Solutions for Midterm I

Problem 1. Solve the system using the Gauss-Jordan elimination and verify your answer

$$
\left\{\begin{array}{rl}
x_{1}+2 x_{3}-x_{4} & =1 \\
x_{2} & +2 x_{4}
\end{array}=-10.10 .2 x_{3}-3 x_{4}=2 .\right.
$$

Solution. Elementary row transformations of the augmented matrix of the system give rise to the reduced row-echelon form:

$$
\left(\begin{array}{rrrr|r}
1 & 0 & 2 & -1 & 1 \\
0 & 1 & 0 & 2 & -1 \\
1 & -1 & 2 & -3 & 2
\end{array}\right) \underset{R 3-R 1}{\sim}\left(\begin{array}{rrrr|r}
1 & 0 & 2 & -1 & 1 \\
0 & 1 & 0 & 2 & -1 \\
0 & -1 & 0 & -2 & 1
\end{array}\right) \underset{R 3+R 2}{\sim}\left(\begin{array}{rrrr|r}
1 & 0 & 2 & -1 & 1 \\
0 & 1 & 0 & 2 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Obviously, the rank of the matrix is 2 . The number of free variables is $4-2=2$ (the number of unknowns minus the rank). We write down the solution starting from the back:
$x_{4}=t$ (choose x_{4} as a free variable),
$x_{3}=s$ (choose x_{3} as a free variable),
$x_{2}=-1-2 t$ (from the second row in the rref),
$x_{1}=1+t-2 s$ (from the first row in the rref).
So the solution is

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1+t-2 s,-1-2 t, s, t)=(1,-1,0,0)+t(1,-2,0,1)+s(-2,0,1,0)
$$

where t and s are arbitrary real numbers. Geometrically, the solution is a plane in \mathbb{R}^{4}.
To verify the solution, we substitute it into the three equations of the system:

$$
\begin{cases}1+t-2 s+2 s-t & =1 \\ -1-2 t+2 t & =-1 \\ 1+t-2 s+1+2 t+2 s-3 t & =2\end{cases}
$$

Since all the equations are satisfied, our solution is correct.
Answer: $\quad\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1+t-2 s,-1-2 t, s, t), \quad t, s \in \mathbb{R}$.

Problem 2. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be an orthogonal projection onto the line $x-2 y=0$ followed by a counterclockwise rotation by 45°. Find a matrix of T (with respect to the standard basis). Describe geometrically and show on a picture the kernel and the image of T. Is T invertible? Explain!

Solution. Denote by P the orthogonal projection onto the line $x-2 y=0$ and by R the counterclockwise rotation by 45°. Then $T=R \circ P$. Let A and B be standard matrices of P and R respectively. Then the standard matrix of T is $B A$. Let us evaluate matrices A and B.

Matrix A consists of two columns representing the coordinates of the images of the standard basis vectors \bar{e}_{1}, \bar{e}_{2} under the transformation P :

$$
A=\left(\begin{array}{cc}
\mid & \mid \\
P \bar{e}_{1} & P \bar{e}_{2} \\
\mid & \mid
\end{array}\right) .
$$

To evaluate the images we use a formula defining the orthogonal projection P :

$$
P \bar{x}=\frac{\bar{x} \cdot \bar{u}}{\|\bar{u}\|^{2}} \bar{u}
$$

where \bar{x} is an arbitrary vector in \mathbb{R}^{2}, \bar{u} is a vector along the line of projection, $\|\bar{u}\|$ is its length and • is a dot product. Take $\bar{u}=(2,1)$. (Note that one can take any vector $\bar{u}=(x, y)$ whose coordinate satisfy the equation of the line $x-2 y=0$.) Its length is $\|\bar{u}\|=\sqrt{2^{2}+1^{2}}=\sqrt{5}$. Calculate the images of $\bar{e}_{1}=(1,0)$ and $\bar{e}_{2}=(0,1)$ under projection P :

$$
\begin{aligned}
& P \bar{e}_{1}=\frac{(1,0) \cdot(2,1)}{5}(2,1)=\frac{2}{5}(2,1)=\left(\frac{4}{5}, \frac{2}{5}\right), \\
& P \bar{e}_{2}=\frac{(0,1) \cdot(2,1)}{5}(2,1)=\frac{1}{5}(2,1)=\left(\frac{2}{5}, \frac{1}{5}\right) .
\end{aligned}
$$

