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THE PRIME NUMBER THEOREM FROM log n! 

N. LEVINSON1 

During the nineteenth century attempts were made to prove the 
prime number theorem from the formula [1, pp. 87-95] 

log 
PS! ( p] [ p2] [p3 ) 

og 

While remarkable good results were obtained by Chebyshev and 
Sylvester the prime number theorem was not obtained. That it can 
be obtained will be shown below but only by using the fact that 
t(1 +iu) $0 and with the aid of Wiener's general Tauberian theorem. 
Thus the use of log n! seems to be no simpler than using Lambert 
series [2, Theorem 15] to prove the prime number theorem. 

From (1) follows 

n log n - n + O(log t) f []dl(y), 

where 

=6() Z logp - g xlogp. 
pmx P,s, log p 

Hence 

x log x - x + O(log x)-f |-]d(y) 

If 

r(x) = [x] - x + 

2~~~~~~~ 

x log x - x + O(log x) = r(-?)dip(y) + xf -; x 
(2) 1 ~ ~ ~~~~y y 2 

(2)= Lr(-)dt(y) + xf 2 dy +-+(x). 

Let 
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(3) g(X) = xJ -2 dy +I(x) 
y 2 

Then by (2) 

(4) g(x) = x log x- x-f r ()d(y) + O(log x). 

Let 

(5) H(x) 2 d 

Then by (3) 

d (_1 gx) () 

1 x2H(x) = f g(y)dy. 

Using this with (5) in (3) 

#(x) = 2g(x) - 4f g(y)dy 

Using (4) this becomes 

#v(x) = 2x log x - 2x -2 f r(-)dl(y) + O(log x) 

-4 { X2logX- 3X2- dy rfY\ dO (t)} 

or 

(6) #(x) = x - 2 r(-)do(y) + -i do(t) fr dy 

+ O(log x). 

But 

fxd#(t) f r (?) dy = d(y)y rQ)dt. 

Hence (6) becomes 
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(7) f {4 + 2r(-) -4 f r(t)d} dO(y) = x + O(log x). 

Let 

(8) R(x) = 1 + 2r(x) - 4 r(t)dUlx. 

Then since r is periodic and has average zero, R(x) is bounded. It is 
easy to show R(x) 20. From (7) and (8) 

J -R ( d(y) = x + O(log x). 

From this follows 

f - R 
(-) d'(y) = t + O(log2 

or 

r t r / x\dx 
do(y) R Rt-)-= t + O(log2t). 

Hence 

fdo(y)f R(t) = t + O(log2 ) 

Replacing t by x and integrating by parts 

(9) fZ )R(-)dy = x + O(log2 x). 

That m(y) =-(y)/y is bounded follows in an elementary way from 
Chebyshev's inequality for O(x)/x where 

0(x) = E log p. 
P;z 

If x=el and y=et then (9) becomes 

(10) fR(et)e-(t)m(et)dt = 1 + O(s2e*). 

If K(s) =0 for s<0 and 

(11) K(s) = R(e)e-e, s > 0 

then since R is bounded, 
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f IK(s) I ds < Co 

and by (10) 

JfK(s - t)m(et)dt = 1 + O(s2e-8). 

If 

f K(s)e-iusds = k(u) $ 0 

and if k(O) =1 it follows from Wiener's general Tauberian theorem 
[2, Theorem 4] that for any Kl(s)CL(- oc, oc) 

limr Ki(s - t)m(et)dt = f Kl(s)ds. 

In particular let 

Ki(s) = e-, s > 0, 

=0, s < 0. 

Then 

lim J e-(t)m(et)dt = 1, 
#-,o 0 

or 

lim-) dy= 1. 

It is an immediate consequence of this that, for any X>0, 

1 z(1+X) (y) 
lim f dy = 1, 

and this leads easily to lim_, 4/i(x)/x= 1. Thus to complete the proof 
of the prime number theorem it remains to show that k(u) 00, k(O) = 1. 

In terms of R using (11) 

k(u) = f R(x)X-iu2dx. 

Hence by (8) 



484 N. LEVINSON Uunc 

k(u) f xiu2dx + 2 f r(x)x-iu-2dx 

- 4fJ x-iu-adx r(t)dt 

10 2 

1 ?e / f 2 2 - - + 2 I r(x)x )-2dx1 -d 
1 + iu 2 +2 + iu 

1 2iu r0 
= + Jr(x)x i~dx. 
I + mu 2 + iu 

Setting u 0, it follows that k(O) = 1. Recalling the periodicity of r(x) 
Go 00 r1 

r(x)xil-udx= X)(n+X)-iu-2dx 

= lim x)(n + x)-iu-2ldx. 
X-+ n -10 

Clearly 

- x)(n + x)-iu-2-dx 

2 iu + 1 + X (n + 1)1+X+iu nl+x+iu 

(iu + 1 + X)(iu + X) ((n + 1)X+iu nx+iUJ 

Hence 
X 1 1 

EJ ( x) (n + X)-lu-2-xdx = W1 + x + iu) -} 
1s0 iit +1+ X 

(iu+ 1 + X)(iu+ X) 

Thus 

1 
u 

2iu 
I u 21- 

2 

1+iu + (2 + iu)(iu + 1) {( ) } (2 + iu)(iu + 1) 

2iu 

(2 + iu)(I + iu) 

Hence k(u) 5,6 O. 
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ADDENDUM (March 8, 1963). It was pointed out to me by H. R. Pitt 
that a differenit proof of the prime number theorem based on log n! 
and using Wiener's theorem was given by A. E. Ingham, Some Tau- 
berian theorems connected with the prime number theorem, J. London 
Math. Soc. 22 (1945), 161-180. 
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FLAG-TRANSITIVE PLANES OF EVEN ORDER' 

R. ROTH 

1. Introduction. In a projective plane a configuration consisting of 
a line and a point incident with that line is called a flag. A collinea- 
tion group which is transitive on the flags of a projective plane is 
called flag-transitive (or "acutely transitive"). Such a group is also 
called sharply flag-transitive (or "flag-regular" or "acutely regular") if 
in addition, the only collineation leaving a flag fixed is the identity. 
A projective plane is called flag-transitive or sharply flag-transitive, 
respectively, if it admits a group of collineations which is flag-transi- 
tive or sharply flag-transitive, respectively. D. G. Higman and J. E. 
McLaughlin proved the following theorem [6, Proposition 10, 
p. 391]. 

THEOREM. Given a finite projective plane of odd order n with a flag- 
transitive group G where n is not a square or else n = m2 and m -1 
(mod 4). Then the plane is Desarguesian and the group G is doubly 
transitive. 

In this paper, this theorem is extended to finite projective planes of 
many orders n. It is shown (Theorem 1) that for any integer n such 
that either n+1 or n2+n+l is a prime, a flag-transitive plane of 
order n must be Desarguesian or sharply flag-transitive. However, as 
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