditions in the definition of the public-key cryptosystem. The enciphering al? 

gorithm is clearly not onto, since only certain sums can be generated by the integers 
bv b2,...,bn. It can be shown, however, that all of the conditions, except this one, 
are satisfied. Without E(D(C)) = C holding in general, it is impossible to use the 

signature scheme that was described earlier. For a discussion of knapsack-based 
algorithms and signatures, see [23]. 

Knapsack cryptosystems have received their share of attention since 1978. They 
were initially favored over the RSA system since encryption-decryption was faster. 

Special integrated circuit chips to implement a knapsack cryptosystem have even 
been considered by a few companies. Recently, this attention has diminished 

significantly. In April 1982, a fundamental cryptanalytic breakthrough was made 
when a polynomial time attack on "almost all" (Merkle-Hellman) knapsack crypto? 
systems was carried out [24]. The attack, by A. Shamir, demonstrated that certain 
information about superincreasing sequences is not well hidden by modular multi? 

plication. Using only the sequence {bv b2,...,bn} and ideas from Diophantine 
approximation, it is possible to find enough secret information to solve any 
knapsack problem involving the weights bl9 b2,..., bn. Several knapsack cryptosys? 
tems have been proposed and broken. For example, the Graham-Shamir scheme was 

subsequently broken by Adleman, using a polynomial time algorithm [1]. 
Meanwhile, Shamir collected a prize of $100 from Merkle for breaking his basic 

scheme. Merkle, distressed by misleading media reports of this special case solution, 
offered a $1,000 prize to anyone who could break the multiply-iterated version of his 
basic scheme [12]. Several attacks followed. In the fall of 1984, Ernest Brickell, of 
Sandia Labs, collected the $1,000 prize. BrickelPs technique depends on the fact that 
modular multiplication is the only method used to keep the private key hidden. He 
found a way to use a single function to change the multiple iterations into an easy 
knapsack problem. The technique identifies the plaintext message without finding 
the original superincreasing sequence. Knapsack ciphers with 100 weights and 20 
iterations can be broken using less than 2 hours of computer time on a Cray IS 

computer. This technique is expected to break a 1000-weights, 40-iterations cipher 
in 750 hours on the same computer [3]. 

Does all this rule out the possibility of the existence of a secure knapsack 
cryptosystem? Not necessarily. But certainly any new knapsack systems must find 
other ways, besides modular arithmetic, to hide private information. There is 

already a new knapsack cipher, proposed by B. Chor and R. Rivest, based on 
arithmetic in finite fields. It attempts to avoid the flaws identified by successful 
attacks on prior knapsack systems, and only time will determine its success or 

failure. It is interesting to note, in light of Edgar Allen Poe's quote, that when 
Chor-Rivest proposed their system they remarked, "At the moment, we do not 
know of any attacks capable of breaking this system in a reasonable amount of 
time." 
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