It gives us the matrix A :

$$
A=\left(\begin{array}{ll}
4 / 5 & 2 / 5 \\
2 / 5 & 1 / 5
\end{array}\right)=\frac{1}{5}\left(\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right)
$$

The standard matrix of a counterclockwise rotation by 45° is

$$
B=\left(\begin{array}{cc}
\cos 45^{\circ} & -\sin 45^{\circ} \\
\sin 45^{\circ} & \cos 45^{\circ}
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{2} / 2 & -\sqrt{2} / 2 \\
\sqrt{2} / 2 & \sqrt{2} / 2
\end{array}\right)=\frac{\sqrt{2}}{2}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) .
$$

The standard matrix of T is

$$
B A=\frac{\sqrt{2}}{2}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \frac{1}{5}\left(\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right)=\frac{\sqrt{2}}{10}\left(\begin{array}{ll}
2 & 1 \\
6 & 3
\end{array}\right) .
$$

The kernel of T is a subspace which is annihilated by T. This is a line passing through the origin which is orthogonal to the line $x-2 y=0$. The equation of this line is $2 x+y=0$. Note that $\operatorname{Ker} T$ is spanned by vector $(1,-2)$ which is annihilated by T.

The image of T is the line $x-2 y=0$ rotated counterclockwise by 45° around the origin. The equation of this line is $3 x-y=0$. Note that $\operatorname{Im} T$ is spanned by a column vector $\binom{1}{3}$ of the matrix of T.

Transformation T is not invertible. It can be explained in many different ways. For example, $\operatorname{Ker} T \neq \overline{0}$ or $\operatorname{Im} T \neq \mathbb{R}^{2}$ or the determinant of the matrix of T is 0 .

The picture makes all calculations crystal clear:

Answer: the standard matrix of T is $\frac{\sqrt{2}}{10}\left(\begin{array}{ll}2 & 1 \\ 6 & 3\end{array}\right)$,
$\operatorname{Ker} T=\operatorname{span}\{(1,-2)\}$,
$\operatorname{Im} T=\operatorname{span}\{(1,3)\}$,
T is not invertible.

Problem 3.

A secret agent has got an encoded message

$$
-4,2,-19,0,3,-9
$$

representing the time of the beginning of a secret mission. He knows that the encoding matrix is

$$
\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
2 & -3 & -3
\end{array}\right)
$$

but nevertheless cannot decode since he is not good in Linear Algebra. Help him to decode the secret time!

Solution. Oh, boy! First, invert the matix:

$$
\begin{gathered}
\left(\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
2 & -3 & -3 & 0 & 0 & 1
\end{array}\right) \underset{R 3-2 R 1}{\sim}\left(\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & -3 & -1 & -2 & 0 & 1
\end{array}\right) \underset{R 3+3 R 2}{\sim} \underset{\substack{R 1-R 3 \\
R 3 \times(-1)}}{\sim}\left(\begin{array}{rrr|rrr}
1 & 0 & 0 & 3 & -3 & -1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 2 & -3 & -1
\end{array}\right) .
\end{gathered}
$$

Second, multiply the inverse matrix by the two vectors $(-4,2,-19)$ and $(0,3,-9)$ from the encoded message:

$$
\left(\begin{array}{ccc}
3 & -3 & -1 \\
0 & 1 & 0 \\
2 & -3 & -1
\end{array}\right)\left(\begin{array}{c}
-4 \\
2 \\
-19
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
5
\end{array}\right), \quad\left(\begin{array}{ccc}
3 & -3 & -1 \\
0 & 1 & 0 \\
2 & -3 & -1
\end{array}\right)\left(\begin{array}{c}
0 \\
3 \\
-9
\end{array}\right)=\left(\begin{array}{l}
0 \\
3 \\
0
\end{array}\right) .
$$

Third, read the secret time: $1,2,5,0,3,0$ or $12: 50: 30$. (The secret mission is Midterm I : o)

Answer: 12:50:30

Problem 4. For each value of a constant a, find the dimension of a subspace generated by vectors $(a, 1,1),(2,-3,5)$ and $(1,0,1)$.

