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A COLORING PROOF OF A GENERALISATION OF FERMAT’S LITTLE THEOREM

C.J. SMYTH
Department of Electronic Systems Engineering, University of Essex, Colchester CO4 3SQ, United Kingdom

Before stating the main result of this note, I ask the reader to fill in the missing formula in the
following table:

(a,n) =1 all integers a
n = p prime a?~! =1(mod p) a’” = a (mod p)
n composite a®*"™ = 1(mod n) ?

1
(Here ¢ is Euler’s totient function: ¢(n) = n] [(1 — —)).
pin p
The answer to this question seems little-known to mathematicians, even to number theorists.

The reason for this seems to be its non-appearance in most of the standard reference books. The
missing result is a beautiful one:

n
(1) Zam(—) = 0(mod n)
d|n d
. s . : 2 n(n) . N .
(1 being the Mobius function defined by ), ——= [ (1 — p ). Its history is chronicled
n=1 1 p

rime
in Dickson [1, pp. 82-86]. Gauss’ proof of the resultf’ but only for a prime, was published
posthumously in 1863. It was not until 1880-83 that four independent proofs for all a were
published by Kantor, Weyr, Lucas and Pellet (for precise references see [1]; see also [S]).
Let 8,,40,,..., 0, be the zeros of a monic polynomial with integer coefficients, and put

(2) S, =60 +0;+ ---+65.
Then the result

(3) S, = S§;(mod p)
proved by Schonemann [4] in 1839 is a generalisation of

(4) a? = a(mod p)

to which, of course, (3) reduces if D = 1.
The result I will prove is the following:

(5) ¥ 5,u( 5] = 0(mod )

din

generalising both (1) and (3).

In 1872 Petersen [3] proved Fermat’s Little Theorem (4) by the following argument (for
a > 0): Suppose one has p boxes, arranged in a circle, to be colored with a colors. There are a?
colorings in all, and a colorings with every box the same color. The a” — a remaining colorings
can be arranged in sets of p, since the p rotations of any one of these colorings are all distinct.
Hence p|(a? — a).

Thue [6] in 1910 published a proof of (1) by generalising this idea. (His proof is neatly
summarised in [1, p. 82]. Thue uses (1) to prove a®™ = 1(mod n) for (a, n) = 1.) Here we will
prove (5), by generalising a bit further. Our result is:

THEOREM. Let ay, a,, a,,... be an infinite sequence of non-negative integers. Suppose we are
given n boxes, arranged in a circle. In some of the spaces between adjacent boxes, a barrier or
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partition is placed, the number of such partitions ranging from 1 to n. Suppose that a group of j
boxes between two partitions must be painted the same color, from a palette of a; different colors.
Then the total number s of such “ partition-colorings” of the boxes satisfies

(6*) s¥=as¥ | +ays¥,+ - +a, sf+na, (n=1,2,...),
n
(5%) Zsjp(—) = 0(mod n).
din d

Note that the coloring does not always specify the partition: when there is only one partition,
all n boxes are colored alike, in a, possible colors, but we count n a,, total partition-colorings,
taking into account the n possible positions for the partition.

Before proving the theorem, we show how (5) follows from it. Let

P(x) =(x=0)(x—0,) - (x—6p)

=xP—axP ' —a,xP"*— - —ap_x —ap,
say. Then, as Newton showed, the S, defined by (2) satisfy
(6) Sn=a1Sn—1+a2Sn—2+ +anflS1+nan (n=1’2"")’
where we put a, = 0 for k > D. This follows straight from the fact that

0 D 1

D+ Y S§,z"= Y = P’(z'l)/(zP(z’l)).
n=1 j=1 1-06:z

J

Since { S, } is uniquely specified by (6), we have from the Theorem that S, = s} and so (5) holds,
when a,,..., ap are non-negative.
If any a, in (7) are negative, we can still verify (5), as follows: fix n, and put

a,=a —kn (i=1,...,D),
where the a] are positive, and the k, integers. Define S|, S;,..., S, by

(6") St=aiS + - +a ST +jaf (j=1,...,n).

n

Then dZ Sjp,(z) = 0(mod n). But S; = S (mod ) for j =1,..., n by (67) and so (5) follows
\n

for arbitrary integers a;.

