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SIMPLE ANALYTIC PROOF OF THE PRIME NUMBER THEOREM

D.J. NEWMAN
Depaftment of Mathematics, Temple University, Philadelphia, PA 19122

The magnificent prime number theorem has received much attention and many proofs
throughout the past century. If we ignore the (beautiful) elementary proofs of Erdds [1] and
Selberg [6] and focus on the analytical ones, we find that they all have some drawback. The
original proofs [7] of Hadamard and de la Vallée Poussin were based, to be sure, on the
nonvanishing of {(z) in Re z > 1, but they also required annoying estimates of {(z) at oo, the
reason being that formulas for coefficients of Dirichlet series involve integrals over infinite
contours (unlike the situation for power series) and so effective evaluation requires estimates at
0.

The more modern proofs, due to Wiener [2] and Ikehara [8] (see also Heins’s book [3]) do get
around the necessity of estimating at oo and are indeed based only on the appropriate
nonvanishing of {(z), but they are tied to certain results on Fourier transforms.

We propose to return to contour integral methods so as to avoid Fourier analysis, and also to
use finite contours so as to avoid estimates at oo. Of course certain errors are introduced
thereby, but the point is that these can be effectively estimated away by elementary arguments.

So let us begin with the well-known fact [7] about the {-function:

(z—1){(2) is analytic and zero free throughout Re z > 1. (1)

This will be assumed throughout and will allow us to give our proof of the prime number
theorem.

In fact we give two proofs. The first one is the shorter and simpler of the two, but we pay a
price in that we obtain one of Landau’s equivalent forms of the theorem rather than the
standard form, m(N)~N/log N. Our second proof is a more direct assault on #(N) but is
somewhat more intricate than the first. Here we find some of Tchebychev’s elementary ideas
very useful.

Basically our novelty consists in using a modified contour integral,

frf(z)N‘(% + 7;’—2)arz,
rather than the classical one, f_f(z)N"z~'dz. The method is rather flexible, and we could use it
to directly obtain w(N) by choosing f(z)=log {(z). We prefer, however, to derive both proofs
from the following convergence theorem. Actually, this theorem dates back to Ingham [9], but
his proof is 4 la Fourier analysis and is much more complicated than the contour integral
method we now give.

THEOREM. Suppose |a,| < 1 and form the series Sa,n~* which clearly converges to an analytic
Junction F(z) for Rez > 1. If, in fact, F(z) is analytic throughout Rez > 1, then Za,n~* converges
throughout Re z > 1.

Proof of the convergence theorem.. Fix a w in Re w > 1. Thus F(z + w) is analytic in Re z > 0.
We choose an R > 1 and determine § =8(R) >0, § < 3 and an M= M(R) so that

F(z+w) is analytic and bounded by M in— 8 <Rez,|z| <R. )

Now form the counterclockwise contour I', bounded by the arc |z|=R,Re z>—§, and the
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segment Re z= — §,|z| < R. Also denote by 4 and B, respectively, the parts of I in the right and
left half-planes.
By the residue theorem we have

2iF(w)= [ F(z+ w)N‘( T+ = )a’z. 3)
T

Now on A4, F(z+w) is equal to its series, and we split this into its partial sum Sy(z+ w) and
remainder ry(z + w). Again by the residue theorem we have

1 . 1
fA SN(z+w)N‘(; + }Z—E)dz=2mSN(W)— f_ S +w)N‘( —+ %)dz,

with — A denoting as usual the reflection of 4 through the origin. Thus, changing z into — z, this
can be written as

fSutz+ w)N‘(-zl? + %)dz =2miSy(w)— fA Sw(w—2)N -(% +=5 )dz. )

Combining (3) and (4) gives
i F(w)— SN(W))=L(rN(z+w)N‘— i}‘;_ﬁ)(% + 7:—2)dz

z

+LF(z+w)NZ(%+}—2)dz, ©)

and to estimate these integrals we record the following (here as usual we write Re z=x, and we
use the notation a< 8 to mean simply that |a| < | B|):

2x . .

ri R along |z| = R (in particular on 4), (6)

1. 2z 1 [z} 2 _

;+R2< E(H_R sonthehneRez— 8,|z| <R, )]

