A linear (or vector) space \(V \) is a set of elements endowed with two operations
- + addition: for each \(f \) and \(g \) in \(V \), \(f+g \) is an element in \(V \).
- \(\cdot \) multiplication: For each \(f \) in \(V \) and each \(k \) in \(\mathbb{R} \), \(k\cdot f \) is an element in \(V \).

Moreover, these operations satisfy the following properties
- \((f+g)+h = f+(g+h)\)
- \(f+g = g+f\)
- There exists a unique element in \(V \), denoted by \(0 \) and called the neutral element such that \(f+0 = 0+f = f \)
- For each \(f \) in \(V \) there exists a unique element in \(V \) denoted by \(-f\) such that \(f+(-f)=0 \).
- \(k \cdot (f+g) = k \cdot f + k \cdot g \)
- \((c+k) \cdot f = c \cdot f + k \cdot f \)
- \(c \cdot (k \cdot f) = (c \cdot k) \cdot f \)
- \(1 \cdot f = f \)

EXAMPLES of Linear Spaces:
- \(\mathbb{R}^n \).
- The set of all polynomials.
- The set of all polynomials of degree at most two.
- The set of all infinite sequences of real numbers.
- The set of all \(m \times n \) matrices
- The space of all \(2 \times 2 \) matrices such that \(a+d=0 \)

Questions: In each of the linear spaces
- give examples of + and \(\cdot \).
- What is \(0 \)?
- If \(v \) is in the linear space, what is \(-v\)?

EXAMPLES
- Is the set of all \(2 \times 2 \) invertible matrices a subspace of the linear space formed by all \(2 \times 2 \) matrices?
- Denote by \(P_4 \) the set of all polynomials of degree at most 4. Is \(P_2 \) a subspace of \(P_4 \)?
- Is the subset of all polynomials of degree 2 a subset of \(P_4 \)?
Consider the elements f_1, f_2, \ldots, f_n in a linear space V

- f_1, f_2, \ldots, f_n span V if every element in V is a linear combination of the elements f_1, f_2, \ldots, f_n.
- f_i is redundant if it is a linear combination of $f_1, f_2, \ldots, f_{i-1}$.
- f_1, f_2, \ldots, f_n are linearly independent if none of them is redundant.
- f_1, f_2, \ldots, f_n form a basis if they are linearly independent and span V.

Example: Consider the linear space M of all matrices 2×3.

a. Find elements f_1, f_2, \ldots, f_n in M that span M

b. Find a basis of M.

c. Can you find a basis of M that does not span?

d. Can you find a subset of M that spans but is not a basis? If so, indicate the redundant vectors.

Theorem: If a basis of a vector space has n elements then all basis of a linear space have the n elements.

Definition: If a linear space V has a basis with n elements we say that the dimension of V is n.

EXAMPLE: Find a basis and determine the dimension

- The linear space of all 2×2 matrices.
- The space of all 2×2 matrices such that $a+d=0$.
- P_2, the space of all polynomials of degree at most 2.
- The space of all polynomials.
- The space of all 2×2 matrices that commute with

 \[
 \begin{bmatrix}
 0 & 1 \\
 1 & 1
 \end{bmatrix}
 \]