MAT 211

- The matrix of a linear transformation
- The B-matrix of a linear transformation
- The columns of the B-matrix of a linear transformation
- Change of basis matrix
- Change of basis in a subspace of \mathbb{R}^n
- Change of basis for the matrix of a linear transformation

Summary of this section: A and B bases of linear space V, T a linear transformation from V to V

- Coordinate Transformation from V to R^n $T_A^B = [T]_B^A$
- B-matrix of T is $L_A T L_A^{-1}$
- $B=\{f_1,f_2,...,f_r\}$ then B-matrix of T is $[[T(f_1)]_B, [T(f_2)]_B,...,[T(f_r)]_B]$,
- The matrix $S = S_{B\rightarrow A}$ of the linear transformation $L_A (L_A)^{-1}$ from R^r to R^r is called the **change of basis matrix from B to A**.
- The change of basis from $B=\{b_1,b_2,...,b_r\}$ to A is $[[a_1], [a_2],...,[a_r]]_{B\rightarrow A}$.
- If f is in V then $[f]_A = S [f]_B$ where S is the change of basis matrix from B to A.
- $A=\{a_1,a_2,...,a_n\}$ and $B=\{b_1,b_2,...,b_n\}$, S the change of basis matrix from B to A. Then $[b_1,b_2,...,b_n] = [a_1,a_2,...,a_n]S$.

Example

Consider the space U of upper triangular 2×2 matrices and the linear transformation T from U to U defined by $T(M) = AM$ where A is

$$
\begin{bmatrix}
1 & -2 \\
0 & 3
\end{bmatrix}
$$

Find a basis B of U and for each element z of U, find $[T(z)]_B$.

Checklist 4.1 and 4.2

- **4.1 Linear spaces.**
 - Definition (when a set is a linear space)
 - Main examples
 - \mathbb{R}^n
 - Matrices
 - Polynomials
 - Vectors $f_1,f_2,...,f_r$ in a linear space V have:
 - span
 - linear independent,
 - form a basis.
 - Coordinate transformation
 - Dimension of a linear space

- **4.2 Linear transformations and isomorphisms**
 - Definition (when a function is a linear transformation.)
 - Kernel, image, rank, nullity of a linear transformation (what are they and how to compute them)
 - Rank-nullity theorem
 - Isomorphism
 - Definition
 - Properties (what is the kernel, image, dimension of domain and target space)

The B-matrix of a linear transformation

- Consider a linear transformation T from V to V where V is an n-dimensional linear space. Let B denote a basis of V.
- The matrix A of the transformation from R^n to R^n defined by $L_A \circ T \circ L_A^{-1}$ is called the **B-matrix of T**.
- If A is the B-matrix of T then $A [v]_B = [T(v)]_B$.
- The columns of B are the B-coordinate vectors $[T(b_1)]_B, [T(b_2)]_B,...,[T(b_n)]_B$.

The B-matrix of a linear transformation

- Consider a linear transformation T from V to V. Let B be matrix of T with respect to a basis $B=\{b_1,b_2,...,b_n\}$.
- The columns of B are the B-coordinate vectors $[T(b_1)]_B, [T(b_2)]_B,...,[T(b_n)]_B$.
 - Give the matrix of the linear transformation $T(f)=f''+2f'$ from P_2 to P_1 with respect to the basis $(1,t,t^2)$.
 - Find basis of the kernel and the image and compute rank and nullity of T.

Summary of this section: A and B bases of linear space V, T a linear transformation from V to V
3. Consider the basis \(A \) and find the kernel, image, rank and nullity.

2. Consider two basis \(A \) and \(B \) of an \(n \)-dimensional vector space \(V \).

1. The matrix \(S = S_{B \to A} \) of the linear transformation \(L \) o (LA)\(^{-1} \) from \(R^n \) to \(R^n \) is called the \textit{change of basis matrix from} \(B \) to \(A \).

- \(S_{B \to A} = \) an invertible matrix and \(S_{B \to A}^{-1} = S_{A \to B} \)
- \[S_{B \to A} = (S_{B \to A})^{-1} \]

Recall: The coordinate Transformation from \(V \) to \(R^n \) is \(L(f) = [f]_B \).

Recall: The \textit{change of basis matrix from} \(B \) to \(A \) is

\[\begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \]

\[\begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \]

\textit{Example:} In the plane \(V \) defined by the equation \(2x+y-2z=0 \) consider the basis

1. Find the change of basis matrix from \(B \) to \(A \)
2. Find the change of basis matrix from \(A \) to \(B \)
3. Write an equation relating the matrices \([a_1,a_2,\ldots,n] \) and \([b_1,b_2,\ldots,n] \), where \(A = (a_1,a_2) \) and \(B = (b_1,b_2) \)