MAT211: Linear Transformations and isomorphisms

- Linear transformations, image, rank, nullity
- Isomorphism and isomorphic spaces
- Theorem: Coordinate transformations are isomorphisms
- Properties of isomorphisms

Definition
- Consider two linear spaces V and W.
- A function T from V to W is called a linear function if for every pair of elements f and g in V, and every scalar k,
- \(T(f + g) = T(f) + T(g) \)
- \(T(af) = aT(f) \)

EXAMPLE: Find out whether the transformation from \(\mathbb{R}^{2\times2} \) to \(\mathbb{R}^3 \) is linear, where \(M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)

\[
T(M) = M^2
\]
\[
T(M) = 7M
\]
\[
T(M) = P M P^{-1}
\] where P is

\[
\begin{pmatrix}
0 & 1 \\
1 & 1
\end{pmatrix}
\]

Definitions
- The image of a linear transformation T from V to W, denoted by \(\text{Im } T \), is the subset of W \(\{ T(f) : f \in V \} \).
- The kernel of a linear transformation T from V to W, denoted by \(\ker T \), is the subset of V \(\{ f \in V : T(f) = 0 \} \).
- If the image of a linear transformation T is finite dimensional, then the dimension of \(\text{Im } T \) is called the rank of T.
- If the kernel of a linear transformation T is finite dimensional then the dimension of \(\ker T \) is called nullity of T.

EXAMPLE: Find rank, image, kernel and nullity of the transformation from \(\mathbb{R}^{2\times2} \) to \(\mathbb{R}^3 \), \(T(M) = (d, a, b) \)
where M is

\[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\]

Consider two linear spaces V and W.
- A function T from V to W is called a linear function if for every pair of elements f and g in V, and every scalar k,
- \(T(f + g) = T(f) + T(g) \)
- \(T(af) = aT(f) \)

- The image of a linear transformation T from V to W, denoted by \(\text{Im } T \), is the subset of W \(\{ T(f) : f \in V \} \).
- The kernel of a linear transformation T from V to W, denoted by \(\ker T \), is the subset of V \(\{ f \in V : T(f) = 0 \} \).
- If the image of a linear transformation T is finite dimensional, then the dimension of \(\text{Im } T \) is called the rank of T.
- If the kernel of a linear transformation T is finite dimensional then the dimension of \(\ker T \) is called nullity of T.

- Find out if the transformations from \(\mathbb{P}_2 \) to \(\mathbb{R} \) defined by \(T(t) = \int_0^1 p(t) dt \) is linear.
- If it is linear, find image, rank, kernel and nullity.
Is the transformation $T(M) = (a, b, c, d)$ from $\mathbb{R}^{2 \times 2}$ to \mathbb{R}^4 an isomorphism?

Note: If there is an isomorphism between V and W then V and W have the same dimension.

Consider the linear transformation T from P_2 to P_1 given by $T(p(t)) = p'(t)$.

• Is it an isomorphism?
• Find rank, nullity, image and kernel.

Exercise: illustrate with examples the above theorem

Example

• Find a two different bases of the linear space of 2×2 matrices and find the coordinate transformation for those bases