MAT211 Lecture 14

- Orthogonal projections and orthogonal basis
- Orthogonality, length, unit vectors
- Orthonormal vectors: definition and properties
- Orthogonal projections: definition, formula and properties.
- Orthogonal complements
- Pythagorean theorem, Cauchy inequality, angle between two vectors

- A vector \(\mathbf{v} \) in \(\mathbb{R}^n \) is orthogonal to a subspace \(V \) of \(\mathbb{R}^n \) if it is orthogonal to all vectors in \(V \).
- If \(\{\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_m\} \) is a basis of \(V \), then \(\mathbf{v} \) is orthogonal to \(V \) if (and only if) \(\mathbf{v} \) is orthogonal to \(\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_m \).

Example
- Consider the subspace \(V \) of \(\mathbb{R}^3 \) span by \((1,1,1) \) and \((1,0,1) \).
- Find all the vectors orthogonal to \(V \).

- Two vectors \(\mathbf{u} \) and \(\mathbf{v} \) in \(\mathbb{R}^n \) are perpendicular or orthogonal if \(\mathbf{u} \cdot \mathbf{v} = 0 \).
- The length of a vector \(\mathbf{v} \) in \(\mathbb{R}^n \) is \(||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}} \).
- A vector \(\mathbf{v} \) in \(\mathbb{R}^n \) is called a unit vector if \(||\mathbf{v}|| = 1 \).

Example
- Find a unit vector in the line spanned by \((1,1,3) \).
- Find a vector of length 2 orthogonal to \((1,1,3) \).

The vectors \(\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n \) of \(\mathbb{R}^n \) are called orthonormal if they are all unit vectors and are orthogonal to one another. In symbols

\[
(\mathbf{u}_i, \mathbf{u}_j) = 0 \quad \text{if} \quad i \neq j,
\]

and

\[
(\mathbf{u}_i, \mathbf{u}_i) = 1
\]

Example: Find an orthonormal basis of the subspace of \(\mathbb{R}^3 \) of equation \(x+y+z=0 \).
• Orthonormal vectors are linearly independent.
• A set of n orthonormal vectors in \(\mathbb{R}^n \) form a basis.

Consider the vectors \(v_1 = (1/\sqrt{2})(1,0,1), \)
\(v_2 = (0,1,0), \) and \(v_3 = (1/\sqrt{2})(1,0,-1). \)
• Check that \(v_1, v_2 \) and \(v_3 \) are orthonormal.
• Are they linearly independent?

Let \(V \) be a subspace of \(\mathbb{R}^n \) and let \(x \) be a vector \(\mathbb{R}^n. \) Then there exists
unique vectors \(x^\perp \) and \(x^\parallel \) such that
\[
x = x^\parallel + x^\perp
\]
• \(x^\parallel \) in \(V \)
• \(x^\perp \) is orthogonal to \(V \).

If \(V \) is a subspace of \(\mathbb{R}^n \) with orthonormal basis \(\{b_1, b_2, \ldots, b_m\} \) then
\[
\text{proj}_V(x) = (b_1, x) b_1 + (b_2, x) b_2 + \ldots + (b_m, x) b_m
\]
In particular if \(V = \mathbb{R}^n \)
\[
x = (b_1, x) b_1 + (b_2, x) b_2 + \ldots + (b_n, x) b_n
\]

Find the orthogonal projection of \((1,2,3) \) onto the
subspace of \(\mathbb{R}^3 \) of equation \(x+y+z=0. \)
Write \((1,2,3) \) as a linear combination of the vectors \(v_i = (1/\sqrt{2})(1,0,1), \)
\(v_2 = (0,1,0), \) and \(v_3 = (1/\sqrt{2})(1,0,-1). \)

Consider \(V \) a subspace of \(\mathbb{R}^n. \) The orthogonal complement \(V^\perp \) of \(V \) is
the set of vectors \(x \) of \(\mathbb{R}^n \) that are orthogonal to all vectors in \(V. \)
• In other words \(V^\perp \) is the kernel of the linear transformation \(\text{proj}_V. \)
If \(V \) is a subspace of \(\mathbb{R}^n \)
• The orthogonal complement of \(V \) is a subspace of \(\mathbb{R}^n \)
• \(V \cap V^\perp = \{0\} \)
• \(\dim(V) + \dim(V^\perp) = n \)
• \(\dim(V^\perp) = V \)
• \(\dim(V^\perp) = V \)

Find the orthogonal complement \(V \) where \(V \) is the subspace
of \(\mathbb{R}^3 \) of equation \(x+y+z=0. \)

Theorem: Consider two vectors \(x \) and \(y \) in \(\mathbb{R}^n \)
• \(||x+y||^2 = ||x||^2 + ||y||^2 \) if and only if \(x \) and \(y \) are orthogonal
(Pythagorean theorem)
• If \(V \) is a subspace of \(\mathbb{R}^n \) then
\[
||\text{proj}_V(x)|| \leq ||x||
\]
• Cauchy-Schwarz Inequality:
\[
|\langle x, y \rangle| \leq ||x|| \cdot ||y||.
\]
Consider two non-zero vectors \(x \) and \(y \) in \(\mathbb{R}^n. \) The angle \(\theta \)
between these two vectors is defined as \(\arccos\langle x, y \rangle / ||x|| \cdot ||y||. \)

Find the angle between the vectors \(x = (1,1,1) \) and \((1,0,1). \)