© dn

I'N(Z+W)<<n= < x+l »/;v n"“ - xNx’ (8)
Sy(w—2)< S nrt1 <N 1+f n*~ldn= N"( L l) o)
N o N x)

By (6),(8),(9) we have, on 4,

. Sy(w—2) 1 1. 1\2x _ 4 2
(I'N(Z"‘W)N —T——)(Z""—R—z)<<(;+;+—ﬁ);'i<'k—2+m,

and so by the “maximum times length” estimate (M-L formula) for integrals we obtain

fA(rN(z+w)N‘ SN(;, ))(z 27 )d <<tq +2—]:,T_ (10)

Next by (2), (6), and (7) we obtain

2|x| 3

2dx

F(z+w)N‘-1— dz< [ M-N~% 2 ay+2M N*ZZ
freson(3+ )<, I

4MR 6M

< + . 11
8N®  RZ%log?N ah

Inserting the estimates (10) and (11) into (5) gives
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2, 1 MR M
F(W) SN(W)<<W+I_V+W Fiog—zN
and if we fix R=3/¢ we note that this right-hand side is <e for all large N. We have verified the
very definition of convergence!

First Proof of the Prime Number Theorem. Landau has pointed out that the convergence of
S u(n)/n is equivalent to the prime number theorem. Since 2 u(n)/n*=1/{(z) for Re z>1,
however, (1) ensures that the hypotheses of our theorem hold, and Landau’s form of the prime
number theorem follows immediately.

Second Proof of the Prime Number Theorem. In this section we begin with Tchebychev’s
observation [5] that

> l—olg’—p —logn is bounded, (12)

p<n

which he derives in a direct elementary way from the prime factorization of n!.
The point is that the prime number theorem is easily derived from

lo
2 i34

—logn converges to a limit, (13)
p<n

by a simple summation by parts, which we leave to the reader. Nevertheless the transition from
(12) to (13) is not a simple one and we turn to this now.
So form, for Re z > 1, the function

fo= 3 5oz er)-z e (5 L)

no 1l P\p<n P p nsp N°

Now

1 1 ol—{t} . p 1
> ——;—————+z£ pres dt= =) (p‘—l +Ap(z))

where A4,(z) is analytic for Rez >0 and is bounded by

SN 1G]
PN

Hence

_ 1 log p
f()= z———l'(; o1 "'A(Z)),
where A(z) is analytic for Re z >3 by the Weierstrass M-test.

By Euler’s factorization formula, however, we recognize that

logp _—-d .
D Rl R N (14)

and so we deduce, by (1), that f(z) is analytic in Re z < 1 except for a double pole with principal
part 1/(z—1)>+¢/(z—1), at z=1. Thus if we set

F(2)=f(z)+$'(2)—c(2)= 2 _na_,; , where a,= pgn (logp)/p—logn—c,

we deduce that F(z) is analytic in Re z > 1.
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From (12) and our convergence theorem, then, we conclude that
an
> ~ converges,

and from this and the fact, from (14), that a,+logn is nondecreasing we proceed to prove

a,—0. .
By applying the Cauchy criterion we find that, for N large, we have both
N(1+¢€) a
> —<é 15)
N n
and
N
S L e (16)
N(i-¢ I

In the range N to N(l1+¢€) we have, by (14), that a, >ay+log(N/n)>ay—e and so
S+, /n > (ay — ZX1+91/n and (15) yields

€2 €? 2
ay<et 35 ” <e+ Ne/N(I+9) =2e+¢€’ Y
< n
Similarly in [N(1 —¢), N] we have a, <ay+log (N/n) <ay+e¢€/(1—¢€) so that
N N
G <(aN+_<_) s L
N(i-¢ I =€/ yitg n
and (16) gives
—€ e € e €2—2¢
W1~ % 1 >——l—c_—Ne/N_ l1—e¢ ° (18)
) N(i-¢ P

Taken together (17) and (18) establish that ay—0 and so (13) is proved.
The research for this paper was supported in part by NSF Grant No. MCSF8-02171.
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MISCELLANEA

43. If you ask mathematicians what they do, you always get the same answer; they think.
They are trying to solve difficult and novel problems. (They never think about ordinary
problems—they just write down the answers.)

—M. Evgrafov, Literaturnaya Gazeta, no. 49 (1979) 12.
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