Proof of the theorem. Label the boxes B, B,,..., B, |, going around clockwise. Suppose, for
a particular partition-coloring that, starting from B, the first complete group of boxes between
partitions goes from B, t0 B, , | (moa n)- Then by removing this group of u boxes, and closing up
the gap (leaving a partition there), we obtain an associated partition-coloring of n — u boxes, if
u < n. (If u = n we know already that we obtain »n a, possible colorings.)

Conversely, any partition-coloring of n — u boxes, u < n, can be used to construct a
partition-coloring of n boxes, by inserting a group of u boxes, followed by a partition,
immediately after the first partition found, on proceeding from B, clockwise. Thus this corre-
spondence is 1-1, and, since the inserted group of u boxes can be colored in a, ways,

n—1
sl;k = Z aus:—u + na"
u=1
which is (6*).
We now show that there are integers r, divisible by »n such that

(7) S,T = Zrda

d|n
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from which n|r, = Zsj}‘p,(g,), and hence (5*) follows immediately by Mébius inversion (see,
din

e.g., [2, p. 234)). |

We define r, to be the number of partition-colorings of n boxes which are distinct from all
their rotations. Then clearly n|r,. Further, the partition-colorings of n boxes which have the
property that rotation by d places, but not fewer, produces the same coloring are obtained in the
following way: Take any of the r, colorings of d boxes referred to above, and repeat the pattern
n/d times, with a partition between each pattern, to obtain a coloring of n boxes. There are r,
such colorings, and so the total number s colorings is given by (7). This completes the proof of
the theorem.

I would like to thank Professor David Boyd for useful discussions concerning this topic, and Professor A.
Schinzel for providing reference [5]. This note was written while the author was at James Cook University,
Townsville, Australia.
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SOME REMARKS ON FUNCTIONS WITH ONE-SIDED DERIVATIVES

A. D. MILLER* AND R. VYBORNY
University of Queensland, St. Lucia, 4067 Queensland, Australia

An important theorem in introductory calculus relates the monotonicity of a function to the
sign of its derivative: If f is continuous on the closed interval [a, b] and differentiable on the
open interval (a, b), then f is monotonic increasing (decreasing) if and only if f' > 0 (< 0) on
(a, b). (A simple corollary to this result states that f is constant on [a, b] if and only if f’ = 0 on
(a, b).) Most standard proofs of the sufficiency part of this theorem use the classical Mean Value
Theorem of Calculus.

Despite the simple geometrical interpretation of the Mean Value Theorem, namely, the chord
of the graph of f must be parallel to the tangent at some intermediate point, experience in
teaching elementary calculus courses shows that whereas students find the above monotonicity
theorem geometrically plausible, they often have difficulty in grasping the meaning of the Mean
Value Theorem. It is interesting to note that the usual textbook proof of the Mean Value
Theorem is due to Bonnet, and first appeared in print in 1868. For a detailed historical account
of the Mean Value Theorem see [2]. Surprisingly, it does not seem generally known that a few
years later Scheeffer [6] in an investigation of the uniqueness of the anti-derivative introduced an
idea which is able to provide an alternative, simple and intuitive approach to the above
monotonicity result. In this note we wish to revive this idea. However, our main aim is to prove
the monotonicity result but requiring only conditions on one-sided derivatives. In doing this we
refine the remark of Knight [5].

THEOREM 1. Let f be a continuous function on [a, b). If for each x € (a, b) one of the one-sided

*Now at Centre for Mathematical Analysis, Australian National University, Canberra, A.C.T. 2600, Australia.
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