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Proof: If neither # nor n+2 is of this form then ¢ () and ¢(»-+2) would both
be divisible by 4, so that their difference could not be 2.

2. The case a=1 leads to the classes of solutions mentioned above.

Proof: If n is a prime then ¢(n) =n—1, while if # is composite then # has a
prime factor <4/, so that ¢(n) =n(1—1/4/n) =n—+/n. Hence if one of # and
n+2 is prime so is the other. If n=2p, then ¢(n)=p—1=(n—2)/2, so that
o(n)+2=¢(n+2) would imply ¢(n+2) = (n-+2)/2, in which case n+2 is clearly
a power of 2. If n+2=2p’ then ¢(n+2)=p'—1=n/2, so that ¢(n)=n/2—-2,
and # must be of the form 4p.

3. We have a#2.

Proof: If n=2p2, then ¢(n) =n—+/n, while if n+2 is composite (but clearly
not a square), then ¢(n+42) <(n+2)(1—1/4/n)2<¢(n)+2. Similarly we can
dispose of the cases n=2p2 n+2=p% and n42=2p%

This leaves relatively few numbers <10° to be examined and these can be
tested directly.
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CONGRUENCES FOR SETS OF PRIMES

P. A. CLEMENT, University of California, Los Angeles

1. Introduction. Wilson’s function Py(n) is the function Py(n)=(n—1)!41.
By Wilson’s theorem the condition Pi(#)=0 mod # is necessary and sufficient
in order that an integer #>1 be prime. In this note we find a congruence condi-
tion, similar to the above, for twin primality, and we indicate a method which
furnishes a condition for sets of prime numbers of any prescribed type.

2. Twin primes. We shall establish the following result:

THEOREM. A necessary and sufficient condition that two integers, n and n+2,
n>1, both be prime is that

1) 4[(n — 1)1 + 1] 4+ % = 0 mod n(n + 2).

Proof. The sufficiency is obvious as divisions by # and #+2 separately re-
duce either to Wilson’s theorem or to a simple modification of it.

The necessity follows as easily, but we wish to indicate how (1) may be ob-
tain directly. Thus, with #z and #+2 both primes, we have

2 (n—1)!4+1=0mod »n,
3) (n+ D!+ 1=0mod (» + 2).
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Reducing the factorial of (3) mod (z+2) and rewriting as an equation we ob-
tain

(4) 2[(n — 1)!] +1 = k(n+ 2),  k some integer;
then, using (2), we must have
(3) 2k 4+ 1 = 0 mod ».

Substitution of (5) in (4) determines the congruence of the theorem.
It may be noted that if 1 is considered the first prime, then the restriction
n>1 can be deleted from the above theorem.

3. Further congruences. By analogous procedure, now using (1), we find
that three positive integers #, #+42 and #4-6, are a prime triple if and only if

(6) 4320[4(n — 11+ 1) + n] 4 361n(n + 2) = 0mod n(n + 2)(n + 6).

As stated, 1 is admitted as the first prime; if desired this may be obviated by
requiring # > 1. A similar congruence may be obtained for the other possible class
of prime triples given by integers #, n+4, and n--6.

We indicate a less laborious method than that of the theorem for obtaining
(6). By a modification of Wilson’s theorem, #-+6 is prime if and only if

O 720(n — 1)! + 1 = 0 mod (# + 6).
Then using (1) we write
Ala(n =11+ 1) + n] + Bu(n + 2) = 0mod #(n + 2)(# + 6),

and seek intégers A and B so that this congruence mod (#-+6) reduces to a
multiple of (7). This gives (5) immediately, and the process can be applied in this
recursive fashion to prime sets of any prescribed type.

4. Prime quadruples. Let Py(n) be the function on the left of (1), and Py(n)
be the left side of (6). We then have

Pz(n) = 4P1(ﬂ) + n,
and
Py(n) = 4320Py(n) + 361n(n + 2).

The four positive integers %, n+2, n+6, n+8 may each be prime, the set then
being a prime quadruple consisting of two sets of twin primes. For the function
associated with this set, Ps(n), we find

Py(n) = 224Ps(n) + 111n(n + 2)(n + 6).
The congruence condition

Py(n) = 0mod n(n + 2)(n + 6)(n + 8)
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is necessary and sufficient for the set to be a prime quadruple. By (1) a like
condition is presented by the two congruences

Py(n) = 0mod #n(n + 2)
Py(n + 5) = 0mod (n + 6)(n + 8).

As an exercise one might show that these two sets of conditions actually are
equivalent.

CLASSROOM NOTES

Epitep BY C. B. ALLENDOERFER, Haverford College and Institute for Advanced Study

All material for this department should be sent to C. B. Allendoerfer, Institute for Ad-
vanced Study, Princeton, New Jersey.

LOGARITHMIC INTEGRATION*
H. F. MacNEi1sH, University of Miami

1. Introduction. Logarithmic differentiation is a device by means of which
complicated products, quotients, and exponential functions may be differenti-
ated with much less algebraic manipulation than is required by the use of the
standard formula. We recall the rule for logarithmic differentiation:

aU(x)
dx

d
1) = U(x) g;ln U(x)

Applying this to a numerical example we have:

d VvVxr+1 _ x — x?
dx VP F 1 /2 F 1 (a8 + )43

The integration of the answer, however, cannot be accomplished by stand-
ard methods. By integration we mean, as usual, the expression of the integral
in a finite number of terms containing only elementary functions. In this note
we outline a method for integrating certain expressions of this form, and we call
the method “logarithmic integration.”

@

2. Case I. Here we are concerned with a method of integrating certain ex-

* This paper was delivered before the New Haven meeting of the Association in September
1947 as a portion of the symposium “How to Solve it.”
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