Solution. Let $V=\operatorname{span}\{(a, 1,1),(2,-3,5),(1,0,1)\}$. The dimension of V is equal to the rank of the matrix
$\left(\begin{array}{ccc}a & 2 & 1 \\ 1 & -3 & 0 \\ 1 & 5 & 1\end{array}\right) \sim\left(\begin{array}{ccc}1 & -3 & 0 \\ 1 & 5 & 1 \\ a & 2 & 1\end{array}\right) \sim\left(\begin{array}{ccc}1 & -3 & 0 \\ 0 & 8 & 1 \\ 0 & 2+3 a & 1\end{array}\right) \sim\left(\begin{array}{ccc}1 & -3 & 0 \\ 0 & 8 & 1 \\ 0 & -6+3 a & 0\end{array}\right)$.
If $-6+3 a=0$, that is $a=2$, then the rank is 2 . If $-6+3 a \neq 0$, that is $a \neq 2$, then the rank is 3 .

Answer: If $a=2$ then the dimension is 2 . If $a \neq 2$ then the dimension is 3 .

Problem 5. A linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ is defined by

$$
T(x, y, z)=(x+y-z,-y+z,-2 x-2 y+2 z, 3 y-3 z) .
$$

a) Find the matrix of T with respect to the standard bases.
b) Find a basis in the kernel of T and a basis in the image of T.
c) Find the dimensions of the kernel and the image.
d) Find the rank of T.
e) Verify the Kernel-Image theorem for T.

Solution. The matrix of T with respect to the standard bases in \mathbb{R}^{3} and \mathbb{R}^{4} is

$$
A=\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & -1 & 1 \\
-2 & -2 & 2 \\
0 & 3 & -3
\end{array}\right)_{4 \times 3}
$$

We perfom elementary row transformations to get the reduced row-echelon form of A :

$$
A=\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & -1 & 1 \\
-2 & -2 & 2 \\
0 & 3 & -3
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & -1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\operatorname{rref}(A)
$$

Obviously, the rank of A is 2 . It is the dimension of the image of T. The image of T is generated by the first and the second columns of A, since the leading ones in the $\operatorname{rref}(A)$ stay in the first and the second columns: $\operatorname{Im} T=\operatorname{span}\{(1,0,-2,0),(1,-1,-2,3)\}$. Since the spanning vectors are linearly independent they comprise a basis of T.

The Kernel-Image Theorem says that

$$
\operatorname{dim} \operatorname{Ker} T+\operatorname{dim} \operatorname{Im} T=\operatorname{dim} \mathbb{R}^{3}
$$

or

$$
\operatorname{dim} \operatorname{Ker} T+2=3
$$

So $\operatorname{dim} \operatorname{Ker} T=1$. A basis of $\operatorname{Ker} T$ can be found by solving a homogenous linear system with coefficient matrix A. It is easy to read the solution from the $\operatorname{rref}(A): x=0, y=t, z=t$, where t is an arbitrary real number. Hence

$$
\operatorname{Ker} T=\{(0, t, t) \mid t \in \mathbb{R}\}=\operatorname{span}\{(0,1,1)\}
$$

Answer:

$$
\text { The standard matrix of } T \text { is } A=\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & -1 & 1 \\
-2 & -2 & 2 \\
0 & 3 & -3
\end{array}\right)
$$

a basis of $\operatorname{Ker} T$ is $\{(0,1,1)\}$,
a basis of $\operatorname{Im} T$ is $\{(1,0,-2,0),(1,-1,-2,3)\}$,
$\operatorname{dim} \operatorname{Ker} T=1$,
$\operatorname{dim} \operatorname{Im} T=\operatorname{rk} T=2$.

